सुसंगत शीफ
गणित में, विशेष रूप से बीजगणितीय ज्यामिति और जटिल मैनिफोल्ड्स के सिद्धांत में, सुसंगत बहुत शीफ (गणित) का एक वर्ग है जो अंतर्निहित स्थान के ज्यामितीय गुणों से निकटता से जुड़ा हुआ है। सुसंगत शीशों की परिभाषा इस ज्यामितीय जानकारी को संहिताबद्ध करने वाले छल्ले के एक समूह के संदर्भ में बनाई गई है।
सुसंगत शिव्स को वेक्टर बंडल के सामान्यीकरण के रूप में देखा जा सकता है। वेक्टर बंडलों के विपरीत, वे एक एबेलियन श्रेणी बनाते हैं, और इसलिए वे कर्नेल (श्रेणी सिद्धांत), छवि (गणित), और कोकर्नल लेने जैसे संचालन के तहत बंद हो जाते हैं। अर्ध-सुसंगत बहुत सुसंगत शिव्स का एक सामान्यीकरण है और इसमें अनंत श्रेणी के स्थानीय रूप से मुक्त बहुत साममिलित हैं।
सुसंगत शीफ कोहोलॉजी एक शक्तिशाली विधि है, विशेष रूप से किसी दिए गए सुसंगत शीफ के वर्गों का अध्ययन करने के लिए है।
परिभाषाएँ
रिंग वाली जगह पर एक अर्ध-सुसंगत शीफ -मापांक का एक शीफ है जिसकी एक स्थानीय प्रस्तुति है, अर्थात्, के प्रत्येक बिंदु का एक खुला निकट है जिसमें एक स्पष्ट क्रम है
कुछ के लिए (संभवतः अनंत) और समूह करता है।
रिंग वाली जगह पर एक सुसंगत शीफ एक शीफ है जो निम्नलिखित दो गुणों को संतुष्ट करता है:
- , पर परिमित प्रकार का है, अर्थात, में प्रत्येक बिंदु का में एक खुला निकट है, जैसे कि एक विशेषण आकारिकी है किसी प्राकृतिक संख्या के लिए है ।
- किसी भी खुले समूह के लिए , कोई भी प्राकृतिक संख्या , और कोई आकारिकी का -मॉड्यूल, की गिरी परिमित प्रकार का है।
(अर्ध-) सुसंगत शिव्स के बीच आकारिकी -मापांक के शिव्स के आकारिकी के समान हैं।
योजनाओं का स्थिति
एफ़िन एक योजना है, ऊपर दी गई सामान्य परिभाषाएँ अधिक स्पष्ट लोगों के सामान्य हैं। -मापांक का एक शीफ क्वैसी-सुसंगत है यदि और केवल यदि प्रत्येक ओपन एफाइन सबस्कीम पर प्रतिबंध मापांक से जुड़े शीफ के लिए समरूप है। जब एक है स्थानीय रूप से नोएथेरियन योजना, सुसंगत है यदि और केवल यदि यह अर्ध-सुसंगत है और उपरोक्त मापांक को अंतिम रूप से उत्पन्न होने के लिए लिया जा सकता है।
एक एफाइन स्कीम पर, -मापांक से क्वैसी-सुसंगत शीव तक श्रेणियों की समानता होती है, जो मापांक को संबंधित शीफ में ले जाती है। व्युत्क्रम तुल्यता के वैश्विक वर्गों के -मापांक पर यू पर एक अर्ध-सुसंगत शीफ लेती है।
यहाँ एक योजना पर अर्ध-सुसंगत शिव्स के कई और लक्षण हैं।[1]
Theorem — को एक स्कीम होने दें और उस पर an -उसके बाद निम्न बराबर हैं।
- अर्ध-सुसंगत है।
- की प्रत्येक खुली उपयोजना के लिए , शेफ का मॉड्यूल -से जुड़ा -मॉड्यूल -module .
