विनिमय आव्यूह: Difference between revisions
From Vigyanwiki
m (added Category:Vigyan Ready using HotCat) |
No edit summary |
||
(One intermediate revision by one other user not shown) | |||
Line 83: | Line 83: | ||
{{Matrix classes}} | {{Matrix classes}} | ||
{{Linear-algebra-stub}} | {{Linear-algebra-stub}} | ||
[[Category:All stub articles]] | |||
[[Category:Collapse templates]] | |||
[[Category: | |||
[[Category:Created On 19/07/2023]] | [[Category:Created On 19/07/2023]] | ||
[[Category:Vigyan Ready]] | [[Category:Linear algebra stubs]] | ||
[[Category:Machine Translated Page]] | |||
[[Category:Navigational boxes| ]] | |||
[[Category:Navigational boxes without horizontal lists]] | |||
[[Category:Pages with empty portal template]] | |||
[[Category:Pages with script errors]] | |||
[[Category:Portal-inline template with redlinked portals]] | |||
[[Category:Sidebars with styles needing conversion]] | |||
[[Category:Template documentation pages|Documentation/doc]] | |||
[[Category:Templates Vigyan Ready]] | |||
[[Category:Templates generating microformats]] | |||
[[Category:Templates that are not mobile friendly]] | |||
[[Category:Templates using TemplateData]] | |||
[[Category:Wikipedia metatemplates]] | |||
[[Category:मैट्रिसेस]] |
Latest revision as of 15:38, 31 July 2023
गणित में, विशेष रूप से रैखिक बीजगणित में विनिमय आव्यूह (जिसे उत्क्रमण आव्यूह, पश्च तत्समक, या मानक अनैच्छिक क्रमपरिवर्तन भी कहा जाता है) क्रमपरिवर्तन मैट्रिसेस के विशेष प्रकरण हैं, जहां 1 तत्व प्रतिविकर्ण (एंटीडायगोनल) पर हैं और अन्य सभी तत्व शून्य पर हैं। दूसरे शब्दों में, वे तत्समक आव्यूह के 'पंक्ति-प्रतिलोम' या 'स्तंभ-प्रतिलोम' संस्करण हैं।[1]
परिभाषा
यदि J n × n विनिमय आव्यूह है, तो J के तत्व हैं।
गुण
- विनिमय आव्यूह द्वारा एक आव्यूह को पूर्व-गुणित करने से पूर्व की पंक्तियों की स्थिति लंबवत रूप से फ़्लिप हो जाती है, अर्थात,
- विनिमय आव्यूह द्वारा एक आव्यूह को पश्चात गुणन करने से पूर्व के कॉलम की स्थिति क्षैतिज रूप से फ़्लिप हो जाती है, अर्थात,
- विनिमय आव्यूह सममित हैं; अर्थात्, JnT = Jn हैं
- किसी भी पूर्णांक k के लिए, यदि k सम है तो Jnk = I यदि k विषम है तो Jnk = Jn है। विशेष रूप से, Jn एक अनैच्छिक आव्यूह है; अर्थात् Jn−1 = Jn है।
- यदि n विषम है तो Jn का ट्रेस 1 है और यदि n सम है तो 0 है। दूसरे शब्दों में, Jn का ट्रेस के समान है।
- Jn का निर्धारक के समान है। n के फलन के रूप में, इसका आवर्त 4 है, जो 1, 1, −1, −1 देता है जब n क्रमशः 4 से 0, 1, 2, और 3 के सर्वांगसम मापांक है।
- Jn का अभिलक्षणिक बहुपद है जब n सम है, और जब n विषम है।
- Jn का एडजुगेट आव्यूह है।
संबंध
- विनिमय आव्यूह सबसे सरल प्रति-विकर्ण आव्यूह है।
- कोई भी आव्यूह A जो प्रतिबंध AJ = JA को संतुष्ट करता है उसे केन्द्रसममित कहा जाता है।
- कोई भी आव्यूह A जो AJ = JAT की स्थिति को संतुष्ट करता है, उसे पर्सिमेट्रिक कहा जाता है।
- सममित आव्यूह A जो प्रतिबंध AJ = JA को संतुष्ट करता हैं, द्विसममित आव्यूह कहलाते हैं। द्विसममितीय मैट्रिसेस केन्द्रसममित और पर्सिमेट्रिक दोनों होते हैं।
यह भी देखें
संदर्भ
- ↑ Horn, Roger A.; Johnson, Charles R. (2012), Matrix Analysis (2nd ed.), Cambridge University Press, p. 33, ISBN 9781139788885.