कैलाबी अनुमान: Difference between revisions

From Vigyanwiki
No edit summary
No edit summary
 
(2 intermediate revisions by 2 users not shown)
Line 79: Line 79:
==बाहरी संबंध==
==बाहरी संबंध==
*{{citation |last=Yau | first=शिंग तुंग | authorlink=शिंग-तुंग याउ |title=कैलाबी-यौ मैनिफोल्ड |doi=10.4249/scholarpedia.6524 | bibcode=2009SchpJ...4.6524Y |year=2009 |journal=स्कॉलरपीडिया |volume=4 |issue=8 |pages=6524|doi-access=free }}
*{{citation |last=Yau | first=शिंग तुंग | authorlink=शिंग-तुंग याउ |title=कैलाबी-यौ मैनिफोल्ड |doi=10.4249/scholarpedia.6524 | bibcode=2009SchpJ...4.6524Y |year=2009 |journal=स्कॉलरपीडिया |volume=4 |issue=8 |pages=6524|doi-access=free }}
[[Category: जटिल अनेक गुना]] [[Category: विभेदक ज्यामिति में प्रमेय]] [[Category: अनुमान जो सिद्ध हो चुके हैं]]


 
[[Category:CS1 errors]]
 
[[Category: Machine Translated Page]]
[[Category:Created On 14/07/2023]]
[[Category:Created On 14/07/2023]]
[[Category:Lua-based templates]]
[[Category:Machine Translated Page]]
[[Category:Pages with script errors]]
[[Category:Templates Vigyan Ready]]
[[Category:Templates that add a tracking category]]
[[Category:Templates that generate short descriptions]]
[[Category:Templates using TemplateData]]
[[Category:अनुमान जो सिद्ध हो चुके हैं]]
[[Category:जटिल अनेक गुना]]
[[Category:विभेदक ज्यामिति में प्रमेय]]

Latest revision as of 11:54, 2 August 2023

विभेदक ज्यामिति के गणितीय क्षेत्र में, कैलाबी अनुमान यूगेनियो कैलाबी (सत्र 1954, 1957) द्वारा बनाए गए कुछ समष्टि मैनिफोल्ड्स पर कुछ प्रकार के रीमैनियन मीट्रिकस के अस्तित्व के बारे में एक अनुमान था, इसे शिंग-तुंग याउ (सत्र 1977, 1978) ने सिद्ध किया था, जिन्होंने अपने प्रमाण के लिए आंशिक रूप से फील्ड्स मेडल और ओसवाल्ड वेब्लेन पुरस्कार प्राप्त किया। इस प्रकार उनका काम, मुख्य रूप से अण्डाकार आंशिक अंतर समीकरण का विश्लेषण जिसे मोंगे-एम्पीयर समीकरण के रूप में जाना जाता है, ज्यामितीय विश्लेषण के क्षेत्र में प्रभावशाली प्रारंभिक परिणाम था।

अधिक त्रुटिहीन रूप से, कैलाबी का अनुमान बंद मैनिफोल्ड कॉम्प्लेक्स मैनिफोल्ड्स पर काहलर मेट्रिक्स की समुच्चय के अंदर निर्धारित रिक्की वक्रता समस्या के समाधान का प्रामाणित करता है। चेर्न-वेइल सिद्धांत के अनुसार, ऐसे किसी भी मीट्रिक का रिक्की रूप एक बंद अंतर 2-रूप है जो पहले चेर्न वर्ग का प्रतिनिधित्व करता है। इस प्रकार कैलाबी ने अनुमान लगाया ऐसे किसी भी भिन्न रूप R के लिए, प्रत्येक काहलर ज्यामिति में बिल्कुल काहलर मीट्रिक है‚ जिसका रिक्की रूप R है (कुछ कॉम्पैक्ट कॉम्प्लेक्स मैनिफोल्ड्स कोई काहलर वर्ग स्वीकार नहीं करते हैं, जिस स्थिति में अनुमान शून्य है।)

विशेष स्थितियों में कि पहला चेर्न वर्ग गायब हो जाता है, इसका तात्पर्य यह है कि प्रत्येक काहलर वर्ग में बिल्कुल रिक्की-फ्लैट मैनिफोल्ड|रिक्की-फ्लैट मीट्रिक सम्मिलित है। इस प्रकार इन्हें अधिकांशतः कैलाबी-याउ मैनिफोल्ड्स कहा जाता है। चूँकि, इस शब्द का प्रयोग अधिकांशतः विभिन्न लेखकों द्वारा थोड़े भिन्न तरीकों से किया जाता है - उदाहरण के लिए, कुछ उपयोग समष्टि मैनिफोल्ड को संदर्भित कर सकते हैं जबकि अन्य विशेष रिक्की-फ्लैट काहलर मीट्रिक के साथ समष्टि मैनिफोल्ड को संदर्भित कर सकते हैं।

