एडजुगेट मैट्रिक्स: Difference between revisions
No edit summary |
No edit summary |
||
Line 3: | Line 3: | ||
रैखिक बीजगणित में, [[वर्ग मैट्रिक्स|'''वर्ग | रैखिक बीजगणित में, [[वर्ग मैट्रिक्स|'''वर्ग मैट्रिक्स''']] {{math|'''A'''}} का सहायक या शास्त्रीय सहायक इसके [[सहकारक मैट्रिक्स]] का स्थानान्तरण है और इसे {{math|adj('''A''')}} दर्शाया जाता है।<ref>{{cite book |first=F. R. |last=Gantmacher |author-link=Felix Gantmacher |title=मैट्रिक्स का सिद्धांत|volume=1 |publisher=Chelsea |location=New York |year=1960 |isbn=0-8218-1376-5 |pages=76–89 |url=https://books.google.com/books?id=ePFtMw9v92sC&pg=PA76 }}</ref><ref>{{cite book |last=Strang |first=Gilbert |title=रेखीय बीजगणित और इसके अनुप्रयोग|publisher=Harcourt Brace Jovanovich |year=1988 |isbn=0-15-551005-3 |edition=3rd |pages=[https://archive.org/details/linearalgebraits00stra/page/231 231–232] |chapter=Section 4.4: Applications of determinants |author-link=Gilbert Strang |chapter-url=https://archive.org/details/linearalgebraits00stra/page/231 |chapter-url-access=registration}}</ref> इसे कभी-कभी सहायक मैट्रिक्स <ref>{{cite journal|author1=Claeyssen, J.C.R.|year=1990|title=गतिशील मैट्रिक्स समाधानों का उपयोग करके गैर-रूढ़िवादी रैखिक कंपन प्रणालियों की प्रतिक्रिया की भविष्यवाणी करने पर|journal=Journal of Sound and Vibration|volume=140|issue=1|pages=73–84|doi=10.1016/0022-460X(90)90907-H}}</ref><ref>{{cite journal|author1=Chen, W.|author2=Chen, W.|author3=Chen, Y.J.|year=2004|title=गुंजयमान रिंग जाली उपकरणों के विश्लेषण के लिए एक विशेषता मैट्रिक्स दृष्टिकोण|journal=IEEE Photonics Technology Letters|volume=16|issue=2|pages=458–460|doi=10.1109/LPT.2003.823104}}</ref> या "एडजॉइंट" के रूप में भी जाना जाता है,<ref>{{cite book|first=Alston S.|last=Householder|title=संख्यात्मक विश्लेषण में मैट्रिक्स का सिद्धांत|publisher=Dover Books on Mathematics|year=2006|author-link=Alston Scott Householder | isbn=0-486-44972-6 |pages=166–168 }}</ref> चूंकि पश्चात वाला शब्द आज सामान्यतः भिन्न अवधारणा को संदर्भित करता है, [[हर्मिटियन सहायक]] जो मैट्रिक्स के लिए संयुग्म स्थानान्तरण है। | ||
इसके सहायक के साथ | इसके सहायक के साथ मैट्रिक्स का उत्पाद [[विकर्ण मैट्रिक्स]] देता है (मुख्य विकर्ण पर प्रविष्टियाँ शून्य नहीं हैं) जिनकी विकर्ण प्रविष्टियाँ मूल मैट्रिक्स के निर्धारक हैं: | ||
:<math>\mathbf{A} \operatorname{adj}(\mathbf{A}) = \det(\mathbf{A}) \mathbf{I},</math> | :<math>\mathbf{A} \operatorname{adj}(\mathbf{A}) = \det(\mathbf{A}) \mathbf{I},</math> | ||
जहाँ {{math|'''I'''}} {{math|'''A'''}} के समान आकार का पहचान | जहाँ {{math|'''I'''}} {{math|'''A'''}} के समान आकार का पहचान मैट्रिक्स है। परिणाम स्वरूप, व्युत्क्रमणीय मैट्रिक्स का गुणक व्युत्क्रम उसके सहायक को उसके निर्धारक द्वारा विभाजित करके पाया जा सकता है। | ||
== परिभाषा == | == परिभाषा == | ||
{{math|'''A'''}} का निर्णायक {{math|'''A'''}} के सहकारक | {{math|'''A'''}} का निर्णायक {{math|'''A'''}} के सहकारक मैट्रिक्स {{math|'''C'''}} का स्थानान्तरण है , | ||
:<math>\operatorname{adj}(\mathbf{A}) = \mathbf{C}^\mathsf{T}.</math> | :<math>\operatorname{adj}(\mathbf{A}) = \mathbf{C}^\mathsf{T}.</math> | ||
अधिक विस्तार से, मान लीजिए {{math|''R''}} इकाई [[क्रमविनिमेय वलय|क्रमविनिमेय रिंग]] है और {{math|'''A'''}} {{math|''R''}} प्रविष्टियों के साथ {{math|''n'' × ''n''}} | अधिक विस्तार से, मान लीजिए {{math|''R''}} इकाई [[क्रमविनिमेय वलय|क्रमविनिमेय रिंग]] है और {{math|'''A'''}} {{math|''R''}} प्रविष्टियों के साथ {{math|''n'' × ''n''}} मैट्रिक्स है। {{math|'''A'''}} का {{math|(''i'', ''j'')}} -[[लघु (रैखिक बीजगणित)|लघु]] जिसे {{math|'''M'''<sub>''ij''</sub>}} दर्शाया गया है, मैट्रिक्स का निर्धारक है, जो {{math|'''A'''}} की पंक्ति {{mvar|i}} और कॉलम {{mvar|j}} को विस्थापित करने से परिणामस्वरूप होता है। {{math|'''A'''}} का सहकारक मैट्रिक्स {{math|''n'' × ''n''}} मैट्रिक्स {{math|'''C'''}} है, जिसका {{math|(''i'', ''j'')}} प्रविष्टि {{math|'''A'''}} का {{math|(''i'', ''j'')}} [[सहकारक (रैखिक बीजगणित)]] है, जो कि {{math|(''i'', ''j'')}} साधारण गुणा संकेत कारक है: | ||
:<math>\mathbf{C} = \left((-1)^{i+j} \mathbf{M}_{ij}\right)_{1 \le i, j \le n}.</math> | :<math>\mathbf{C} = \left((-1)^{i+j} \mathbf{M}_{ij}\right)_{1 \le i, j \le n}.</math> | ||