- का एक खुला एफ़ाइन कवर of है, ऐसा है कि कवर के प्रत्येकके लिए मॉड्यूल से जुड़े शीफ के लिए आइसोमोर्फिक है। -
- की ओपन एफाइन उपयोजना of , की प्रत्येक जोड़ी के लिए, प्राकृतिक समरूपता
- एक समरूपता है।
- प्रत्येक ओपन एफाइन उपयोजना of and each , और प्रत्येक की खुली उपयोजना के लिए जहांशून्य नहीं है, प्राकृतिक समरूपता
- एक समरूपता है। समरूपता स्थानीयकरण की सार्वभौमिक संपत्ति से आती है।
गुण
एक इच्छानुसार से चक्राकार स्थान पर अर्ध-सुसंगत बहुत आवश्यक रूप से एक एबेलियन श्रेणी नहीं बनाते हैं। दूसरी ओर, किसी भी योजना (गणित) पर अर्ध-सुसंगत बहुत एक एबेलियन श्रेणी बनाते हैं, और वे उस संदर्भ में अत्यंत उपयोगी होते हैं।[2]
किसी भी रिंग्ड स्थान पर, सुसंगत अनेक एक एबेलियन श्रेणी बनाते हैं, -मापांक की श्रेणी की एक पूर्ण उपश्रेणी।[3] (अनुरूप रूप से, किसी भी रिंग पर सुसंगत मापांक की श्रेणी सभी -मापांक की श्रेणी की एक पूर्ण एबेलियन उपश्रेणी है।) इसलिए सुसंगत शीशों के किसी भी मानचित्र का कर्नेल, छवि और कोकर्नेल सुसंगत हैं। दो सुसंगत अनेक का सीधा योग सुसंगत है; अधिक सामान्यतः, -मापांक जो दो सुसंगत अनेक का विस्तार है, सुसंगत है।[4]
सुसंगत शीफ का एक उप मापांक सुसंगत है यदि यह परिमित प्रकार का है। एक सुसंगत शीफ सदैव परिमित प्रस्तुति का एक -मापांक होता है, जिसका अर्थ है कि में प्रत्येक बिंदु का एक खुला निकट है जैसे कि से आकारिकी के कोकर्नेल के लिए समरूप है कुछ प्राकृत संख्याओं और के लिए यदि सुसंगत है, तो, इसके विपरीत, पर परिमित प्रस्तुति का प्रत्येक समूह सुसंगत है।
रिंगों के शीफ को सुसंगत कहा जाता है यदि यह सुसंगत है जिसे स्वयं पर मापांक के शीफ के रूप में माना जाता है। विशेष रूप से, ओका जुटना प्रमेय कहता है कि एक जटिल विश्लेषणात्मक स्थान पर होलोमोर्फिक कार्यों का शीफ रिंगों का एक सुसंगत शीफ है। प्रमाण का मुख्य भाग केस है। इसी तरह, स्थानीय रूप से नॉथेरियन योजना पर, संरचना शीफ रिंगों का एक सुसंगत शीफ है।[5]
सुसंगत शिव्स का मूल निर्माण
- रिंग स्थान पर -मापांक को स्थानीय रूप से परिमित श्रेणी से मुक्त या सदिश बंडल कहा जाता है, यदि के प्रत्येक बिंदु में एक खुला निकट है जैसे कि प्रतिबंध की प्रतियों के एक सीमित प्रत्यक्ष योग के लिए आइसोमोर्फिक है। यदि , के प्रत्येक बिंदु के पास समान श्रेणी से मुक्त है, तो वेक्टर बंडल को श्रेणी कहा जाता है।
- एक योजना पर इस शीफ-सैद्धांतिक अर्थ में वेक्टर बंडल अधिक ज्यामितीय विधि से परिभाषित वेक्टर बंडलों के समूह हैं, एक योजना के रूप में आकारिकी के साथ और खुले द्वारा के आवरण के साथ को दिए गए समाकारिताओं के साथ समुच्चय करता है ऊपर जैसे कि एक प्रतिच्छेदन पर दो समरूपता एक रेखीय ऑटोमोर्फिज़्म द्वारा भिन्न है[6]। (समान समतुल्यता जटिल विश्लेषणात्मक स्थानों के लिए भी प्रयुक्त होती है।) उदाहरण के लिए, इस ज्यामितीय अर्थ में एक वेक्टर बंडल दिया गया है, संबंधित शीफ द्वारा परिभाषित किया गया है: के एक खुले समूह पर, -मापांक मोर्फिज्म के अनुभाग का समूह है के लिए वेक्टर बंडलों की शीफ-सैद्धांतिक व्याख्या का लाभ यह है कि वेक्टर बंडलों (स्थानीय रूप से नोएथेरियन योजना पर) सुसंगत शिव्स की एबेलियन श्रेणी में साममिलित है
- स्थानीय रूप से मुक्त शिव्स मानक -मापांक संचालन से सुसज्जित हैं, किंतु ये स्थानीय रूप से मुक्त शिव्स देते हैं।
- माना एक नोथेरियन वलय है। फिर पर वेक्टर बंडल वास्तव में पर सूक्ष्म रूप से उत्पन्न किए गए प्रक्षेप्य मापांक से जुड़े शेव हैं, या (समतुल्य) से अधिक समतल मापांक उत्पन्न करने के लिए है।[7]
