टोरिसेली का समीकरण: Difference between revisions
m (4 revisions imported from alpha:टोरिसेली_का_समीकरण) |
No edit summary |
||
Line 94: | Line 94: | ||
* [http://encyclopedia2.thefreedictionary.com/Torricelli%27s+equation Torricelli's theorem] | * [http://encyclopedia2.thefreedictionary.com/Torricelli%27s+equation Torricelli's theorem] | ||
{{DEFAULTSORT:Torricelli's Equation}} | {{DEFAULTSORT:Torricelli's Equation}} | ||
[[Category:Articles with hatnote templates targeting a nonexistent page|Torricelli's Equation]] | |||
[[Category:CS1 maint]] | |||
[[Category: | [[Category:Created On 23/07/2023|Torricelli's Equation]] | ||
[[Category:Created On 23/07/2023]] | [[Category:Machine Translated Page|Torricelli's Equation]] | ||
[[Category:Vigyan Ready]] | [[Category:Templates Vigyan Ready]] | ||
[[Category:गतिकी|Torricelli's Equation]] | |||
[[Category:समीकरण|Torricelli's Equation]] |
Revision as of 16:31, 1 August 2023
भौतिकी में, टोरिसेली का समीकरण, या टोरिसेली का सूत्र, एक ज्ञात समय अंतराल के बिना एक अक्ष (उदाहरण के लिए, X अक्ष) के साथ त्वरण या समान त्वरण के साथ चलती वस्तु के अंतिम वेग को खोजने के लिए इवांजेलिस्टा टोरिसेली द्वारा बनाया गया एक समीकरण है।
समीकरण स्वयं है:[1]
जहाँ
- x अक्ष के अनुदिश वस्तु का अंतिम वेग है जिस पर त्वरण स्थिर है।
- x अक्ष के अनुदिश वस्तु का प्रारंभिक वेग है।
- x अक्ष के अनुदिश वस्तु का त्वरण है, जो एक स्थिरांक के रूप में दिया गया है।
- x अक्ष के अनुदिश वस्तु की स्थिति में परिवर्तन है, जिसे विस्थापन (सदिश) भी कहा जाता है।
इसमें और इस लेख के सभी बाद के समीकरणों में, सबस्क्रिप्ट (जैसा कि ) निहित है, किंतु समीकरणों को प्रस्तुत करने में स्पष्टता के लिए स्पष्ट रूप से व्यक्त नहीं किया गया है।
यह समीकरण किसी भी अक्ष पर मान्य है जिस पर त्वरण स्थिर है।
व्युत्पत्ति
भिन्नता और एकीकरण के बिना
त्वरण की परिभाषा से आरंभ करें:
जहाँ समय अंतराल है। यह सत्य है क्योंकि त्वरण स्थिर है। बाएँ हाथ की ओर त्वरण का यह स्थिर मान है और दाएँ हाथ की ओर औसत त्वरण है। चूँकि किसी स्थिरांक का औसत स्थिर मान के समान होना चाहिए, हमारे पास यह समानता है। यदि त्वरण स्थिर नहीं होता, तो यह सत्य नहीं होता है ।
अब अंतिम वेग का समाधान करें:
प्राप्त करने के लिए दोनों पक्षों को वर्गाकार करें:
-
(1)
शब्द यह एक अन्य समीकरण में भी दिखाई देता है जो निरंतर त्वरण के साथ गति के लिए मान्य है: गति के समीकरणों के लिए समीकरण या निरंतर त्वरण के साथ चलती हुई वस्तु का एकसमान त्वरण, और अलग किया जा सकता है:
-
(2)
प्रतिस्थापित (2) मूल समीकरण में (1) उत्पत्ति:
अंतर और एकीकरण का उपयोग करना
वेग के व्युत्पन्न के रूप में त्वरण की परिभाषा से प्रारंभ करें:
अब, हम दोनों पक्षों को वेग से गुणा करते हैं:
बाईं ओर हम स्थिति के व्युत्पन्न के रूप में वेग को फिर से लिख सकते हैं:
दोनों पक्षों को से गुणा करने पर हमें निम्नलिखित प्राप्त होता है:
शब्दों को अधिक पारंपरिक विधि से पुनर्व्यवस्थित करना:
प्रारंभिक क्षण से स्थिति और वेग के साथ दोनों पक्षों को स्थिति और वेग के साथ अंतिम क्षण तक एकीकृत किया जाता है ।
चूँकि त्वरण स्थिर है, हम इसे एकीकरण से अलग कर सकते हैं:
एकीकरण का समाधान:
कारक विस्थापन है।
कार्य-ऊर्जा प्रमेय से
कार्य (भौतिकी) या कार्य-ऊर्जा प्रमेय यह बताता है
जो, न्यूटन के गति के नियमों से या न्यूटन की गति का दूसरा नियम बन जाता है
यह भी देखें
संदर्भ
- ↑ Leandro Bertoldo (2008). गतिशीलता के मूल सिद्धांत (in Portuguese). Joinville: Clube de Autores. pp. 41–42.
{{cite book}}
: CS1 maint: unrecognized language (link)