{{math|'''A'''}} का स्थानांतरण {{math|'''C'''}} है, अर्थात {{math|''n'' × ''n''}} | {{math|'''A'''}} का स्थानांतरण {{math|'''C'''}} है, अर्थात {{math|''n'' × ''n''}} मैट्रिक्स जिसकी {{math|(''i'', ''j'')}} प्रविष्टि {{math|'''A'''}} का {{math|(''j'', ''i'')}} सहकारक है, | ||
:<math>\operatorname{adj}(\mathbf{A}) = \mathbf{C}^\mathsf{T} = \left((-1)^{i+j} \mathbf{M}_{ji}\right)_{1 \le i, j \le n}.</math> | :<math>\operatorname{adj}(\mathbf{A}) = \mathbf{C}^\mathsf{T} = \left((-1)^{i+j} \mathbf{M}_{ji}\right)_{1 \le i, j \le n}.</math> | ||
'''महत्वपूर्ण परिणाम''' | '''महत्वपूर्ण परिणाम''' | ||
एडजुगेट को इस प्रकार परिभाषित किया गया है कि {{math|'''A'''}} का उत्पाद विकर्ण | एडजुगेट को इस प्रकार परिभाषित किया गया है कि {{math|'''A'''}} का उत्पाद विकर्ण मैट्रिक्स उत्पन्न करता है, जिसकी विकर्ण प्रविष्टियाँ निर्धारक {{math|det('''A''')}} होती हैं। वह है, | ||
:<math>\mathbf{A} \operatorname{adj}(\mathbf{A}) = \operatorname{adj}(\mathbf{A}) \mathbf{A} = \det(\mathbf{A}) \mathbf{I},</math> | :<math>\mathbf{A} \operatorname{adj}(\mathbf{A}) = \operatorname{adj}(\mathbf{A}) \mathbf{A} = \det(\mathbf{A}) \mathbf{I},</math> | ||
जहाँ {{math|'''I'''}} {{math|''n'' × ''n''}} पहचान | जहाँ {{math|'''I'''}} {{math|''n'' × ''n''}} पहचान मैट्रिक्स है। यह निर्धारक के [[लाप्लास विस्तार]] का परिणाम है। | ||
उपरोक्त सूत्र | उपरोक्त सूत्र मैट्रिक्स बीजगणित में मूलभूत परिणामों में से एक का तात्पर्य है, {{math|'''A'''}} व्युत्क्रमणीय मैट्रिक्स है यदि और केवल तभी जब {{math|det('''A''')}} {{math|''R''}} का व्युत्क्रमणीय तत्व है। जब यह प्रारम्भ होता है, तो उपरोक्त समीकरण प्राप्त होता है। | ||
:<math>\begin{align} | :<math>\begin{align} | ||
\operatorname{adj}(\mathbf{A}) &= \det(\mathbf{A}) \mathbf{A}^{-1}, \\ | \operatorname{adj}(\mathbf{A}) &= \det(\mathbf{A}) \mathbf{A}^{-1}, \\ | ||
Line 31: | Line 31: | ||
== उदाहरण == | == उदाहरण == | ||
=== 1 × 1 सामान्य | === 1 × 1 सामान्य मैट्रिक्स === | ||
चूँकि 0 x 0 | चूँकि 0 x 0 मैट्रिक्स का निर्धारक 1 है, किसी भी 1 × 1 मैट्रिक्स ([[जटिल संख्या]] अदिश) का सहायक है <math>\mathbf{I} = \begin{bmatrix} 1 \end{bmatrix}</math>. उसका अवलोकन करो: | ||
<math>\mathbf{A} \operatorname{adj}(\mathbf{A}) = \mathbf{A} \mathbf{I} = (\det \mathbf{A}) \mathbf {I}.</math> | <math>\mathbf{A} \operatorname{adj}(\mathbf{A}) = \mathbf{A} \mathbf{I} = (\det \mathbf{A}) \mathbf {I}.</math> | ||
'''2 × 2 सामान्य | '''2 × 2 सामान्य मैट्रिक्स''' | ||
2 × 2 | 2 × 2 मैट्रिक्स का एडजुगेट | ||
:<math>\mathbf{A} = \begin{bmatrix} a & b \\ c & d \end{bmatrix}</math> | :<math>\mathbf{A} = \begin{bmatrix} a & b \\ c & d \end{bmatrix}</math> | ||
है | है | ||
Line 46: | Line 46: | ||
ऐसे में ये कथन भी सच है, कि {{math|det}}({{math|adj}}('''A'''))= {{math|det}}('''A''') और इसलिए {{math|adj}}({{math|adj}}('''A''')) = '''A'''. | ऐसे में ये कथन भी सच है, कि {{math|det}}({{math|adj}}('''A'''))= {{math|det}}('''A''') और इसलिए {{math|adj}}({{math|adj}}('''A''')) = '''A'''. | ||
'''3 × 3 सामान्य | '''3 × 3 सामान्य मैट्रिक्स''' | ||
3 × 3 | 3 × 3 मैट्रिक्स पर विचार करें | ||
:<math>\mathbf{A} = \begin{bmatrix} | :<math>\mathbf{A} = \begin{bmatrix} | ||
a_{11} & a_{12} & a_{13} \\ | a_{11} & a_{12} & a_{13} \\ | ||
Line 54: | Line 54: | ||
a_{31} & a_{32} & a_{33} | a_{31} & a_{32} & a_{33} | ||
\end{bmatrix}.</math> | \end{bmatrix}.</math> | ||
इसका सहकारक | इसका सहकारक मैट्रिक्स है | ||
:<math>\mathbf{C} = \begin{bmatrix} | :<math>\mathbf{C} = \begin{bmatrix} | ||
+\begin{vmatrix} a_{22} & a_{23} \\ a_{32} & a_{33} \end{vmatrix} & | +\begin{vmatrix} a_{22} & a_{23} \\ a_{32} & a_{33} \end{vmatrix} & | ||
Line 71: | Line 71: | ||
:<math>\begin{vmatrix} a_{im} & a_{in} \\ a_{jm} & a_{jn} \end{vmatrix} | :<math>\begin{vmatrix} a_{im} & a_{in} \\ a_{jm} & a_{jn} \end{vmatrix} | ||
= \det\!\begin{bmatrix} a_{im} & a_{in} \\ a_{jm} & a_{jn} \end{bmatrix} .</math> | = \det\!\begin{bmatrix} a_{im} & a_{in} \\ a_{jm} & a_{jn} \end{bmatrix} .</math> | ||
इसका सहायक इसके सहकारक | इसका सहायक इसके सहकारक मैट्रिक्स का स्थानान्तरण है, | ||
