स्थिर सदिश बंडल: Difference between revisions

From Vigyanwiki
m (18 revisions imported from alpha:अचल_सदिश_बंडल)
No edit summary
Line 112: Line 112:


{{Algebraic curves navbox}}
{{Algebraic curves navbox}}
[[Category: बीजगणितीय ज्यामिति]]


 
[[Category:Articles with hatnote templates targeting a nonexistent page]]
 
[[Category:Collapse templates]]
[[Category: Machine Translated Page]]
[[Category:Created On 10/07/2023]]
[[Category:Created On 10/07/2023]]
[[Category:Vigyan Ready]]
[[Category:Machine Translated Page]]
[[Category:Navigational boxes| ]]
[[Category:Navigational boxes without horizontal lists]]
[[Category:Pages with script errors]]
[[Category:Sidebars with styles needing conversion]]
[[Category:Template documentation pages|Documentation/doc]]
[[Category:Templates Vigyan Ready]]
[[Category:Templates generating microformats]]
[[Category:Templates that are not mobile friendly]]
[[Category:Templates using TemplateData]]
[[Category:Wikipedia metatemplates]]
[[Category:बीजगणितीय ज्यामिति]]

Revision as of 16:12, 31 July 2023

गणित में, स्थिर सदिश बंडल एक (होलोमोर्फिक या बीजगणितीय) सदिश बंडल होता है जो ज्यामितीय अपरिवर्तनीय सिद्धांत के अर्थ में स्थिर होता है। किसी भी होलोमोर्फिक सदिश बंडल को हार्डर-नरसिम्हन निस्पंदन का उपयोग करके स्थिर लोगों से बनाया जा सकता है। स्थिर बंडलों को डेविड ममफोर्ड (1963) द्वारा परिभाषित किया गया था और बाद में डेविड गिसेकर, फेडर बोगोमोलोव, थॉमस ब्रिजलैंड और कई अन्य लोगों द्वारा बनाया गया था।

प्रेरणा

स्थिर सदिश बंडलों का विश्लेषण करने की प्रेरणाओं में से एक परिवारों में उनका अच्छा व्यवहार है। वास्तव में, स्थिर सदिश बंडलों के मॉड्यूली रिक्त स्थान का निर्माण कई मामलों में कोट योजना का उपयोग करके किया जा सकता है, जबकि सदिश बंडलों का ढेर ढेर कला है जिसका अंतर्निहित सेट एकल बिंदु है।

यहां सदिश बंडलों के परिवार का उदाहरण दिया गया है जो असंतोषजनक तरीके से पतित होता है। यदि हम यूलर अनुक्रम को टेंसर करते हैं द्वारा सटीक अनुक्रम है

[1]

जो गैर-शून्य तत्व का प्रतिनिधित्व करता है [2] चूंकि तुच्छ सटीक अनुक्रम का प्रतिनिधित्व करता है सदिश है

यदि हम सदिश बंडलों के परिवार पर विचार करते हैं से विस्तार में के लिए , संक्षिप्त सटीक अनुक्रम हैं

जिसमें चेर्न कक्षाएं हैं सामान्यतः है, परंतु मूल पर. संख्यात्मक अपरिवर्तनीयों की इस प्रकार की प्रारम्भ स्थिर सदिश बंडलों के भाँग स्थानों में नहीं होती है।[3]

वक्रों पर स्थिर सदिश बंडल

गैर-एकवचन बीजगणितीय वक्र (या रीमैन सतह पर) पर एक होलोमोर्फिक सदिश बंडल डब्ल्यू का ढलान एक तर्कसंगत संख्या μ(W) = डिग्री(W)/रैंक(W)है। बंडल W स्थिर है यदि और केवल यदि

W के सभी उचित गैर-शून्य उपसमूह V के लिए और अर्धस्थिर है यदि

W के सभी उचित गैर-शून्य सबबंडल V के लिए। अनौपचारिक रूप से यह कहता है कि बंडल स्थिर है यदि यह किसी भी उचित सबबंडल से "अधिक पर्याप्त" है, और अस्थिर है यदि इसमें "अधिक पर्याप्त" सबबंडल है।

यदि W और V अर्धस्थिर सदिश बंडल हैं और μ(W) >μ(V), तो कोई गैर-शून्य मानचित्र W → V नहीं हैं।

डेविड ममफोर्ड ने साबित किया कि गैर-एकवचन वक्र पर दिए गए रैंक और डिग्री के स्थिर बंडलों का भाँग स्थान एक अर्धप्रक्षेपी बीजगणितीय विविधता है। वक्र पर स्थिर सदिश बंडलों के भाँग स्पेस की सह-समरूपता का वर्णन किया गया था हार्डर & नरसिम्हन (1975) परिमित क्षेत्रों पर बीजगणितीय ज्यामिति का उपयोग करके और अतियाह & बॉट (1983) द्वारा नरसिम्हन- शेषाद्रि दृष्टिकोण का उपयोग करके किया गया था।