- मान लीजिए एक नोथेरियन -श्रेणीबद्ध वलय है, एक नोथेरियन वलय पर एक प्रक्षेपी योजना है। फिर प्रत्येक -श्रेणीबद्ध -मापांक , पर एक अर्ध-सुसंगत शीफ निर्धारित करता है जैसे कि मापांक से जुड़ा शीफ है, जहां एक है सकारात्मक डिग्री के का सजातीय तत्व और वह स्थान है जहां विलुप्त नहीं होता है।
- उदाहरण के लिए, प्रत्येक पूर्णांक के लिए, } द्वारा दिए गए वर्गीकृत -मापांक को दर्शाता है। तब प्रत्येक पर अर्ध-सुसंगत शीफ को पर निर्धारित करता है। यदि -बीजगणित द्वारा के रूप में उत्पन्न होता है, तो पर एक रेखा बंडल (अपरिवर्तनीय शीफ) है और है की -वें टेंसर शक्ति विशेष रूप से, _ को प्रक्षेप्य -स्थान पर टॉटोलॉजिकल रेखा बंडल कहा जाता है।
- एक सुसंगत शीफ का एक सरल उदाहरण जो एक वेक्टर बंडल नहीं है, कोकरनेल द्वारा निम्नलिखित क्रम में दिया गया है
- यह है क्योंकि दो बहुपदों के लुप्त होने वाले स्थान तक सीमित द्वि-आयामी फाइबर हैं, और कहीं-कहीं एक-आयामी फाइबर हैं।
- आदर्श शीफ: यदि स्थानीय रूप से नोएथेरियन योजना की एक बंद उपयोजना है , पुलिया विलुप्त होने वाले सभी नियमित कार्यों में से सुसंगत है। इसी तरह यदि एक जटिल विश्लेषणात्मक स्थान का एक बंद विश्लेषणात्मक उप-क्षेत्र है , आदर्श शेफ सुसंगत है।
- स्थानीय रूप से नोएथेरियन योजना की एक बंद उपयोजना की संरचना शीफ को पर एक सुसंगत शीफ के रूप में देखा जा सकता है। स्पष्ट होने के लिए, यह प्रत्यक्ष छवि शीफ है , जहाँ समावेशन है। इसी तरह एक जटिल विश्लेषणात्मक स्थान के एक बंद विश्लेषणात्मक उप-स्थान के लिए शीफ में खुले सेट में बिंदुओं पर आयाम शून्य का फाइबर (नीचे परिभाषित) है, और आयाम 1 के फाइबर में बिंदुओं पर है . पर सुसंगत शिव्स का एक छोटा स्पष्ट क्रम है।
- रेखीय बीजगणित के अधिकांश संचालन सुसंगत शिव्स को संरक्षित करते हैं। विशेष रूप से, सुसंगत शिव्स के लिए और एक चक्राकार स्थान पर , टेंसर उत्पाद शीफ और पुला होम सुसंगत हैं।[8]
- अर्ध-सुसंगत शीफ का एक सरल गैर-उदाहरण शून्य कारक द्वारा विस्तार द्वारा दिया जाता है। उदाहरण के लिए पर विचार करें
- चूंकि इस शीफ में गैर-तुच्छ डंठल हैं, किंतु शून्य वैश्विक भाग हैं, यह अर्ध-सुसंगत शीफ नहीं हो सकता है। ऐसा इसलिए है क्योंकि एफ़िन योजना पर अर्ध-सुसंगत बहुत अंतर्निहित रिंग पर मापांक की श्रेणी के सामान्य होते हैं, और संयोजन वैश्विक वर्गों को लेने से आता है।
कार्यात्मकता
चलो चक्राकार रिक्त स्थान का एक रूपवाद हो (उदाहरण के लिए, योजनाओं का एक रूपवाद)। यदि पर एक अर्ध-सुसंगत शीफ है , फिर उलटा छवि शीफ -मापांक (या पुलबैक) पर अर्ध-सुसंगत है .[10] योजनाओं के एक मोर्फिज्म के लिए और एक सुसंगत शीफ पर पुलबैक पूर्ण सामान्यता में सुसंगत नहीं है (उदाहरण के लिए, , जो सुसंगत नहीं हो सकता है), किंतु सुसंगत शिव्स के पुलबैक सुसंगत हैं यदि स्थानीय रूप से नोथेरियन है। एक महत्वपूर्ण विशेष स्थिति वेक्टर बंडल का पुलबैक है, जो एक वेक्टर बंडल है।
यदि योजना सिद्धांत की अर्ध-कॉम्पैक्ट शब्दावली है या पृथक और उचित आकारिकी योजनाओं की अर्ध-पृथक आकारिकी और पर एक अर्ध-सुसंगत शीफ है , फिर प्रत्यक्ष छवि शीफ़ (या अग्रसर होना) पर अर्ध-सुसंगत है .[2]
सुसंगत शीफ की प्रत्यक्ष छवि अधिकांशतः सुसंगत नहीं होती है। उदाहरण के लिए, एक क्षेत्र (गणित) के लिए , होने देना एफ़िन रेखा समाप्त हो , और रूपवाद पर विचार करें ; फिर प्रत्यक्ष छवि पुलिया चालू है बहुपद रिंग से संबंधित , जो सुसंगत नहीं है क्योंकि के रूप में अनंत आयाम है -वेक्टर स्थान। दूसरी ओर, ग्रेउर्ट और ग्रोथेंडिक के परिणामों के अनुसार, एक उचित आकृतिवाद के तहत एक सुसंगत शीफ की प्रत्यक्ष छवि सुसंगत है।
