गणित में, विनाशक विधि एक प्रक्रिया है जिसका उपयोग कुछ प्रकार के गैर-सजातीय साधारण अंतर समीकरणों (ओडीई) के लिए एक विशेष समाधान खोजने के लिए किया जाता है। इस प्रकार यह अनिर्धारित गुणांकों की विधि के समान है, किन्तु अनिर्धारित गुणांकों की विधि में विशेष समाधान का अनुमान लगाने के अतिरिक्त, इस विधि में विशेष समाधान को व्यवस्थित रूप से निर्धारित किया जाता है। इस प्रकार अनिर्धारित गुणांक वाक्यांश का उपयोग एनीहिलेटर विधि के उस चरण को संदर्भित करने के लिए भी किया जा सकता है जिसमें गुणांक की गणना की जाती है।
संहारक विधि का प्रयोग इस प्रकार किया जाता है। ओ.डी.ई को देखते हुए , कोई अन्य अंतर ऑपरेटर खोजें ऐसा है कि . इस ऑपरेटर को विनाशक कहा जाता है, इसलिए विधि का नाम को क्रियान्वित करने एक सजातीय ओ.डी.ई के दोनों तरफ एक सजातीय ओ.डी.ई देता है जिसके लिए हम समाधान का आधार ढूंढते हैं पहले जैसा। फिर मूल अमानवीय ओ.डी.ई का उपयोग ओ.डी.ई को संतुष्ट करने के लिए रैखिक संयोजन के गुणांकों को सीमित करने वाले समीकरणों की एक प्रणाली बनाने के लिए किया जाता है।
यह विधि इस अर्थ में मापदंडों की भिन्नता जितनी सामान्य नहीं है कि एक संहारक सदैव उपस्तिथ नहीं होता है।
विनाशक तालिका
f(x) |
A(D)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
कहाँ प्राकृतिक संख्या में है, और वास्तविक संख्या में हैं.
यदि तालिका में दिए गए भावों के योग से मिलकर, संहारक संबंधित संहारकों का गुणनफल होता है।
उदाहरण
दिया गया , .
का सबसे सरल संहारक है . के शून्य हैं , तब समाधान का आधार है
समुच्चयिंग हम देखतें है
पद्धतिदे रहा हूँ
जिसके पास समाधान हैं
- ,
समाधान समुच्चय दे रहे हैं
इस घोल को सजातीय और गैर-सजातीय भागों में विभाजित किया जा सकता है। विशेष रूप से, एक साधारण अंतर समीकरण है इस प्रकार गैर-सजातीय अंतर समीकरण के लिए सामान्य परिभाषा, और संगत सजातीय समीकरण का एक पूरक समाधान है। के मूल्य और सामान्यतः प्रारंभिक स्थितियों के एक समुच्चय के माध्यम से निर्धारित किया जाता है। चूँकि यह दूसरे क्रम का समीकरण है, इन मानों को निर्धारित करने के लिए ऐसी दो स्थितियाँ आवश्यक हैं।
मौलिक समाधान और यूलर के सूत्र का उपयोग करके इसे फिर से लिखा जा सकता है:
तब , और स्थिरांकों का उपयुक्त पुनर्निर्धारण पूरक समाधान का एक सरल और अधिक समझने योग्य श्रेणी साधारण अवकल समीकरण रूप देता है, .