पुलबैक (अवकल ज्यामिति): Difference between revisions
No edit summary |
No edit summary |
||
Line 61: | Line 61: | ||
# यह [[बाहरी व्युत्पन्न]] के साथ संगत है <math>d</math>: अगर <math>\alpha</math> पर विभेदक रूप है, <math>N</math> तब | # यह [[बाहरी व्युत्पन्न]] के साथ संगत है <math>d</math>: अगर <math>\alpha</math> पर विभेदक रूप है, <math>N</math> तब | ||
#: <math>\phi^*(d\alpha) = d(\phi^*\alpha).</math> | #: <math>\phi^*(d\alpha) = d(\phi^*\alpha).</math> | ||
== | ==भिन्नता द्वारा पुलबैक== | ||
जब | जब मानचित्र <math>\phi</math> विविध के मध्य भिन्नता है, यदि इसमें सहज विपरीत है, [[वेक्टर फ़ील्ड|सदिश फ़ील्ड]] के साथ-साथ 1-फॉर्म के लिए पुलबैक को परिभाषित किया जा सकता है, और इस प्रकार, विस्तार से, विविध पर स्वेच्छानुसार मिश्रित टेंसर फ़ील्ड के लिए रेखीय मानचित्र, | ||
:<math>\Phi = d\phi_x \in \operatorname{GL}\left(T_x M, T_{\phi(x)}N\right)</math> | :<math>\Phi = d\phi_x \in \operatorname{GL}\left(T_x M, T_{\phi(x)}N\right)</math> | ||
देने के लिए | देने के लिए विपरीत किया जा सकता है | ||
:<math>\Phi^{-1} = \left({d\phi_x}\right)^{-1} \in \operatorname{GL}\left(T_{\phi(x)}N, T_x M\right).</math> | :<math>\Phi^{-1} = \left({d\phi_x}\right)^{-1} \in \operatorname{GL}\left(T_{\phi(x)}N, T_x M\right).</math> | ||
सामान्य मिश्रित टेंसर फ़ील्ड का उपयोग करके रूपांतरित किया जाएगा I <math>\phi</math> और <math>\phi^{-1}</math> टेंसर उत्पाद के अनुसार टेंसर बंडल की प्रतियों में अपघटन <math>TN</math> और <math>T^*N</math>. कब <math>M=N</math>, पुलबैक और पुशफॉरवर्ड (डिफरेंशियल) मैनिफोल्ड पर टेंसर के परिवर्तन गुणों का वर्णन करते हैं I <math>M</math> पारंपरिक शब्दों में, पुलबैक टेंसर के सहसंयोजक सूचकांकों के परिवर्तन गुणों का वर्णन करता है; इसके विपरीत, सदिश सूचकांकों के सहप्रसरण और प्रतिप्रसरण का परिवर्तन पुशफॉरवर्ड (अंतर) द्वारा दिया जाता है। | |||
== | ==स्वप्रतिरूपण द्वारा पुलबैक== | ||
पूर्व खंड के निर्माण में प्रतिनिधित्व-सैद्धांतिक व्याख्या है, जब <math>\phi</math> अनेक गुना <math>M</math> से भिन्नता है। इस विषय में व्युत्पन्न <math>d\phi</math> का भाग <math>\operatorname{GM}(TM,\phi^*TM)</math> है I यह [[फ़्रेम बंडल]] से जुड़े किसी भी बंडल के अनुभागों पर पुलबैक कार्रवाई को प्रेरित करता है, <math>\operatorname{GM}(m)</math> का <math>M</math> [[सामान्य रैखिक समूह]] के प्रतिनिधित्व द्वारा <math>\operatorname{GM}(m)</math> (जहाँ <math>m=\dim M</math>) I | |||
==पुलबैक और लेट व्युत्पन्न== | ==पुलबैक और लेट व्युत्पन्न== | ||
व्युत्पन्न. पूर्ववर्ती विचारों को सदिश क्षेत्र द्वारा परिभाषित भिन्नताओं के स्थानीय 1-पैरामीटर समूह पर प्रस्तावित करके <math>M</math>, और पैरामीटर के संबंध में अंतर करते हुए, किसी भी संबद्ध बंडल पर लाई व्युत्पन्न की धारणा प्राप्त की जाती है। | |||
== | ==सम्बन्धो का पुलबैक (सहसंयोजक व्युत्पन्न)== | ||