:<math>\operatorname{adj}(\mathbf{A}) = \mathbf{C}^\mathsf{T} = \begin{bmatrix} | :<math>\operatorname{adj}(\mathbf{A}) = \mathbf{C}^\mathsf{T} = \begin{bmatrix} | ||
+\begin{vmatrix} a_{22} & a_{23} \\ a_{32} & a_{33} \end{vmatrix} & | +\begin{vmatrix} a_{22} & a_{23} \\ a_{32} & a_{33} \end{vmatrix} & | ||
Line 88: | Line 88: | ||
'''3 × 3 संख्यात्मक | '''3 × 3 संख्यात्मक मैट्रिक्स''' | ||
विशिष्ट उदाहरण के रूप में, हमारे पास है, | विशिष्ट उदाहरण के रूप में, हमारे पास है, | ||
Line 100: | Line 100: | ||
4 & -6 & 2 | 4 & -6 & 2 | ||
\end{bmatrix}.</math> | \end{bmatrix}.</math> | ||
यह परिक्षण करना सरल है कि एडजुगेट निर्धारक का व्युत्क्रम | यह परिक्षण करना सरल है कि एडजुगेट निर्धारक का व्युत्क्रम मैट्रिक्स गुणा है, {{math|−6}}, वह {{math|−1}} दूसरी पंक्ति में, एडजुगेट के तीसरे कॉलम की गणना निम्नानुसार की गई थी। एडजुगेट की (2,3) प्रविष्टि '''A''' का (3,2) सहकारक है। इस सहकारक की गणना मूल मैट्रिक्स '''A''' की तीसरी पंक्ति और दूसरे स्तंभ को विस्थापित कर प्राप्त [[सबमैट्रिक्स]] का उपयोग करके की जाती है। | ||
:<math>\begin{bmatrix} -3 & -5 \\ -1 & -2 \end{bmatrix}.</math> | :<math>\begin{bmatrix} -3 & -5 \\ -1 & -2 \end{bmatrix}.</math> | ||
(3,2) सहकारक इस | (3,2) सहकारक इस सबमैट्रिक्स के निर्धारक का संकेत गुना है: | ||
:<math>(-1)^{3+2}\operatorname{det}\!\begin{bmatrix}-3&-5\\-1&-2\end{bmatrix} = -(-3 \cdot -2 - -5 \cdot -1) = -1,</math> | :<math>(-1)^{3+2}\operatorname{det}\!\begin{bmatrix}-3&-5\\-1&-2\end{bmatrix} = -(-3 \cdot -2 - -5 \cdot -1) = -1,</math> | ||
और यह सहायक की (2,3) प्रविष्टि है। | और यह सहायक की (2,3) प्रविष्टि है। | ||
== गुण == | == गुण == | ||
किसी भी {{math|''n'' × ''n''}} | किसी भी {{math|''n'' × ''n''}} मैट्रिक्स {{math|'''A'''}} के लिए, प्रारंभिक गणना से ज्ञात होता है कि एडजुगेट में निम्नलिखित गुण हैं: | ||
* <math>\operatorname{adj}(\mathbf{I}) = \mathbf{I}</math>, जहाँ <math>\mathbf{I}</math> पहचान | * <math>\operatorname{adj}(\mathbf{I}) = \mathbf{I}</math>, जहाँ <math>\mathbf{I}</math> पहचान मैट्रिक्स है. | ||
* <math>\operatorname{adj}(\mathbf{0}) = \mathbf{0}</math>, जहाँ <math>\mathbf{0}</math> [[शून्य मैट्रिक्स | * <math>\operatorname{adj}(\mathbf{0}) = \mathbf{0}</math>, जहाँ <math>\mathbf{0}</math> [[शून्य मैट्रिक्स]] है, अतिरिक्त इसके कि यदि <math>n=1</math> तब <math>\operatorname{adj}(\mathbf{0}) = \mathbf{I}</math>. | ||
* किसी भी अदिश {{mvar|c}} के लिए <math>\operatorname{adj}(c \mathbf{A}) = c^{n - 1}\operatorname{adj}(\mathbf{A})</math> . | * किसी भी अदिश {{mvar|c}} के लिए <math>\operatorname{adj}(c \mathbf{A}) = c^{n - 1}\operatorname{adj}(\mathbf{A})</math> . | ||
* <math>\operatorname{adj}(\mathbf{A}^\mathsf{T}) = \operatorname{adj}(\mathbf{A})^\mathsf{T}</math>. | * <math>\operatorname{adj}(\mathbf{A}^\mathsf{T}) = \operatorname{adj}(\mathbf{A})^\mathsf{T}</math>. | ||
Line 122: | Line 122: | ||
* <math>\operatorname{adj}(\mathbf{A}^*) = \operatorname{adj}(\mathbf{A})^*</math>, जहां तारांकन संयुग्म स्थानांतरण को दर्शाता है। | * <math>\operatorname{adj}(\mathbf{A}^*) = \operatorname{adj}(\mathbf{A})^*</math>, जहां तारांकन संयुग्म स्थानांतरण को दर्शाता है। | ||
मान लीजिए कि {{math|'''B'''}} अन्य {{math|''n'' × ''n''}} | मान लीजिए कि {{math|'''B'''}} अन्य {{math|''n'' × ''n''}} मैट्रिक्स है, तब | ||
:<math>\operatorname{adj}(\mathbf{AB}) = \operatorname{adj}(\mathbf{B})\operatorname{adj}(\mathbf{A}).</math> | :<math>\operatorname{adj}(\mathbf{AB}) = \operatorname{adj}(\mathbf{B})\operatorname{adj}(\mathbf{A}).</math> | ||
इसे तीन प्रकार से सिद्ध किया जा सकता है। विधि, जो किसी भी क्रमविनिमेय वलय के लिए मान्य है, कॉची-बिनेट सूत्र का उपयोग करके सीधी गणना है। दूसरा विधि, जो वास्तविक या जटिल संख्याओं के लिए मान्य है, सर्वप्रथम निरीक्षण करना है व्युत्क्रमणीय मैट्रिक्स {{math|'''A'''}} और {{math|'''B'''}} के लिए, | |||
:<math>\operatorname{adj}(\mathbf{B})\operatorname{adj}(\mathbf{A}) = (\det \mathbf{B})\mathbf{B}^{-1}(\det \mathbf{A})\mathbf{A}^{-1} = (\det \mathbf{AB})(\mathbf{AB})^{-1} = \operatorname{adj}(\mathbf{AB}).</math> | :<math>\operatorname{adj}(\mathbf{B})\operatorname{adj}(\mathbf{A}) = (\det \mathbf{B})\mathbf{B}^{-1}(\det \mathbf{A})\mathbf{A}^{-1} = (\det \mathbf{AB})(\mathbf{AB})^{-1} = \operatorname{adj}(\mathbf{AB}).</math> | ||