उच्च आयामों में स्थिर सदिश बंडल

यदि 'डेविड गिसेकर स्थिर') यदि

W के सभी उचित गैर-शून्य उपसमूह (या सबशेव्स) V के लिए, जहां χ बीजगणितीय सदिश बंडल की यूलर विशेषता को दर्शाता है और सदिश बंडल V (nH) का मतलब H द्वारा V के एन-वें सेरे मोड़ है। W को अर्धस्थिर कहा जाता है यदि उपरोक्त ≤ द्वारा प्रतिस्थापित < के साथ रखा जाता है।

ढलान स्थिरता

वक्रों पर बंडलों के लिए ढलानों और हिल्बर्ट बहुपद की वृद्धि द्वारा परिभाषित स्थिरता मेल खाती है। उच्च आयामों में, ये दोनों धारणाएँ अलग-अलग हैं और इनके अलग-अलग फायदे हैं। गिसेकर स्थिरता की व्याख्या ज्यामितीय अपरिवर्तनीय सिद्धांत के संदर्भ में की गई है, जबकि μ-स्थिरता में टेंसर उत्पादों, पुलबैक आदि के लिए बेहतर गुण हैं।

मान लीजिए कि X आयाम n की सहज प्रक्षेप्य विविधता है, H इसका हाइपरप्लेन अनुभाग है। H के संबंध में सदिश बंडल (या, अधिक सामान्यतः, मरोड़-मुक्त सुसंगत शीफ) E का 'ढलान' तर्कसंगत संख्या है जिसे इस प्रकार परिभाषित किया गया है

जहां c1 प्रथम चेर्न वर्ग है। H पर निर्भरता अक्सर नोटेशन से हटा दी जाती है।

एक मरोड़-मुक्त सुसंगत शीफ E μ-अर्धस्थिर है यदि किसी गैर-शून्य उपशीफ F ⊆ E के लिए ढलान असमानता μ(F) ≤ μ(E) को संतुष्ट करते हैं। यह μ-स्थिर है, यदि इसके अलावा, छोटी रैंक के किसी भी गैर-शून्य उपशीर्ष F ⊆ E के लिए सख्त असमानता μ(F) < μ(E) कायम है। स्थिरता की इस धारणा को ढलान स्थिरता, μ-स्थिरता, कभी-कभी ममफोर्ड स्थिरता या ताकेमोटो स्थिरता कहा जा सकता है।

सदिश बंडल E के लिए निहितार्थों की निम्नलिखित श्रृंखला लागू होती है E μ-स्थिर है ⇒ E स्थिर है ⇒ E अर्धस्थिर है ⇒ E μ-अर्धस्थिर है।

हार्डर-नरसिम्हन निस्पंदन

मान लीजिए E चिकने प्रक्षेप्य वक्र X पर सदिश बंडल है। तब उपबंडलों द्वारा अद्वितीय निस्पंदन (गणित) मौजूद होता है

जैसे कि संबंधित श्रेणीबद्ध मॉड्यूल घटक Fi := Ei+1/Ei अर्धस्थिर सदिश बंडल हैं और ढलान कम हो जाते हैं, μ(Fi) > μ(Fi+1) इस निस्पंदन को हार्डर & नरसिम्हन (1975) में पेश किया गया था और इसे हार्डर-नरसिम्हन निस्पंदन कहा जाता है। समरूपी संबद्ध ग्रेड वाले दो सदिश बंडलों को S-समतुल्य कहा जाता है।

उच्च-आयामी किस्मों पर निस्पंदन भी हमेशा मौजूद होता है और अद्वितीय होता है, परंतु संबंधित वर्गीकृत घटक अब बंडल नहीं हो सकते हैं। गिसेकर स्थिरता के लिए ढलानों के बीच की असमानताओं को हिल्बर्ट बहुपदों के बीच की असमानताओं से प्रतिस्थापित किया जाना चाहिए।

कोबायाशी-हिचिन पत्राचार

नरसिम्हन-शेषाद्रि प्रमेय का कहना है कि प्रक्षेप्य व्युत्क्रमणीय वक्र पर स्थिर बंडल उन बंडलों के समान होते हैं जिनमें प्रक्षेप्य रूप से सपाट एकात्मक अपरिवर्तनीय कनेक्शन होते है। डिग्री 0 के बंडलों के लिए प्रोजेक्टिवली फ्लैट कनेक्शन फ्लैट सदिश बंडल होते हैं और इस प्रकार डिग्री 0 के स्थिर बंडल मौलिक समूह के अपरिवर्तनीय एकात्मक प्रतिनिधित्व के अनुरूप होते हैं।