यदि <math>\nabla</math> सदिश बंडल पर [[कनेक्शन (वेक्टर बंडल)|सम्बन्ध (वेक्टर बंडल)]] (या [[सहसंयोजक व्युत्पन्न]]) है, <math>E</math> से ऊपर <math>N</math> और <math>\phi</math> से सहज मानचित्र है, <math>M</math> को <math>N</math>, पुलबैक सम्बन्ध है, <math>\phi^*\nabla</math> पर <math>\phi^*E</math> ऊपर <math>M</math>, उस स्थिति द्वारा विशिष्ट रूप से निर्धारित किया जाता है:- | |||
:<math>\left(\phi^*\nabla\right)_X\left(\phi^*s\right) = \phi^*\left(\nabla_{d\phi(X)} s\right).</math> | :<math>\left(\phi^*\nabla\right)_X\left(\phi^*s\right) = \phi^*\left(\nabla_{d\phi(X)} s\right).</math> | ||
==यह भी देखें== | ==यह भी देखें== |
Revision as of 11:43, 8 July 2023
चिकनी विविध के मध्य चिकना मानचित्र और बनें I पुनः 1-रूप के स्थान से संबद्ध रेखीय मानचित्र है I (कोटैंजेंट बंडल के अनुभाग (फाइबर बंडल) का रैखिक स्थान) 1-रूप के स्थान पर है, इस रेखीय मानचित्र को पुलबैक (द्वारा) के रूप में जाना जाता है ), और इसे प्रायः द्वारा दर्शाया जाता है I सामान्यतः, सदिश टेंसर क्षेत्र का कोई भी सहप्रसरण और प्रतिप्रसरण विशेष रूप से कोई भी विभेदक रूप पर पुनः प्राप्त किया जा सकता है I का उपयोग करते हुए I
जब चित्र भिन्नता है, तो पुलबैक, पुशफॉरवर्ड (डिफरेंशियल) के साथ, किसी भी टेंसर फ़ील्ड को परिवर्तित करने के लिए उपयोग किया जा सकता है I से या इसके विपरीत विशेषकर, यदि के खुले उपसमुच्चय के मध्य भिन्नता है, और निर्देशांक को परिवर्तन के रूप में देखा जाता है, (संभवतः विविध पर विभिन्न चार्ट के मध्य ), पुनः पुलबैक और अग्रसर होना विषय के अधिक पारंपरिक (समन्वय पर निर्भर) दृष्टिकोण में उपयोग किए जाने वाले सदिश टेंसर के सहप्रसरण और विरोधाभास के परिवर्तन गुणों का वर्णन करते हैं।
पुलबैक के पूर्व का विचार अनिवार्य रूप से फलन के दूसरे के साथ पुलबैक पूर्वरचना की धारणा है। चूँकि, इस विचार को कई भिन्न-भिन्न संदर्भों में जोड़कर, अधिक विस्तृत पुलबैक परिचालन का निर्माण किया जा सकता है। यह लेख सबसे सरल परिचालनों से प्रारम्भ होता है, पुनः अधिक परिष्कृत परिचालन निर्मित करने के लिए उनका उपयोग करता है। सामान्यतः, पुलबैक क्रियाविधि (पूर्वरचना का उपयोग करके) विभेदक ज्यामिति में कई निर्माणों को [[विरोधाभासी प्रचालक]] प्रतिनिधि में परिवर्तित कर देता है।
सुचारू कार्यों और सुचारु मानचित्रों का पुलबैक
(चिकने) विविध के मध्य चिकना चित्र और बनें, मान लीजिए पर सुचारू कार्य है I पुनः पुलबैक द्वारा सुचारू कार्य है, पर द्वारा परिभाषित I इसी प्रकार, यदि खुले समुच्चय पर सुचारू कार्य में है, तो वही सूत्र खुले समुच्चय पर सुचारू कार्य को परिभाषित करता है I में . (शीफ (गणित) की भाषा में, पुलबैक सुचारू कार्यों के शीफ से रूपवाद को परिभाषित करता है I द्वारा प्रत्यक्ष छवि शीफ के लिए सुचारू कार्यों के समूह पर है I
अधिक सामान्यतः, यदि से सहज मानचित्र है, किसी अन्य विविधता के लिए , तब से सहज मानचित्र से है I
बंडलों और अनुभागों का पुलबैक