चूँकि प्रत्येक गैर-व्युत्क्रमणीय | चूँकि प्रत्येक गैर-व्युत्क्रमणीय मैट्रिक्स व्युत्क्रमणीय मैट्रिक्सों की सीमा है, इसलिए सहायक की निरंतरता का तात्पर्य यह है कि जब {{math|'''A'''}} या {{math|'''B'''}} इनमें से कोई व्युत्क्रमणीय नहीं होता है तो सूत्र सत्य रहता है। | ||
पूर्व सूत्र का [[परिणाम]] यह है कि, किसी भी गैर-नकारात्मक [[पूर्णांक]] {{mvar|k}} के लिए , | |||
:<math>\operatorname{adj}(\mathbf{A}^k) = \operatorname{adj}(\mathbf{A})^k.</math> | :<math>\operatorname{adj}(\mathbf{A}^k) = \operatorname{adj}(\mathbf{A})^k.</math> | ||
यदि {{math|'''A'''}} व्युत्क्रमणीय है, तो उपरोक्त सूत्र ऋणात्मक | यदि {{math|'''A'''}} व्युत्क्रमणीय है, तो उपरोक्त सूत्र ऋणात्मक {{mvar|k}} के लिए भी मान्य है . | ||
पहचान से | पहचान से | ||
Line 136: | Line 136: | ||
हम निष्कर्ष निकालते हैं | हम निष्कर्ष निकालते हैं | ||
:<math>\mathbf{A}\operatorname{adj}(\mathbf{A} + \mathbf{B})\mathbf{B} = \mathbf{B}\operatorname{adj}(\mathbf{A} + \mathbf{B})\mathbf{A}.</math> | :<math>\mathbf{A}\operatorname{adj}(\mathbf{A} + \mathbf{B})\mathbf{B} = \mathbf{B}\operatorname{adj}(\mathbf{A} + \mathbf{B})\mathbf{A}.</math> | ||
लगता है कि {{math|'''A'''}} [[ आवागमन मैट्रिक्स | आवागमन | लगता है कि {{math|'''A'''}} [[ आवागमन मैट्रिक्स | आवागमन मैट्रिक्स]] ेस के साथ {{math|'''B'''}}. पहचान को गुणा करना {{math|1='''AB''' = '''BA'''}} बाएँ और दाएँ पर {{math|adj('''A''')}} यह साबित करता है | ||
:<math>\det(\mathbf{A})\operatorname{adj}(\mathbf{A})\mathbf{B} = \det(\mathbf{A})\mathbf{B}\operatorname{adj}(\mathbf{A}).</math> | :<math>\det(\mathbf{A})\operatorname{adj}(\mathbf{A})\mathbf{B} = \det(\mathbf{A})\mathbf{B}\operatorname{adj}(\mathbf{A}).</math> | ||
यदि {{math|'''A'''}} व्युत्क्रमणीय है, इसका तात्पर्य यह है {{math|adj('''A''')}} भी साथ आवागमन करता है {{math|'''B'''}}. वास्तविक या जटिल संख्याओं पर, निरंतरता का तात्पर्य है {{math|adj('''A''')}} के साथ आवागमन करता है {{math|'''B'''}} यहां तक कि जब {{math|'''A'''}} व्युत्क्रमणीय नहीं है. | यदि {{math|'''A'''}} व्युत्क्रमणीय है, इसका तात्पर्य यह है {{math|adj('''A''')}} भी साथ आवागमन करता है {{math|'''B'''}}. वास्तविक या जटिल संख्याओं पर, निरंतरता का तात्पर्य है {{math|adj('''A''')}} के साथ आवागमन करता है {{math|'''B'''}} यहां तक कि जब {{math|'''A'''}} व्युत्क्रमणीय नहीं है. | ||
अंत में, दूसरे प्रमाण की तुलना में अधिक सामान्य प्रमाण है, जिसके लिए केवल यह आवश्यक है कि n × n | अंत में, दूसरे प्रमाण की तुलना में अधिक सामान्य प्रमाण है, जिसके लिए केवल यह आवश्यक है कि n × n मैट्रिक्स में कम से कम 2n + 1 तत्वों (उदाहरण के लिए पूर्णांक [[मॉड्यूलर अंकगणित]] 11 पर 5 × 5 मैट्रिक्स) के साथ [[फ़ील्ड (गणित)]] पर प्रविष्टियाँ हों ). {{math|det('''A'''+''t'' '''I''')}} t में बहुपद है जिसमें अधिकतम n पर बहुपद की घात होती है, इसलिए इसमें बहुपद का अधिकतम n मूल होता है। ध्यान दें कि ij वीं प्रविष्टि {{math|adj(('''A'''+''t'' '''I''')('''B'''))}}अधिकतम क्रम n का बहुपद है, और इसी तरह के लिए भी {{math|adj('''A'''+''t'' '''I''') adj('''B''')}}. Ij वीं प्रविष्टि पर ये दो बहुपद कम से कम n+ 1 अंक पर सहमत हैं, क्योंकि हमारे पास क्षेत्र के कम से कम n+ 1 तत्व हैं जहां {{math|'''A'''+''t'' '''I'''}} व्युत्क्रमणीय है, और हमने व्युत्क्रमणीय मैट्रिक्सों की पहचान सिद्ध कर दी है। डिग्री n के बहुपद जो n+ 1 बिंदुओं पर सहमत होते हैं, समान होने चाहिए (उन्हें दूसरे से घटाएं और आपके पास अधिकतम n डिग्री वाले बहुपद के लिए n+ 1 मूल होंगे - विरोधाभास जब तक कि उनका अंतर समान रूप से शून्य न हो)। चूँकि दोनों बहुपद समान हैं, वे t के प्रत्येक मान के लिए समान मान लेते हैं। इस प्रकार, जब t = 0 होता है तो वे समान मान लेते हैं। | ||
उपरोक्त गुणों और अन्य प्राथमिक गणनाओं का उपयोग करके, यह दिखाना आसान है कि यदि {{math|'''A'''}} में निम्नलिखित गुणों में से है {{math|adj '''A'''}} भी करता है: | उपरोक्त गुणों और अन्य प्राथमिक गणनाओं का उपयोग करके, यह दिखाना आसान है कि यदि {{math|'''A'''}} में निम्नलिखित गुणों में से है {{math|adj '''A'''}} भी करता है: | ||
* [[ऊपरी त्रिकोणीय]], | * [[ऊपरी त्रिकोणीय]], | ||
*[[निचला त्रिकोणीय]], | *[[निचला त्रिकोणीय]], | ||
* विकर्ण | * विकर्ण मैट्रिक्स, | ||
* [[ऑर्थोगोनल मैट्रिक्स | * [[ऑर्थोगोनल मैट्रिक्स]], | ||