कोबायाशी और हिचिन ने उच्च आयामों में इसके एक एनालॉग का अनुमान लगाया। इसे डोनाल्डसन (1985) प्रक्षेप्य व्युत्क्रमणीय सतहों के लिए सिद्ध किया गया था, जिन्होंने दिखाया था कि इस मामले में सदिश बंडल स्थिर है यदि और केवल तभी जब इसमें इरेड्यूसेबल हर्मिटियन-आइंस्टीन कनेक्शन है।

सामान्यीकरण

हिल्बर्ट सामान्यीकरण बहुपद का उपयोग करके गैर-चिकनी प्रक्षेप्य योजनाओं और अधिक सामान्य सुसंगत शीव्स के लिए (μ-) स्थिरता को सामान्य बनाना संभव है। मान लीजिए कि X एक प्रक्षेप्य योजना है, d एक प्राकृतिक संख्या है, E मंद Supp(E) = d के साथ E का हिल्बर्ट बहुपद PE(m) = Σd i=0 αi(E)/(i!) mi के रूप में लिखें घटे हुए हिल्बर्ट बहुपद pE := PEd(E) पृष्ठ को परिभाषित करें।

यदि निम्नलिखित दो शर्तें पूरी होती हैं तो एक सुसंगत शीफ E अर्धस्थिर है[4]

  • E, आयाम d से शुद्ध है, अर्थात E के सभी संबद्ध अभाज्य संख्याओं का आयाम d है,
  • किसी भी उचित अशून्य उपशीर्षक F ⊆ E के लिए कम किए गए हिल्बर्ट बहुपद बड़े m के लिए pF(m) ≤ pE(m) को संतुष्ट करते हैं।

यदि सख्त असमानता pF(m) < pE(m) बड़े m के लिए है तो एक शीफ को स्थिर कहा जाता है ।

मान लीजिए कि Cohd(X) आयाम ≤ d के समर्थन के साथ X पर सुसंगत शीव्स की पूर्ण उपश्रेणी है। Cohd में किसी वस्तु F का ढलान को हिल्बर्ट बहुपद के गुणांकों का उपयोग करके परिभाषित किया जा सकता है यदि αd(F) ≠ 0 और 0 अन्यथा। की निर्भरता सामान्यतः डी को नोटेशन से हटा दिया जाता है।

सुसंगत शीफ E के साथ यदि निम्नलिखित दो शर्तें पूरी होती हैं, तो इसे μ-अर्धस्थिर कहा जाता है[5]

  • E का मरोड़ आयाम ≤ d-2 में है,
  • किसी भागफल श्रेणी में Cohd(X)/Cohd-1(X) किसी भी गैर-शून्य उप-वस्तु के लिए F ⊆ E हमारे पास है .

यदि E के सभी उचित गैर-शून्य उप-वस्तुओं के लिए सख्त असमानता लागू रहती है, तो E μ-स्थिर है।

ध्यान दें कि Cohd किसी भी d के लिए एक सेरे उपश्रेणी है, इसलिए भागफल श्रेणी मौजूद है। सामान्य रूप से भागफल श्रेणी में एक उप-वस्तु एक उपशीर्षक से नहीं आती है, परंतु मरोड़-मुक्त ढेरों के लिए मूल परिभाषा और d = n के लिए सामान्य परिभाषा समान हैं।

सामान्यीकरण के लिए अन्य दिशाएँ भी हैं, उदाहरण के लिए ब्रिजलैंड की स्थिरता स्थितियाँ।

कोई स्थिर सदिश बंडलों के अनुरूप स्थिर मुख्य बंडलों को परिभाषित कर सकता है।

यह भी देखें

  • कोबायाशी-हिचिन पत्राचार
  • कॉर्लेट-सिम्पसन पत्राचार
  • उद्धरण योजना

संदर्भ

  1. Note from the Adjunction formula on the canonical sheaf.
  2. Since there are isomorphisms
  3. Faltings, Gerd. "वक्रों पर वेक्टर बंडल" (PDF). Archived (PDF) from the original on 4 March 2020.
  4. Huybrechts, Daniel; Lehn, Manfred (1997). शीव्स के मोडुली स्पेस की ज्यामिति (PDF)., Definition 1.2.4
  5. Huybrechts, Daniel; Lehn, Manfred (1997). शीव्स के मोडुली स्पेस की ज्यामिति (PDF)., Definition 1.6.9