सुसंगत शिव्स का स्थानीय व्यवहार
सुसंगत शिव्स की एक महत्वपूर्ण विशेषता यह है कि के गुण एक बिंदु पर के व्यवहार पर नियंत्रण रखें के निकट में , एक इच्छानुसार शीफ के लिए इससे कहीं अधिक सच होगा। उदाहरण के लिए, नाकायमा की लेम्मा कहती है (ज्यामितीय भाषा में) कि यदि एक योजना पर एक सुसंगत शीफ है , फिर फाइबर का एक बिंदु पर (अवशेष क्षेत्र पर एक सदिश स्थान ) शून्य है यदि और केवल यदि पूला के कुछ खुले निकट पर शून्य है . एक संबंधित तथ्य यह है कि एक सुसंगत शीफ के तंतुओं का आयाम अर्ध-निरंतरता ऊपरी-अर्ध-अर्ध-निरंतर है।[11] इस प्रकार एक सुसंगत शीफ का एक खुले समूह पर निरंतर श्रेणी होता है, जबकि श्रेणी कम-आयामी बंद उपसमुच्चय पर कूद सकता है।
उसी भावना में: एक सुसंगत शीफ एक योजना पर एक वेक्टर बंडल है यदि और केवल यदि यह एक पूले का डंठल है स्थानीय रिंग पर एक मुफ्त मापांक है हर बिंदु में के लिए है .[12]
एक सामान्य योजना पर, कोई यह निर्धारित नहीं कर सकता है कि एक सुसंगत शीफ केवल अपने तंतुओं से एक सदिश बंडल है (इसके डंठल के विपरीत)। एक कम योजना पर स्थानीय रूप से नोथेरियन योजना, चूँकि , एक सुसंगत शीफ एक सदिश बंडल है यदि और केवल यदि इसकी श्रेणी स्थानीय रूप से स्थिर है।[13]
वेक्टर बंडलों के उदाहरण
योजनाओं के आकारिकी के लिए, को विकर्ण आकारिकी होने दें, जो एक बंद निमज्जन है यदि को से अलग किया जाता है। चलो , में का आदर्श पूला हो फिर अवकलनों के समूह को पुलबैक के रूप में परिभाषित किया जा सकता है से इस शीफ के अनुभागों को के ऊपर पर 1-रूप कहा जाता है, और उन्हें स्थानीय रूप से पर परिमित राशि के रूप में लिखा जा सकता है नियमित के लिए कार्य और । यदि क्षेत्र पर स्थानीय रूप से परिमित प्रकार का है, तो पर एक सुसंगत शीफ़ है।
यदि , पर सुचारू है, तो (अर्थ के ऊपर एक सदिश बंडल है, जिसे का कोटिस्पर्शी बंडल कहा जाता है। फिर स्पर्शरेखा बंडल को दोहरे बंडल के रूप में परिभाषित किया गया है। हर जगह आयाम के सुचारू ऊपर के लिए, स्पर्शरेखा बंडल की श्रेणी है यदि एक सुचारू योजना ऊपर की सुचारू बंद उपयोजना है, तो पर वेक्टर बंडलों का एक छोटा स्पष्ट अनुक्रम है
जिसे में से सामान्य बंडल की परिभाषा के रूप में उपयोग किया जा सकता है।
क्षेत्र और एक प्राकृतिक संख्या पर एक सहज योजना के लिए, पर -रूपों के वेक्टर बंडल को स्पर्शरेखा बंडल की -वा बाहरी शक्ति के रूप में परिभाषित किया गया है, आयाम से अधिक की सुचारू विविधता के लिए, कैनोनिकल बंडल का अर्थ रेखा बंडल है। इस प्रकार कैनोनिकल बंडल के भाग पर आयतन रूपों के बीजगणित-ज्यामितीय एनालॉग हैं। उदाहरण के लिए, एफाइन स्थान ऊपर के कैनोनिकल बंडल के एक भाग को इस रूप में लिखा जा सकता है
जहाँ एक बहुपद है जिसका गुणांक है।
मान लीजिए कि एक क्रमविनिमेय वलय है और एक प्राकृतिक संख्या है। प्रत्येक पूर्णांक के लिए, प्रक्षेप्य स्थान ऊपर पर एक रेखा बंडल का एक महत्वपूर्ण उदाहरण है, जिसे कहा जाता है। इसे परिभाषित करने के लिए, -योजनाओं के रूपवाद पर विचार करें
द्वारा निर्देशांक में दिया गया है। (अर्थात, प्रक्षेप्य स्थान को एफ़िन स्थान के 1-आयाम रेखीय उपस्थान के स्थान के रूप में सोचते हुए, एफ़िन स्थान में एक अशून्य बिंदु को उस रेखा पर भेजें, जिस पर यह फैला है।) फिर का एक अनुभाग (j)} के एक खुले उपसमुच्चय पर पर एक नियमित कार्य के रूप में परिभाषित किया गया है जो डिग्री का सजातीय है, जिसका अर्थ है कि