* [[एकात्मक मैट्रिक्स|ात्मक | * [[एकात्मक मैट्रिक्स|ात्मक मैट्रिक्स]], | ||
* [[सममित मैट्रिक्स | * [[सममित मैट्रिक्स]], | ||
* [[हर्मिटियन मैट्रिक्स | * [[हर्मिटियन मैट्रिक्स]], | ||
*[[तिरछा-सममित मैट्रिक्स | *[[तिरछा-सममित मैट्रिक्स]]|तिरछा-सममित, | ||
* [[तिरछा-Hermitian]], | * [[तिरछा-Hermitian]], | ||
* [[सामान्य मैट्रिक्स | * [[सामान्य मैट्रिक्स]]. | ||
यदि {{math|'''A'''}} व्युत्क्रमणीय है, तो, जैसा कि ऊपर बताया गया है, इसके लिए सूत्र है {{math|adj('''A''')}} निर्धारक और व्युत्क्रम के संदर्भ में {{math|'''A'''}}. कब {{math|'''A'''}} व्युत्क्रमणीय नहीं है, एडजुगेट भिन्न-भिन्न लेकिन निकट से संबंधित सूत्रों को संतुष्ट करता है। | यदि {{math|'''A'''}} व्युत्क्रमणीय है, तो, जैसा कि ऊपर बताया गया है, इसके लिए सूत्र है {{math|adj('''A''')}} निर्धारक और व्युत्क्रम के संदर्भ में {{math|'''A'''}}. कब {{math|'''A'''}} व्युत्क्रमणीय नहीं है, एडजुगेट भिन्न-भिन्न लेकिन निकट से संबंधित सूत्रों को संतुष्ट करता है। | ||
Line 163: | Line 163: | ||
PARTITION {{math|'''A'''}} [[स्तंभ सदिश]] में: | PARTITION {{math|'''A'''}} [[स्तंभ सदिश]] में: | ||
:<math>\mathbf{A} = \begin{bmatrix}\mathbf{a}_1 & \cdots & \mathbf{a}_n\end{bmatrix}.</math> | :<math>\mathbf{A} = \begin{bmatrix}\mathbf{a}_1 & \cdots & \mathbf{a}_n\end{bmatrix}.</math> | ||
होने देना {{math|'''b'''}} आकार का कॉलम वेक्टर बनें {{math|''n''}}. हल करना {{math|1 ≤ ''i'' ≤ ''n''}} और कॉलम को प्रतिस्थापित करके गठित | होने देना {{math|'''b'''}} आकार का कॉलम वेक्टर बनें {{math|''n''}}. हल करना {{math|1 ≤ ''i'' ≤ ''n''}} और कॉलम को प्रतिस्थापित करके गठित मैट्रिक्स पर विचार करें {{math|''i''}} का {{math|'''A'''}} द्वारा {{math|'''b'''}}: | ||
:<math>(\mathbf{A} \stackrel{i}{\leftarrow} \mathbf{b})\ \stackrel{\text{def}}{=}\ \begin{bmatrix} \mathbf{a}_1 & \cdots & \mathbf{a}_{i-1} & \mathbf{b} & \mathbf{a}_{i+1} & \cdots & \mathbf{a}_n \end{bmatrix}.</math> | :<math>(\mathbf{A} \stackrel{i}{\leftarrow} \mathbf{b})\ \stackrel{\text{def}}{=}\ \begin{bmatrix} \mathbf{a}_1 & \cdots & \mathbf{a}_{i-1} & \mathbf{b} & \mathbf{a}_{i+1} & \cdots & \mathbf{a}_n \end{bmatrix}.</math> | ||
लाप्लास कॉलम के साथ इस | लाप्लास कॉलम के साथ इस मैट्रिक्स के निर्धारक का विस्तार करता है {{mvar|i}}. परिणाम प्रवेश है {{mvar|i}} उत्पाद की {{math|adj('''A''')'''b'''}}. विभिन्न संभावितों के लिए इन निर्धारकों को त्रित करना {{mvar|i}} कॉलम वैक्टर की समानता उत्पन्न करता है | ||
:<math>\left(\det(\mathbf{A} \stackrel{i}{\leftarrow} \mathbf{b})\right)_{i=1}^n = \operatorname{adj}(\mathbf{A})\mathbf{b}.</math> | :<math>\left(\det(\mathbf{A} \stackrel{i}{\leftarrow} \mathbf{b})\right)_{i=1}^n = \operatorname{adj}(\mathbf{A})\mathbf{b}.</math> | ||
इस सूत्र के निम्नलिखित ठोस परिणाम हैं। [[समीकरणों की रैखिक प्रणाली]] पर विचार करें | इस सूत्र के निम्नलिखित ठोस परिणाम हैं। [[समीकरणों की रैखिक प्रणाली]] पर विचार करें | ||
:<math>\mathbf{A}\mathbf{x} = \mathbf{b}.</math> | :<math>\mathbf{A}\mathbf{x} = \mathbf{b}.</math> | ||
ये मान लीजिए {{math|'''A'''}} [[एकवचन मैट्रिक्स|वचन | ये मान लीजिए {{math|'''A'''}} [[एकवचन मैट्रिक्स|वचन मैट्रिक्स]] है|गैर-वचन। इस प्रणाली को बायीं ओर से गुणा करना {{math|adj('''A''')}} और निर्धारक पैदावार से विभाजित करना | ||
:<math>\mathbf{x} = \frac{\operatorname{adj}(\mathbf{A})\mathbf{b}}{\det \mathbf{A}}.</math> | :<math>\mathbf{x} = \frac{\operatorname{adj}(\mathbf{A})\mathbf{b}}{\det \mathbf{A}}.</math> | ||
इस स्थिति में पिछले सूत्र को प्रारम्भ करने से क्रैमर का नियम प्राप्त होता है, | इस स्थिति में पिछले सूत्र को प्रारम्भ करने से क्रैमर का नियम प्राप्त होता है, | ||
Line 227: | Line 227: | ||
लगता है कि {{math|''T'' : ''V'' → ''V''}} [[रैखिक परिवर्तन]] है. द्वारा पुलबैक {{math|(''n'' − 1)}}सेंट बाहरी शक्ति {{math|''T''}} का रूपवाद प्रेरित करता है {{math|Hom}} रिक्त स्थान. का निर्णायक {{math|''T''}} समग्र है | लगता है कि {{math|''T'' : ''V'' → ''V''}} [[रैखिक परिवर्तन]] है. द्वारा पुलबैक {{math|(''n'' − 1)}}सेंट बाहरी शक्ति {{math|''T''}} का रूपवाद प्रेरित करता है {{math|Hom}} रिक्त स्थान. का निर्णायक {{math|''T''}} समग्र है | ||