इस विशेष स्थितियों को कॉम्पैक्ट कॉम्प्लेक्स मैनिफोल्ड्स पर शून्य अदिश वक्रता के काहलर-आइंस्टीन मेट्रिक्स के लिए पूर्ण अस्तित्व और विशिष्टता सिद्धांत के रूप में माना जा सकता है। इस प्रकार गैर-शून्य अदिश वक्रता की स्थिति कैलाबी के अनुमान के विशेष स्थितियों के रूप में अनुसरण नहीं करता है, क्योंकि काहलर-आइंस्टीन समस्या का 'दाहिना हाथ' 'अज्ञात' मीट्रिक पर निर्भर करता है, जिससे काहलर-आइंस्टीन समस्या को डोमेन के बाहर रखा जाता है। रिक्की वक्रता निर्धारित करना स्थितियों, कैलाबी अनुमान को हल करने में समष्टि मोंज-एम्पीयर समीकरण का याउ का विश्लेषण पर्याप्त रूप से सामान्य था जिससे कि ऋणात्मक अदिश वक्रता के काहलर-आइंस्टीन मेट्रिक्स के अस्तित्व को भी हल किया जा सके। धनात्मक अदिश वक्रता का तीसरा और अंतिम स्थितियों सत्र 2010 में आंशिक रूप से कैलाबी अनुमान का उपयोग करके हल किया गया था।

कैलाबी अनुमान के प्रमाण की रूपरेखा

कैलाबी ने कैलाबी अनुमान को समष्टि मोंगे-एम्पीयर समीकरण एवं मोंज-एम्पीयर प्रकार के गैर-रेखीय आंशिक अंतर समीकरण में बदल दिया, और दिखाया कि इस समीकरण में अधिकतम समाधान है, इस प्रकार आवश्यक काहलर मीट्रिक की विशिष्टता स्थापित होती है।

याउ ने निरंतरता विधि का उपयोग करके इस समीकरण का समाधान बनाकर कैलाबी अनुमान को सिद्ध किया। इसमें पहले आसान समीकरण को हल करना और फिर यह दिखाना सम्मिलित है कि आसान समीकरण के समाधान को लगातार कठिन समीकरण के समाधान में विकृत किया जा सकता है। इस प्रकार याउ के समाधान का सबसे कठिन हिस्सा समाधानों के व्युत्पन्नों के लिए निश्चित प्राथमिक अनुमानों को सिद्ध करना है।

कैलाबी अनुमान का विभेदक समीकरण में परिवर्तन

लगता है कि काहलर रूप के साथ समष्टि कॉम्पैक्ट मैनिफोल्ड है .

Ddbar लेम्मा द्वारा|-लेम्मा, उसी डी गर्भ तीर्थयात्री के रूप में वर्ग में कोई अन्य काहलर फॉर्म का है

कुछ सुचारु कार्य के लिए पर , किसी स्थिरांक को जोड़ने तक अद्वितीय। कैलाबी अनुमान इसलिए निम्नलिखित समस्या के सामान्तर है:

होने देना पर धनात्मक सुचारू कार्य हो औसत मान 1 के साथ। फिर सुचारू वास्तविक कार्य होता है ; साथ
और ; किसी स्थिरांक को जोड़ने तक अद्वितीय है।

यह एकल फलन के लिए समष्टि Monge-Ampère प्रकार का समीकरण है .

इसे हल करना विशेष रूप से कठिन आंशिक अंतर समीकरण है, क्योंकि यह उच्चतम क्रम के संदर्भ में गैर-रैखिक है। जब इसे सुलझाना आसान होता है , जैसा समाधान है. निरंतरता पद्धति का विचार यह दिखाना है कि इसे सभी के लिए हल किया जा सकता है यह दिखाकर कि का समुच्चय जिसके लिए इसे हल किया जा सकता है वह खुला और बंद दोनों है। इस प्रकार के समुच्चय के पश्चात् से जिसके लिए इसे हल किया जा सकता है वह गैर-रिक्त है, और सभी का समुच्चय है जुड़ा हुआ है, इससे पता चलता है कि इसे सभी के लिए हल किया जा सकता है .