यदि सदिश बंडल (या वास्तव में कोई फाइबर बंडल) है, और सहज मानचित्र है, तो पुलबैक बंडल सदिश बंडल (या फाइबर बंडल) है I जिसका फ़ाइबर (गणित) समाप्त हो गया, में द्वारा दिया गया है I
इस स्थिति में, पूर्वरचना अनुभागों पर पुलबैक परिचानल को परिभाषित करता है, : यदि का खंड (फाइबर बंडल) है, के ऊपर , लबैक बंडल का भाग है के ऊपर है I
बहुरेखीय रूपों का पुलबैक
मान लीजिए Φ: V → W सदिश स्थानों V और W के मध्य रेखीय मानचित्र है (अर्थात, Φ L(V, W) का तत्व है, जिसे Hom(V, W) भी कहा जाता है), और मान लीजिए
W पर बहुरेखीय रूप बनें (जिसे टेन्सर के रूप में भी जाना जाता है, टेंसर फ़ील्ड के साथ भ्रमित न हों रैंक का) (0, s), जहां s उत्पाद में W के कारकों की संख्या है)। पुलबैक Φ∗Φ द्वारा F का F, V पर बहुरेखीय रूप है जिसे Φ के साथ F को पूर्वरचना करके परिभाषित किया गया है। अधिक सटीक रूप से, दिए गए सदिश v1, v2, ..., vs में V Φ∗F को सूत्र द्वारा परिभाषित किया गया है:-
जो V पर बहुरेखीय रूप है। इसलिए Φ∗ W पर बहुरेखीय रूपों से लेकर V पर बहुरेखीय रूपों तक (रैखिक) संचालन है। विशेष विषय के रूप में, ध्यान दें कि यदि F, W पर रैखिक रूप (या (0,1)-टेंसर) है, तो F, W का तत्व है, W का दोहरा स्थान, फिर Φ∗F, V का तत्व है, और इसलिए Φ द्वारा पुलबैक दोहरे स्थानों के मध्य रैखिक मानचित्र को परिभाषित करता है, जो रैखिक मानचित्र Φ के विपरीत दिशा में कार्य करता है:-
टेंसोरियल दृष्टिकोण से, स्वेच्छानुसार रैंक के टेंसरों तक पुलबैक की धारणा को विस्तारित करने का प्रयास करना स्वाभाविक है, जिससे डब्ल्यू की आर प्रतियों के टेंसर उत्पाद में मान लेने वाले डब्ल्यू पर बहुरेखीय मानचित्रों तक, W ⊗ W ⊗ ⋅⋅⋅ ⊗ W. चूँकि, ऐसे टेंसर उत्पाद के तत्व स्वाभाविक रूप से पीछे नहीं हटते हैं: इसके अतिरिक्त अग्रसर होना ऑपरेशन होता है, V ⊗ V ⊗ ⋅⋅⋅ ⊗ V को W ⊗ W ⊗ ⋅⋅⋅ ⊗ W द्वारा दिए गए है:-
इससे यह निष्कर्ष प्राप्त होता है कि यदि Φ विपरीत है, तो पुलबैक को व्युत्क्रम फ़ंक्शन Φ द्वारा पुशफॉरवर्ड का उपयोग करके परिभाषित किया जा सकता है, इन दोनों निर्माणों के संयोजन से किसी भी रैंक के टेंसर के लिए विपरीत रैखिक मानचित्र के साथ पुशफॉरवर्ड परिचालन (r, s) प्राप्त होता है I
कोटिस्पर्श रेखा सदिशों और 1-रूपों का पुलबैक
चिकनी विविध के मध्य चिकना चित्र बनें। पुशफॉरवर्ड (अंतर) , लिखा हुआ, , , या , सदिश बंडल आकारिकी है) I स्पर्शरेखा बंडल से का पुलबैक बंडल के लिए का दोहरा स्थान इसलिए यह बंडल मानचित्र है, को , का कोटैंजेंट बंडल I
अब मान लीजिये का खंड (फाइबर बंडल) है, (विभेदक रूप,1-रूप पर ), और पूर्व रचना साथ का पुलबैक बंडल प्राप्त करने के लिए , उपरोक्त बंडल मानचित्र को इस अनुभाग पर (बिंदुवार) प्रस्तावित करने से पुलबैक प्राप्त होता है, द्वारा , जो 1-रूप है, पर द्वारा इस प्रकार परिभाषित है:-
में और में I
(सहसंयोजक) टेंसर फ़ील्ड का पुलबैक
पूर्व अनुभाग का निर्माण रैंक के दसियों के लिए सामान्यीकृत हो जाता है, किसी भी प्राकृतिक संख्या के लिए : a विविध पर टेंसर फ़ील्ड टेंसर बंडल का भाग है, जिसका फाइबर पर में बहुरेखीय का स्थान -रूप है:-