पर नियमित कार्यों के रूप में (. सभी पूर्णांकों के लिए और , एक समरूपता है रेखा बंडलों पर है
विशेष रूप से, प्रत्येक सजातीय बहुपद में डिग्री का ऊपर के वैश्विक भाग के रूप में देखा जा सकता है ऊपर . ध्यान दें कि प्रक्षेप्य स्थान के प्रत्येक बंद उप-योजना को सजातीय बहुपदों के कुछ संग्रह के शून्य समूह के रूप में परिभाषित किया जा सकता है, इसलिए रेखा बंडलों के कुछ वर्गों के शून्य समूह के रूप में .[14] यह एफ़िन स्थान के सरल स्थिति के विपरीत है, जहां एक बंद उपयोजना नियमित कार्यों के कुछ संग्रह का शून्य समूह है। प्रक्षेप्य स्थान पर नियमित कार्य ऊपर केवल स्थिरांक हैं (रिंग ), और इसलिए रेखा बंडलों के साथ काम करना आवश्यक है
जीन पियरे सेरे ने प्रक्षेप्य स्थान पर सभी सुसंगत शेवों का बीजगणितीय विवरण दिया, जो एफ़िन स्थान के लिए क्या होता है उससे कहीं अधिक सूक्ष्म है। अर्थात्, चलो एक नोथेरियन वलय (उदाहरण के लिए, एक क्षेत्र) हो, और बहुपद वलय पर विचार करें प्रत्येक के साथ एक वर्गीकृत रिंग के रूप में डिग्री होने के बाद 1. फिर हर अंतिम रूप से उत्पन्न श्रेणीबद्ध -मापांक एक प्रोजेक्ट कंस्ट्रक्शन है या श्रेणीबद्ध मापांक सुसंगत शीफ से जुड़ा शीफ पर ऊपर . हर सुसंगत शीफ ऑन इस तरह से एक अंतिम रूप से उत्पन्न ग्रेड से उत्पन्न होता है -मापांक . (उदाहरण के लिए, रेखा बंडल से संबंधित शीफ है -मापांक इसकी श्रेणीकरण के साथ कम किया गया ।) किंतु -मापांक जो एक दिए गए सुसंगत शीफ को उत्पन्न करता है अद्वितीय नहीं है; यह केवल बदलने के लिए अद्वितीय है श्रेणीकरण मापांक द्वारा जो केवल सूक्ष्म रूप से कई डिग्री में गैर-शून्य हैं। अधिक स्पष्ट रूप से, सुसंगत शिव्स की एबेलियन श्रेणी अंतिम रूप से उत्पन्न श्रेणीकरण की श्रेणी की एक एबेलियन श्रेणी का भागफल है मापांक के सेर्रे उपश्रेणी द्वारा मापांक जो केवल सूक्ष्म रूप से कई डिग्री में गैर-शून्य हैं।[15]
प्रक्षेपी स्थान का स्पर्शरेखा बंडल एक क्षेत्र के ऊपर रेखा बंडल के संदर्भ में वर्णित किया जा सकता है . अर्थात्, एक छोटा स्पष्ट क्रम है, यूलर अनुक्रम:
यह इस प्रकार है कि विहित बंडल (स्पर्शरेखा बंडल के निर्धारक रेखा बंडल की दोहरी) के लिए समरूपी है . यह बीजगणितीय ज्यामिति के लिए एक मौलिक गणना है। उदाहरण के लिए, तथ्य यह है कि विहित बंडल पर्याप्त रेखा बंडल का ऋणात्मक गुणक है इसका अर्थ है कि प्रक्षेप्य स्थान एक फ़ानो विविधता है। जटिल संख्याओं पर, इसका अर्थ है कि प्रक्षेप्य स्थान में सकारात्मक रिक्की वक्रता वाला काहलर मीट्रिक है।
अतिसतह पर वेक्टर बंडल
एक सुचारू डिग्री पर विचार करें- ऊनविम पृष्ठ सजातीय बहुपद द्वारा परिभाषित डिग्री का . फिर, एक स्पष्ट क्रम होता है
जहां दूसरा मैप अंतर रूपों का पुलबैक है, और पहला मैप भेजता है
ध्यान दें कि यह क्रम हमें बताता है का सामान्य शीफ है में . इसे दोहरा करने से स्पष्ट अनुक्रम प्राप्त होता है
इस तरह का सामान्य बंडल है में . यदि हम इस तथ्य का उपयोग करते हैं कि एक स्पष्ट क्रम दिया गया है
श्रेणियों के साथ वेक्टर बंडलों की ,,, एक समरूपता है
रेखा बंडलों की, तो हम देखते हैं कि समरूपता है
दिखा रहा है
सेरे निर्माण और वेक्टर बंडल
श्रेणी 2 वेक्टर बंडलों के निर्माण के लिए एक उपयोगी विधि सेरे निर्माण है[16][17]पृष्ठ 3 जो श्रेणी 2 वेक्टर बंडलों के बीच एक पत्राचार स्थापित करता है एक सुचारू प्रक्षेप्य विविधता पर और कोडिमेंशन 2 उप-विविधता एक निश्चित का उपयोग करना -समूह पर गणना की गई . यह रेखा बंडल पर एक कोहोलॉजिकल स्थिति द्वारा दिया गया है (नीचे देखें)।