सुचारु कार्यों से लेकर सुचारु कार्यों तक का मानचित्र को द्वारा परिभाषित

न समुच्चय विशेषण है और न ही विशेषण। इसमें स्थिरांक जोड़ने के कारण यह इंजेक्शन नहीं है बदलना मत , और यह विशेषण नहीं है क्योंकि धनात्मक होना चाहिए और औसत मान 1 होना चाहिए। इसलिए हम मानचित्र को कार्यों तक ही सीमित मानते हैं जिसे औसत मान 0 के लिए सामान्यीकृत किया जाता है, और पूछा जाता है कि क्या यह मानचित्र धनात्मक के समुच्चय पर समरूपता है औसत मान 1 के साथ कैलाबी और याउ ने सिद्ध किया कि यह वास्तव में समरूपता है। यह नीचे वर्णित अनेक चरणों में किया जाता है।

समाधान की विशिष्टता

यह सिद्ध करना करने में कि समाधान अद्वितीय है, इसमें यह दिखाना सम्मिलित है कि यदि

फिर φ1 और φ2 स्थिरांक से भिन्न (यदि वह दोनों औसत मान 0 के लिए सामान्यीकृत हैं समुच्चय यह समान होना चाहिए)। कैलाबी ने यह सिद्ध करना करके दिखाया कि का औसत मूल्य

एक अभिव्यक्ति द्वारा दिया गया है जो अधिकतम 0 है। चूँकि यह स्पष्ट रूप से कम से कम 0 है, यह 0 ही होना चाहिए, इसलिए

जो बदले में φ को बल देता है1 और φ2 स्थिरांक से भिन्न होना।

F का समुच्चय खुला है

यह सिद्ध करना करना कि संभावित F का समुच्चय खुला है (औसत मान 1 के साथ सुचारू कार्यों के समुच्चय में) यह दिखाना सम्मिलित है कि यदि कुछ F के लिए समीकरण को हल करना संभव है, समुच्चय सभी पर्याप्त रूप से बंद F के लिए इसे हल करना संभव है। इस प्रकार कैलाबी बानाच रिक्त स्थान के लिए अंतर्निहित फलन प्रमेय का उपयोग करके इसे सिद्ध करना किया: इसे प्रयुक्त करने के लिए, मुख्य चरण यह दिखाना है कि उपरोक्त अंतर ऑपरेटर का रैखिककरण उलटा है।

F का समुच्चय बंद है

यह प्रमाण का सबसे कठिन हिस्सा है, और यह हिस्सा यॉ द्वारा किया गया था।

मान लीजिए कि एफ संभव की छवि के बंद होने में है

कार्य φ. इसका कारणहै कि क्रम है

कार्य φ1, फ़ि2, ...

इस प्रकार कि संगत फलन F1, एफ2,...

F पर अभिसरित होता है, और समस्या यह दिखाने के लिए है कि φs का कुछ अनुवर्ती समाधान φ में अभिसरित होता है। ऐसा करने के लिए, Yau फ़ंक्शंस φ के लिए कुछ प्राथमिक सीमाएं ढूंढता हैi और उनके उच्चतर डेरिवेटिव

लॉग (एफ) के उच्च डेरिवेटिव के संदर्भ मेंi). इन सीमाओं को खोजने के लिए कठिन अनुमानों के लंबे अनुक्रम की आवश्यकता होती है, जिनमें से प्रत्येक पिछले अनुमान पर थोड़ा सुधार करता है। इस प्रकार आपको जो सीमाएँ मिलती हैं, वह यह दर्शाने के लिए पर्याप्त हैं कि फलन φ हैi सभी फलनों के उपयुक्त बानाच स्थान के कॉम्पैक्ट उपसमुच्चय में स्थित हैं, इसलिए अभिसरण अनुवर्ती खोजना संभव है।

यह अनुवर्ती छवि F के साथ फलन φ में परिवर्तित हो जाता है, जो दर्शाता है कि संभावित छवियों का समुच्चय F बंद है।

संदर्भ

*थियरी औबिन, मैनिफोल्ड्स, मोंगे-एम्पीयर समीकरणों पर नॉनलाइनियर विश्लेषणISBN 0-387-90704-1यह कैलाबी अनुमान और काहलर-आइंस्टीन मेट्रिक्स पर ऑबिन के परिणामों का प्रमाण देता है।

बाहरी संबंध