चिकने मानचित्र के (बिंदुवार) अंतर के बराबर से को , पुलबैक प्राप्त करने के लिए बहुरेखीय रूपों के पुलबैक को अनुभागों के पुलबैक के साथ जोड़ा जा सकता है, टेंसर फ़ील्ड , अधिक सटीक रूप से यदि है I -टेंसर फ़ील्ड , का पुलबैक द्वारा है, -टेंसर फ़ील्ड पर द्वारा परिभाषित है:-
में और में
विभेदक रूपों का पुलबैक
सहसंयोजक टेंसर फ़ील्ड के पुलबैक का विशेष महत्वपूर्ण विषय विभेदक रूपों का पुलबैक है। यदि अंतर है, -रूप, यदि बाहरी बंडल का भाग (फाइबरवार) समान रूप से -पर प्रपत्र , फिर का पुलबैक अंतर है, -पर प्रपत्र यदि अनुभाग के समान सूत्र द्वारा परिभाषित है:-
में और में
विभेदक रूपों के पुलबैक में दो गुण हैं जो इसे उपयोगी बनाते हैं।
- यह वेज उत्पाद के साथ इस अर्थ में संगत है कि, विभेदक रूपों के लिए और पर ,
- यह बाहरी व्युत्पन्न के साथ संगत है : अगर पर विभेदक रूप है, तब
भिन्नता द्वारा पुलबैक
जब मानचित्र विविध के मध्य भिन्नता है, यदि इसमें सहज विपरीत है, सदिश फ़ील्ड के साथ-साथ 1-फॉर्म के लिए पुलबैक को परिभाषित किया जा सकता है, और इस प्रकार, विस्तार से, विविध पर स्वेच्छानुसार मिश्रित टेंसर फ़ील्ड के लिए रेखीय मानचित्र,
देने के लिए विपरीत किया जा सकता है
सामान्य मिश्रित टेंसर फ़ील्ड का उपयोग करके रूपांतरित किया जाएगा I और टेंसर उत्पाद के अनुसार टेंसर बंडल की प्रतियों में अपघटन और . कब , पुलबैक और पुशफॉरवर्ड (डिफरेंशियल) मैनिफोल्ड पर टेंसर के परिवर्तन गुणों का वर्णन करते हैं I पारंपरिक शब्दों में, पुलबैक टेंसर के सहसंयोजक सूचकांकों के परिवर्तन गुणों का वर्णन करता है; इसके विपरीत, सदिश सूचकांकों के सहप्रसरण और प्रतिप्रसरण का परिवर्तन पुशफॉरवर्ड (अंतर) द्वारा दिया जाता है।
स्वप्रतिरूपण द्वारा पुलबैक
पूर्व खंड के निर्माण में प्रतिनिधित्व-सैद्धांतिक व्याख्या है, जब अनेक गुना से भिन्नता है। इस विषय में व्युत्पन्न का भाग है I यह फ़्रेम बंडल से जुड़े किसी भी बंडल के अनुभागों पर पुलबैक कार्रवाई को प्रेरित करता है, का सामान्य रैखिक समूह के प्रतिनिधित्व द्वारा (जहाँ ) I
पुलबैक और लेट व्युत्पन्न
व्युत्पन्न. पूर्ववर्ती विचारों को सदिश क्षेत्र द्वारा परिभाषित भिन्नताओं के स्थानीय 1-पैरामीटर समूह पर प्रस्तावित करके , और पैरामीटर के संबंध में अंतर करते हुए, किसी भी संबद्ध बंडल पर लाई व्युत्पन्न की धारणा प्राप्त की जाती है।
सम्बन्धो का पुलबैक (सहसंयोजक व्युत्पन्न)
यदि सदिश बंडल पर सम्बन्ध (वेक्टर बंडल) (या सहसंयोजक व्युत्पन्न) है, से ऊपर और से सहज मानचित्र है, को , पुलबैक सम्बन्ध है, पर ऊपर , उस स्थिति द्वारा विशिष्ट रूप से निर्धारित किया जाता है:-
यह भी देखें
- पुशफ़ॉरवर्ड (अंतर)
- पुलबैक बंडल
- पुलबैक (श्रेणी सिद्धांत)
संदर्भ
- Jost, Jürgen (2002). Riemannian Geometry and Geometric Analysis. Berlin: Springer-Verlag. ISBN 3-540-42627-2. See sections 1.5 and 1.6.
- Abraham, Ralph; Marsden, Jerrold E. (1978). Foundations of Mechanics. London: Benjamin-Cummings. ISBN 0-8053-0102-X. See section 1.7 and 2.3.