भिन्न-भिन्नता (डिफरिन्टिग्रल): Difference between revisions

From Vigyanwiki
No edit summary
Line 93: Line 93:
[[Category: Machine Translated Page]]
[[Category: Machine Translated Page]]
[[Category:Created On 21/07/2023]]
[[Category:Created On 21/07/2023]]
[[Category:Vigyan Ready]]

Revision as of 16:55, 31 July 2023

भिन्नात्मक गणना में, गणितीय विश्लेषण का क्षेत्र, डिफरिइंटीग्रल (कभी-कभी डेरिविग्रल भी कहा जाता है) संयुक्त विभेदक संचालिका / अभिन्न ऑपरेटर है। फलन (गणित) पर प्रयुक्त था, यहाँ f का q-डिफ़रइंटीग्रल द्वारा दर्शाया गया है

भिन्नात्मक व्युत्पन्न है (यदि q > 0) या भिन्नात्मक समाकलन (यदि q < 0) है। यदि q = 0 है, तो किसी फलन का q-वां विभेदक फलन ही होता है। भिन्नात्मक एकीकरण और विभेदीकरण के संदर्भ में विभेदक एकीकरण की कई वैध परिभाषाएँ हैं।

मानक परिभाषाएँ

चार सर्वाधिक सामान्य रूप हैं:

  • रीमैन-लिउविल डिफ्रिइंटीग्रल यह उपयोग करने में सबसे सरल है, और परिणामस्वरूप इसका उपयोग सबसे अधिक बार किया जाता है। यह अनैतिक रूप से क्रम में निरंतर एकीकरण के लिए कॉची सूत्र का सामान्यीकरण है। यहाँ,
  • ग्रुनवाल्ड-लेटनिकोव भिन्न अभिन्न ग्रुनवाल्ड-लेटनिकोव डिफ़रिन्टिग्रल व्युत्पन्न की परिभाषा का प्रत्यक्ष सामान्यीकरण है। रीमैन-लिउविल डिफ्रिइंटीग्रल की तुलना में इसका उपयोग करना अधिक कठिन है, किन्तु कभी-कभी इसका उपयोग उन समस्याओं को हल करने के लिए किया जा सकता है जो रीमैन-लिउविल नहीं कर सकता है।
  • वेइल डिफ़रइंटीग्रल यह औपचारिक रूप से रीमैन-लिउविल डिफ्रिइंटीग्रल के समान है, किन्तु अवधि में अभिन्न शून्य के साथ, पीरिऑडिक फलन पर प्रयुक्त होता है।
  • कैपुटो डिफ़रइंटीग्रल रीमैन-लिउविल डिफ़रिन्टिग्रल के विपरीत, कैपुटो स्थिरांक का व्युत्पन्न शून्य के बराबर है . इसके अतिरिक्त, लाप्लास ट्रांसफॉर्म का रूप बिंदु पर परिमित, पूर्णांक-क्रम डेरिवेटिव की गणना करके प्रारंभिक स्थितियों का सरलता से मूल्यांकन करने की अनुमति देता है .

परिवर्तन के माध्यम से परिभाषाएँ

लिउविले, फूरियर, और ग्रुनवाल्ड और लेटनिकोव द्वारा दी गई भिन्नात्मक व्युत्पन्न की परिभाषाएँ मेल खाती हैं।[1] उन्हें लाप्लास, फूरियर रूपांतरण या न्यूटन श्रृंखला विस्तार के माध्यम से दर्शाया जा सकता है।

निरंतर फूरियर रूपांतरण को याद करें, जिसे यहां द्वारा दर्शाया गया है :

निरंतर फूरियर रूपांतरण का उपयोग करते हुए, फूरियर समिष्ट में, विभेदन गुणन में बदल जाता है:
इसलिए,
जो सामान्यीकरण करता है
द्विपक्षीय लाप्लास परिवर्तन के अंतर्गत, यहाँ द्वारा दर्शाया गया है और के रूप में परिभाषित किया गया है विभेदीकरण गुणन में बदल जाता है

अनैतिक रूप से आदेश को सामान्यीकृत करने और के लिए हल करने पर, एक प्राप्त होता है
न्यूटन श्रृंखला के माध्यम से प्रतिनिधित्व निरंतर पूर्णांक आदेशों पर न्यूटन प्रक्षेप है:

इस अनुभाग में वर्णित भिन्नात्मक व्युत्पन्न परिभाषाओं के लिए, निम्नलिखित पहचानें मान्य हैं:

[2]

मूल औपचारिक गुण

  • रैखिक ऑपरेटर नियम
  • शून्य नियम
  • प्रॉडक्ट नियम

सामान्यतः, रचना (या अर्धसमूह) नियम अभीष्ट प्रोपर्टी है, किन्तु गणितीय रूप से इसे प्राप्त करना कठिन है और इसलिए प्रत्येक प्रस्तावित ऑपरेटर द्वारा 'सदैव पुर्णतः संतुष्ट नहीं' होता है;[3] यह निर्णय लेने की प्रक्रिया का भाग है कि किसे चुनना है:

  • (आदर्श रूप से)
  • (अभ्यास में)

यह भी देखें

संदर्भ

  1. Herrmann, Richard (2011). Fractional Calculus: An Introduction for Physicists. ISBN 9789814551076.
  2. See Herrmann, Richard (2011). Fractional Calculus: An Introduction for Physicists. p. 16. ISBN 9789814551076.
  3. See Kilbas, A. A.; Srivastava, H. M.; Trujillo, J. J. (2006). "2. Fractional Integrals and Fractional Derivatives §2.1 Property 2.4". Theory and Applications of Fractional Differential Equations. Elsevier. p. 75. ISBN 9780444518323.

बाहरी संबंध