एक दिशा में पत्राचार इस प्रकार दिया गया है: एक भाग के लिए हम लुप्त हो रहे स्थान को जोड़ सकते हैं . यदि एक कोडिमेंशन 2 उप प्रजाति है, तो
- यह एक स्थानीय पूर्ण प्रतिच्छेदन है, जिसका अर्थ है कि यदि हम एक एफ़िन चार्ट लेते हैं तब एक कार्य के रूप में प्रतिनिधित्व किया जा सकता है , कहाँ और
- रेखा बंडल विहित बंडल के लिए समरूप है पर
दूसरी दिशा में,[18] कोडिमेंशन 2 उप प्रजाति के लिए और एक रेखा बंडल ऐसा है कि
एक कैनोनिकल समरूपता है
जो कोडिमेंशन को साममिलित करने के संबंध में कार्यात्मक है उप-प्रजाति है । इसके अतिरिक्त , बाईं ओर दिया गया कोई भी समरूपता दाईं ओर विस्तार के बीच में स्थानीय रूप से मुक्त शीफ से मेल खाती है। जिससे के लिए जो एक समरूपता है, वहां एक स्थानीय रूप से मुक्त शीफ है श्रेणी 2 का जो एक संक्षिप्त स्पष्ट अनुक्रम में फिट बैठता है
इस सदिश बंडल को कोहोमोलॉजिकल अपरिवर्तनीय का उपयोग करके आगे अध्ययन किया जा सकता है जिससे यह निर्धारित किया जा सके कि यह स्थिर है या नहीं। यह कई विशिष्ट स्थिति में वेक्टर बंडलों के मोडुली का अध्ययन करने का आधार बनाता है, जैसे एबेलियन प्रजाति पर[17]और K3 सतहों पर है [19]
चेर्न वर्ग और बीजगणितीय के-सिद्धांत
एक वेक्टर बंडल सुचारू प्रजाति पर एक क्षेत्र के ऊपर चर्न की चाउ रिंग में कक्षाएं हैं , में के लिए .[20] ये टोपोलॉजी में चेर्न कक्षाओं के समान औपचारिक गुणों को संतुष्ट करते हैं। उदाहरण के लिए, किसी भी संक्षिप्त स्पष्ट अनुक्रम के लिए
वेक्टर बंडलों की , की चेर्न कक्षाएं द्वारा दिए गए हैं
यह इस प्रकार है कि वेक्टर बंडल की चेर्न कक्षाएं के वर्ग पर ही निर्भर है ग्रोथेंडिक समूह में . परिभाषा के अनुसार, एक योजना के लिए , सदिश बंडलों के समरूपता वर्गों के समूह पर मुक्त एबेलियन समूह का भागफल है उस संबंध से ऊपर के रूप में किसी भी संक्षिप्त स्पष्ट अनुक्रम के लिए। यद्यपि सामान्य रूप से गणना करना कठिन है, बीजगणितीय K-सिद्धांत इसके अध्ययन के लिए कई उपकरण प्रदान करता है, जिसमें के लिए संबंधित समूहों का अनुक्रम भी साममिलित है
एक प्रकार समूह है (या ), सुसंगत शिव्स का ग्रोथेंडिक समूह . (टोपोलॉजिकल शब्दों में, जी-सिद्धांत में योजनाओं के लिए बोरेल-मूर कोहोलॉजी सिद्धांत के औपचारिक गुण हैं, जबकि के-सिद्धांत संबंधित कोहोलॉजी सिद्धांत है।) प्राकृतिक समरूपतावाद एक समरूपता है यदि एक नियमित योजना से अलग की गई नोएदरियन योजना है, जिसका उपयोग करते हुए उस स्थिति में वेक्टर बंडलों द्वारा प्रत्येक सुसंगत शीफ का एक परिमित प्रस्ताव (बीजगणित) होता है।[21] उदाहरण के लिए, यह एक क्षेत्र में एक सुचारू विविधता पर सुसंगत शीफ के चेर्न वर्गों की परिभाषा देता है।
अधिक सामान्यतः , एक नोथेरियन योजना कहा जाता है कि प्रत्येक सुसंगत शीफ पर संकल्प संपत्ति होती है पर कुछ सदिश बंडल से प्रक्षेपण है . उदाहरण के लिए, नोथेरियन रिंग पर प्रत्येक अर्ध-प्रक्षेपी योजना में संकल्प संपत्ति होती है।
संकल्प संपत्ति के अनुप्रयोग
चूंकि संकल्प संपत्ति बताती है कि एक सुसंगत शीफ वेक्टर बंडलों के परिसर के लिए व्युत्पन्न श्रेणी में एक नोथेरियन योजना अर्ध-आइसोमॉर्फिक है: हम कुल चेर्न वर्ग की गणना कर सकते हैं
उदाहरण के लिए, यह सूत्र उप-योजना का प्रतिनिधित्व करने वाले पूले के चेर्न वर्गों को खोजने के लिए उपयोगी है . यदि हम प्रक्षेप्य स्कीम लेते हैं आदर्श से जुड़ा हुआ है , तब
चूंकि संकल्प है
ऊपर .