:<math>V\ \xrightarrow{\phi}\ \operatorname{Hom}(\wedge^{n-1} V, \wedge^n V)\ \xrightarrow{(\wedge^{n-1} T)^*}\ \operatorname{Hom}(\wedge^{n-1} V, \wedge^n V)\ \xrightarrow{\phi^{-1}}\ V.</math> | :<math>V\ \xrightarrow{\phi}\ \operatorname{Hom}(\wedge^{n-1} V, \wedge^n V)\ \xrightarrow{(\wedge^{n-1} T)^*}\ \operatorname{Hom}(\wedge^{n-1} V, \wedge^n V)\ \xrightarrow{\phi^{-1}}\ V.</math> | ||
यदि {{math|1=''V'' = '''R'''<sup>''n''</sup>}} अपने [[विहित आधार]] से संपन्न है {{math|'''e'''<sub>1</sub>, …, '''e'''<sub>''n''</sub>}}, और यदि का | यदि {{math|1=''V'' = '''R'''<sup>''n''</sup>}} अपने [[विहित आधार]] से संपन्न है {{math|'''e'''<sub>1</sub>, …, '''e'''<sub>''n''</sub>}}, और यदि का मैट्रिक्स {{math|''T''}}इसमें [[आधार (रैखिक बीजगणित)]] है {{math|'''A'''}}, फिर का adjugate {{math|''T''}} का सहायक है {{math|'''A'''}}. यह देखने के लिए कि क्यों, दे दो <math>\wedge^{n-1} \mathbf{R}^n</math> बुनियाद | ||
:<math>\{\mathbf{e}_1 \wedge \dots \wedge \hat\mathbf{e}_k \wedge \dots \wedge \mathbf{e}_n\}_{k=1}^n.</math> | :<math>\{\mathbf{e}_1 \wedge \dots \wedge \hat\mathbf{e}_k \wedge \dots \wedge \mathbf{e}_n\}_{k=1}^n.</math> | ||
आधार वेक्टर ठीक करें {{math|'''e'''<sub>''i''</sub>}} का {{math|'''R'''<sup>''n''</sup>}}. की छवि {{math|'''e'''<sub>''i''</sub>}} अंतर्गत <math>\phi</math> यह इस आधार पर निर्धारित होता है कि यह आधार वैक्टर कहां भेजता है: | आधार वेक्टर ठीक करें {{math|'''e'''<sub>''i''</sub>}} का {{math|'''R'''<sup>''n''</sup>}}. की छवि {{math|'''e'''<sub>''i''</sub>}} अंतर्गत <math>\phi</math> यह इस आधार पर निर्धारित होता है कि यह आधार वैक्टर कहां भेजता है: | ||
Line 240: | Line 240: | ||
का व्युत्क्रमणीय लगाना <math>\phi</math> दर्शाता है कि का adjugate {{math|''T''}} जिसके लिए रैखिक परिवर्तन है | का व्युत्क्रमणीय लगाना <math>\phi</math> दर्शाता है कि का adjugate {{math|''T''}} जिसके लिए रैखिक परिवर्तन है | ||
:<math>\mathbf{e}_i \mapsto \sum_{j=1}^n (-1)^{i+j}(\det A_{ji})\mathbf{e}_j.</math> | :<math>\mathbf{e}_i \mapsto \sum_{j=1}^n (-1)^{i+j}(\det A_{ji})\mathbf{e}_j.</math> | ||
परिणामस्वरूप, इसका | परिणामस्वरूप, इसका मैट्रिक्स प्रतिनिधित्व का सहायक है {{math|'''A'''}}. | ||
यदि {{math|''V''}} आंतरिक उत्पाद और वॉल्यूम फॉर्म से संपन्न है, फिर मानचित्र {{math|''φ''}} को और अधिक विघटित किया जा सकता है। इस मामले में, {{math|''φ''}} को [[हॉज स्टार ऑपरेटर]] और दोहरीकरण के संयोजन के रूप में समझा जा सकता है। विशेष रूप से, यदि {{math|ω}} आयतन रूप है, तो यह, आंतरिक उत्पाद के साथ मिलकर, समरूपता निर्धारित करता है | यदि {{math|''V''}} आंतरिक उत्पाद और वॉल्यूम फॉर्म से संपन्न है, फिर मानचित्र {{math|''φ''}} को और अधिक विघटित किया जा सकता है। इस मामले में, {{math|''φ''}} को [[हॉज स्टार ऑपरेटर]] और दोहरीकरण के संयोजन के रूप में समझा जा सकता है। विशेष रूप से, यदि {{math|ω}} आयतन रूप है, तो यह, आंतरिक उत्पाद के साथ मिलकर, समरूपता निर्धारित करता है | ||
Line 251: | Line 251: | ||
== उच्च adjugates == | == उच्च adjugates == | ||
होने देना {{math|'''A'''}} सेम {{math|''n'' × ''n''}} | होने देना {{math|'''A'''}} सेम {{math|''n'' × ''n''}} मैट्रिक्स, और ठीक करें {{math|''r'' ≥ 0}}.{{math|''r''}}वां उच्चतर अधिनिर्णय {{math|'''A'''}} <math display="inline">\binom{n}{r} \!\times\! \binom{n}{r}</math> मैट्रिक्स, निरूपित {{math|adj<sub>''r''</sub> '''A'''}}, जिनकी प्रविष्टियाँ आकार के आधार पर अनुक्रमित की जाती हैं {{math|''r''}} उपसमुच्चय {{math|''I''}} और {{math|''J''}} का {{math|{1, ..., ''m''<nowiki>}</nowiki>}}. होने देना {{math|''I''{{i sup|c}}}} और {{math|''J''{{i sup|c}}}} के [[पूरक (सेट सिद्धांत)]] को निरूपित करें {{math|''I''}} और {{math|''J''}}, क्रमश। चलो भी <math>\mathbf{A}_{I^c, J^c}</math> के सबमैट्रिक्स को निरूपित करें {{math|'''A'''}} जिसमें वे पंक्तियाँ और स्तंभ शामिल हैं जिनके सूचकांक हैं {{math|''I''{{i sup|c}}}} और {{math|''J''{{i sup|c}}}}, क्रमश। फिर {{math|(''I'', ''J'')}}की प्रविष्टि {{math|adj<sub>''r''</sub> '''A'''}} है | ||
:<math>(-1)^{\sigma(I) + \sigma(J)}\det \mathbf{A}_{J^c, I^c},</math> | :<math>(-1)^{\sigma(I) + \sigma(J)}\det \mathbf{A}_{J^c, I^c},</math> | ||
कहाँ {{math|σ(''I'')}} और {{math|σ(''J'')}} के तत्वों का योग है {{math|''I''}} और {{math|''J''}}, क्रमश। | कहाँ {{math|σ(''I'')}} और {{math|σ(''J'')}} के तत्वों का योग है {{math|''I''}} और {{math|''J''}}, क्रमश। | ||