बंडल समरूपता बनाम शीफ समरूपता
जब सदिश बंडल और परिमित स्थिर श्रेणी के स्थानीय रूप से मुक्त शिव्स का परस्पर उपयोग किया जाता है, बंडल समरूपता और शीफ समरूपता के बीच अंतर करने के लिए सावधानी बरतनी चाहिए। विशेष रूप से, दिए गए वेक्टर बंडल , परिभाषा के अनुसार, एक बंडल समरूपता एक योजना मोर्फिज्म समाप्त हो गया है (अर्थात।, ) ऐसा है कि, प्रत्येक ज्यामितीय बिंदु के लिए में , श्रेणी से स्वतंत्र एक रेखीय मैप है . इस प्रकार, यह शीफ समरूपता को प्रेरित करता है संबंधित स्थानीय मुक्त के बीच लगातार श्रेणी की -मापांक (दोहरे वर्गों के ढेर)। किंतु एक हो सकता है -मापांक समरूपता जो इस तरह से उत्पन्न नहीं होती है; अर्थात्, जिनके पास निरंतर श्रेणी नहीं है।
विशेष रूप से, एक उपबंडल एक उपशीर्षक है (अर्थात, का एक उपशीर्षक है ). किंतु व्युत्क्रम विफल हो सकती है; उदाहरण के लिए, एक प्रभावी कार्टियर भाजक के लिए पर , एक उपशेफ है, किंतु सामान्यतः एक उपबंडल नहीं है (चूंकि किसी भी रेखा बंडल में केवल दो उपबंडल होते हैं)।
अर्ध-सुसंगत शिव्स की श्रेणी
किसी निश्चित योजना पर अर्ध-सुसंगत बहुत एक एबेलियन श्रेणी बनाते हैं। गैबर ने दिखाया कि, वास्तव में, किसी भी योजना पर अर्ध-सुसंगत बहुत एक विशेष रूप से अच्छी तरह से व्यवहार करने वाली एबेलियन श्रेणी, ग्रोथेंडिक श्रेणी का निर्माण करते हैं।[22] एक अर्ध-कॉम्पैक्ट अर्ध-पृथक योजना (जैसे कि एक क्षेत्र में एक बीजगणितीय विविधता) पर अर्ध-सुसंगत शिव्स की एबेलियन श्रेणी द्वारा आइसोमोर्फिज्म तक निर्धारित किया जाता है रोसेनबर्ग द्वारा, पियरे गेब्रियल के परिणाम का सामान्य करते हुए।।[23]
सुसंगत कोहोलॉजी
बीजगणितीय ज्यामिति में मूलभूत विधि उपकरण सुसंगत शिव्स का कोहोलॉजी सिद्धांत है। चूँकि इसे केवल 1950 के दशक में प्रस्तुत किया गया था, बीजगणितीय ज्यामिति की कई पुरानी विधि को सुसंगत शिव्स पर प्रयुक्त शेफ कोहोलॉजी की भाषा द्वारा स्पष्ट किया गया है। सामान्यतः , सुसंगत शीफ कोहोलॉजी को विशिष्ट गुणों वाले कार्यों के निर्माण के लिए एक उपकरण के रूप में देखा जा सकता है; रेखा बंडलों या अधिक सामान्य शिव्स के अनुभागों को सामान्यीकृत कार्यों के रूप में देखा जा सकता है। जटिल विश्लेषणात्मक ज्यामिति में, सुसंगत शीफ कोहोलॉजी भी एक मूलभूत भूमिका निभाती है।
सुसंगत शीफ कोहोलॉजी के मुख्य परिणामों में कोहोलॉजी की परिमित-आयामीता पर परिणाम हैं, विभिन्न स्थिति में कोहोलॉजी के लुप्त होने के परिणाम, द्वैत प्रमेय जैसे कि सेरे द्वैत, टोपोलॉजी और बीजगणितीय ज्यामिति के बीच संबंध जैसे हॉज सिद्धांत, और यूलर विशेषताओं के सूत्र हैं। रीमैन-रोच प्रमेय जैसे सुसंगत शिव्स की थी ।
यह भी देखें
- पिकार्ड समूह
- भाजक (बीजीय ज्यामिति)
- प्रतिवर्त शीफ
- उद्धरण योजना
- मुड़ा हुआ शीरा
- अनिवार्य रूप से परिमित वेक्टर बंडल
- प्रमुख भागों का बंडल
- गेब्रियल-रोसेनबर्ग पुनर्निर्माण प्रमेय
- छद्म सुसंगत शीफ
- एक बीजगणितीय बहुत पर अर्ध-सुसंगत शीफ
टिप्पणियाँ
- ↑ Mumford 1999, Ch. III, § 1, Theorem-Definition 3.