Line 260: | Line 260: | ||
* {{math|1=adj<sub>''n''</sub>('''A''') = 1}}. | * {{math|1=adj<sub>''n''</sub>('''A''') = 1}}. | ||
* {{math|1=adj<sub>''r''</sub>('''BA''') = adj<sub>''r''</sub>('''A''') adj<sub>''r''</sub>('''B''')}}. | * {{math|1=adj<sub>''r''</sub>('''BA''') = adj<sub>''r''</sub>('''A''') adj<sub>''r''</sub>('''B''')}}. | ||
* <math>\operatorname{adj}_r(\mathbf{A})C_r(\mathbf{A}) = C_r(\mathbf{A})\operatorname{adj}_r(\mathbf{A}) = (\det \mathbf{A})I_{\binom{n}{r}}</math>, कहाँ {{math|''C''<sub>''r''</sub>('''A''')}} दर्शाता है {{math|''r''}}&हेयरस्प;[[यौगिक मैट्रिक्स | * <math>\operatorname{adj}_r(\mathbf{A})C_r(\mathbf{A}) = C_r(\mathbf{A})\operatorname{adj}_r(\mathbf{A}) = (\det \mathbf{A})I_{\binom{n}{r}}</math>, कहाँ {{math|''C''<sub>''r''</sub>('''A''')}} दर्शाता है {{math|''r''}}&हेयरस्प;[[यौगिक मैट्रिक्स]]। | ||
उच्चतर एडजुगेट को सामान्य एडजुगेट, प्रतिस्थापन के समान ही अमूर्त बीजीय शब्दों में परिभाषित किया जा सकता है <math>\wedge^r V</math> और <math>\wedge^{n-r} V</math> के लिए <math>V</math> और <math>\wedge^{n-1} V</math>, क्रमश। | उच्चतर एडजुगेट को सामान्य एडजुगेट, प्रतिस्थापन के समान ही अमूर्त बीजीय शब्दों में परिभाषित किया जा सकता है <math>\wedge^r V</math> और <math>\wedge^{n-r} V</math> के लिए <math>V</math> और <math>\wedge^{n-1} V</math>, क्रमश। | ||
== पुनरावृत्त adjugates == | == पुनरावृत्त adjugates == | ||
व्युत्क्रमणीय | व्युत्क्रमणीय मैट्रिक्स ए का एडजुगेट लेते हुए [[पुनरावृत्त फ़ंक्शन]] {{mvar|k}} गुना पैदावार होती है | ||
:<math>\overbrace{\operatorname{adj}\dotsm\operatorname{adj}}^k(\mathbf{A})=\det(\mathbf{A})^{\frac{(n-1)^k-(-1)^k}n}\mathbf{A}^{(-1)^k},</math> | :<math>\overbrace{\operatorname{adj}\dotsm\operatorname{adj}}^k(\mathbf{A})=\det(\mathbf{A})^{\frac{(n-1)^k-(-1)^k}n}\mathbf{A}^{(-1)^k},</math> | ||
Line 278: | Line 278: | ||
* जैकोबी का सूत्र | * जैकोबी का सूत्र | ||
* फद्दीव-लेवेरियर एल्गोरिदम | * फद्दीव-लेवेरियर एल्गोरिदम | ||
* यौगिक | * यौगिक मैट्रिक्स | ||
== संदर्भ == | == संदर्भ == |
Revision as of 18:19, 22 July 2023
रैखिक बीजगणित में, वर्ग मैट्रिक्स A का सहायक या शास्त्रीय सहायक इसके सहकारक मैट्रिक्स का स्थानान्तरण है और इसे adj(A) दर्शाया जाता है।[1][2] इसे कभी-कभी सहायक मैट्रिक्स [3][4] या "एडजॉइंट" के रूप में भी जाना जाता है,[5] चूंकि पश्चात वाला शब्द आज सामान्यतः भिन्न अवधारणा को संदर्भित करता है, हर्मिटियन सहायक जो मैट्रिक्स के लिए संयुग्म स्थानान्तरण है।
इसके सहायक के साथ मैट्रिक्स का उत्पाद विकर्ण मैट्रिक्स देता है (मुख्य विकर्ण पर प्रविष्टियाँ शून्य नहीं हैं) जिनकी विकर्ण प्रविष्टियाँ मूल मैट्रिक्स के निर्धारक हैं:
जहाँ I A के समान आकार का पहचान मैट्रिक्स है। परिणाम स्वरूप, व्युत्क्रमणीय मैट्रिक्स का गुणक व्युत्क्रम उसके सहायक को उसके निर्धारक द्वारा विभाजित करके पाया जा सकता है।
परिभाषा
A का निर्णायक A के सहकारक मैट्रिक्स C का स्थानान्तरण है ,
अधिक विस्तार से, मान लीजिए R इकाई क्रमविनिमेय रिंग है और A R प्रविष्टियों के साथ n × n मैट्रिक्स है। A का (i, j) -लघु जिसे Mij दर्शाया गया है, मैट्रिक्स का निर्धारक है, जो A की पंक्ति i और कॉलम j को विस्थापित करने से परिणामस्वरूप होता है। A का सहकारक मैट्रिक्स n × n मैट्रिक्स C है, जिसका (i, j) प्रविष्टि A का (i, j) सहकारक (रैखिक बीजगणित) है, जो कि (i, j) साधारण गुणा संकेत कारक है:
A का स्थानांतरण C है, अर्थात n × n मैट्रिक्स जिसकी (i, j) प्रविष्टि A का (j, i) सहकारक है,
महत्वपूर्ण परिणाम
एडजुगेट को इस प्रकार परिभाषित किया गया है कि A का उत्पाद विकर्ण मैट्रिक्स उत्पन्न करता है, जिसकी विकर्ण प्रविष्टियाँ निर्धारक det(A) होती हैं। वह है,
जहाँ I n × n पहचान मैट्रिक्स है। यह निर्धारक के लाप्लास विस्तार का परिणाम है।
उपरोक्त सूत्र मैट्रिक्स बीजगणित में मूलभूत परिणामों में से एक का तात्पर्य है, A व्युत्क्रमणीय मैट्रिक्स है यदि और केवल तभी जब det(A) R का व्युत्क्रमणीय तत्व है। जब यह प्रारम्भ होता है, तो उपरोक्त समीकरण प्राप्त होता है।
उदाहरण
1 × 1 सामान्य मैट्रिक्स
चूँकि 0 x 0 मैट्रिक्स का निर्धारक 1 है, किसी भी 1 × 1 मैट्रिक्स (जटिल संख्या अदिश) का सहायक है . उसका अवलोकन करो:
2 × 2 सामान्य मैट्रिक्स
2 × 2 मैट्रिक्स का एडजुगेट
है
प्रत्यक्ष गणना द्वारा,
ऐसे में ये कथन भी सच है, कि det(adj(A))= det(A) और इसलिए adj(adj(A)) = A.