- ↑ 2.0 2.1 Stacks Project, Tag 01LA.
- ↑ Stacks Project, Tag 01BU.
- ↑ Serre 1955, §13
- ↑ Grothendieck & Dieudonné 1960, Corollaire 1.5.2
- ↑ Hartshorne 1977, Exercise II.5.18
- ↑ Stacks Project, Tag 00NV.
- ↑ Serre 1955, §14
- ↑ Hartshorne 1977
- ↑ Stacks Project, Tag 01BG.
- ↑ Hartshorne 1977, Example III.12.7.2
- ↑ Grothendieck & Dieudonné 1960, Ch. 0, 5.2.7
- ↑ Eisenbud 1995, Exercise 20.13
- ↑ Hartshorne 1977, Corollary II.5.16
- ↑ Stacks Project, Tag 01YR.
- ↑ Serre, Jean-Pierre (1960–1961). "प्रोजेक्टिव मॉड्यूल पर". Séminaire Dubreil. Algèbre et théorie des nombres (in français). 14 (1): 1–16.
- ↑ 17.0 17.1 Gulbrandsen, Martin G. (2013-05-20). "एबेलियन थ्रीफोल्ड पर वेक्टर बंडल और मोनाड" (PDF). Communications in Algebra. 41 (5): 1964–1988. arXiv:0907.3597. doi:10.1080/00927872.2011.645977. ISSN 0092-7872.
- ↑ Hartshorne, Robin (1978). "Stable Vector Bundles of Rank 2 on P3". Mathematische Annalen. 238: 229–280.
- ↑ Huybrechts, Daniel; Lehn, Manfred (2010). शेव्स के मोडुली स्पेस की ज्योमेट्री. Cambridge Mathematical Library (2 ed.). Cambridge: Cambridge University Press. pp. 123–128, 238–243. doi:10.1017/cbo9780511711985. ISBN 978-0-521-13420-0.
- ↑ Fulton 1998, §3.2 and Example 8.3.3
- ↑ Fulton 1998, B.8.3
- ↑ Stacks Project, Tag 077K.
- ↑ Antieau 2016, Corollary 4.2
संदर्भ
- Antieau, Benjamin (2016), "A reconstruction theorem for abelian categories of twisted sheaves", Journal für die reine und angewandte Mathematik, 712: 175–188, arXiv:1305.2541, doi:10.1515/crelle-2013-0119, MR 3466552
- Danilov, V. I. (2001) [1994], "Coherent algebraic sheaf", Encyclopedia of Mathematics, EMS Press
- Grauert, Hans; Remmert, Reinhold (1984), Coherent Analytic Sheaves, Springer-Verlag, doi:10.1007/978-3-642-69582-7, ISBN 3-540-13178-7, MR 0755331
- Eisenbud, David (1995), Commutative Algebra with a View toward Algebraic Geometry, Graduate Texts in Mathematics, vol. 150, Berlin, New York: Springer-Verlag, doi:10.1007/978-1-4612-5350-1, ISBN 978-0-387-94268-1, MR 1322960
- Fulton, William (1998), Intersection Theory, Berlin, New York: Springer-Verlag, doi:10.1007/978-1-4612-1700-8, ISBN 978-0-387-98549-7, MR 1644323
- Sections 0.5.3 and 0.5.4 of Grothendieck, Alexandre; Dieudonné, Jean (1960). "Éléments de géométrie algébrique: I. Le langage des schémas". Publications Mathématiques de l'IHÉS. 4. doi:10.1007/bf02684778. MR 0217083.
- Hartshorne, Robin (1977), Algebraic Geometry, Graduate Texts in Mathematics, vol. 52, New York: Springer-Verlag, ISBN 978-0-387-90244-9, MR 0463157
- Mumford, David (1999). The Red Book of Varieties and Schemes: Includes the Michigan Lectures (1974) on Curves and Their Jacobians (2nd ed.). Springer-Verlag. doi:10.1007/b62130. ISBN 354063293X. MR 1748380.
- Onishchik, A.L. (2001) [1994], "Coherent analytic sheaf", Encyclopedia of Mathematics, EMS Press
- Onishchik, A.L. (2001) [1994], "Coherent sheaf", Encyclopedia of Mathematics, EMS Press
- Serre, Jean-Pierre (1955), "Faisceaux algébriques cohérents", Annals of Mathematics, 61: 197–278, doi:10.2307/1969915, MR 0068874
बाहरी संबंध
- The Stacks Project Authors, The Stacks Project
- Part V of Vakil, Ravi, The Rising Sea