3 × 3 सामान्य मैट्रिक्स
3 × 3 मैट्रिक्स पर विचार करें
इसका सहकारक मैट्रिक्स है
जहाँ
इसका सहायक इसके सहकारक मैट्रिक्स का स्थानान्तरण है,
3 × 3 संख्यात्मक मैट्रिक्स
विशिष्ट उदाहरण के रूप में, हमारे पास है,
यह परिक्षण करना सरल है कि एडजुगेट निर्धारक का व्युत्क्रम मैट्रिक्स गुणा है, −6, वह −1 दूसरी पंक्ति में, एडजुगेट के तीसरे कॉलम की गणना निम्नानुसार की गई थी। एडजुगेट की (2,3) प्रविष्टि A का (3,2) सहकारक है। इस सहकारक की गणना मूल मैट्रिक्स A की तीसरी पंक्ति और दूसरे स्तंभ को विस्थापित कर प्राप्त सबमैट्रिक्स का उपयोग करके की जाती है।
(3,2) सहकारक इस सबमैट्रिक्स के निर्धारक का संकेत गुना है:
और यह सहायक की (2,3) प्रविष्टि है।
गुण
किसी भी n × n मैट्रिक्स A के लिए, प्रारंभिक गणना से ज्ञात होता है कि एडजुगेट में निम्नलिखित गुण हैं:
- , जहाँ पहचान मैट्रिक्स है.
- , जहाँ शून्य मैट्रिक्स है, अतिरिक्त इसके कि यदि तब .
- किसी भी अदिश c के लिए .
- .
- .
- यदि A तो व्युत्क्रमणीय है, तो . यह इस प्रकार है कि:
- adj(A) व्युत्क्रम (det A)−1A के साथ व्युत्क्रमणीय है .
- adj(A−1) = adj(A)−1.
- adj(A) A प्रवेशवार बहुपद है। विशेष रूप से, वास्तविक संख्या या जटिल संख्याओं पर, एडजुगेट A की प्रविष्टियों का सुचारू कार्य है।
सम्मिश्र संख्याओं पर,
- , जहां बार जटिल संयुग्मन को दर्शाता है।
- , जहां तारांकन संयुग्म स्थानांतरण को दर्शाता है।
मान लीजिए कि B अन्य n × n मैट्रिक्स है, तब
इसे तीन प्रकार से सिद्ध किया जा सकता है। विधि, जो किसी भी क्रमविनिमेय वलय के लिए मान्य है, कॉची-बिनेट सूत्र का उपयोग करके सीधी गणना है। दूसरा विधि, जो वास्तविक या जटिल संख्याओं के लिए मान्य है, सर्वप्रथम निरीक्षण करना है व्युत्क्रमणीय मैट्रिक्स A और B के लिए,
चूँकि प्रत्येक गैर-व्युत्क्रमणीय मैट्रिक्स व्युत्क्रमणीय मैट्रिक्सों की सीमा है, इसलिए सहायक की निरंतरता का तात्पर्य यह है कि जब A या B इनमें से कोई व्युत्क्रमणीय नहीं होता है तो सूत्र सत्य रहता है।
पूर्व सूत्र का परिणाम यह है कि, किसी भी गैर-नकारात्मक पूर्णांक k के लिए ,
यदि A व्युत्क्रमणीय है, तो उपरोक्त सूत्र ऋणात्मक k के लिए भी मान्य है .
पहचान से
हम निष्कर्ष निकालते हैं
लगता है कि A आवागमन मैट्रिक्स ेस के साथ B. पहचान को गुणा करना AB = BA बाएँ और दाएँ पर adj(A) यह साबित करता है
यदि A व्युत्क्रमणीय है, इसका तात्पर्य यह है adj(A) भी साथ आवागमन करता है B. वास्तविक या जटिल संख्याओं पर, निरंतरता का तात्पर्य है adj(A) के साथ आवागमन करता है B यहां तक कि जब A व्युत्क्रमणीय नहीं है.
अंत में, दूसरे प्रमाण की तुलना में अधिक सामान्य प्रमाण है, जिसके लिए केवल यह आवश्यक है कि n × n मैट्रिक्स में कम से कम 2n + 1 तत्वों (उदाहरण के लिए पूर्णांक मॉड्यूलर अंकगणित 11 पर 5 × 5 मैट्रिक्स) के साथ फ़ील्ड (गणित) पर प्रविष्टियाँ हों ). det(A+t I) t में बहुपद है जिसमें अधिकतम n पर बहुपद की घात होती है, इसलिए इसमें बहुपद का अधिकतम n मूल होता है। ध्यान दें कि ij वीं प्रविष्टि adj((A+t I)(B))अधिकतम क्रम n का बहुपद है, और इसी तरह के लिए भी adj(A+t I) adj(B). Ij वीं प्रविष्टि पर ये दो बहुपद कम से कम n+ 1 अंक पर सहमत हैं, क्योंकि हमारे पास क्षेत्र के कम से कम n+ 1 तत्व हैं जहां A+t I व्युत्क्रमणीय है, और हमने व्युत्क्रमणीय मैट्रिक्सों की पहचान सिद्ध कर दी है। डिग्री n के बहुपद जो n+ 1 बिंदुओं पर सहमत होते हैं, समान होने चाहिए (उन्हें दूसरे से घटाएं और आपके पास अधिकतम n डिग्री वाले बहुपद के लिए n+ 1 मूल होंगे - विरोधाभास जब तक कि उनका अंतर समान रूप से शून्य न हो)। चूँकि दोनों बहुपद समान हैं, वे t के प्रत्येक मान के लिए समान मान लेते हैं। इस प्रकार, जब t = 0 होता है तो वे समान मान लेते हैं।
उपरोक्त गुणों और अन्य प्राथमिक गणनाओं का उपयोग करके, यह दिखाना आसान है कि यदि A में निम्नलिखित गुणों में से है adj A भी करता है:
- ऊपरी त्रिकोणीय,
- निचला त्रिकोणीय,
- विकर्ण मैट्रिक्स,
- ऑर्थोगोनल मैट्रिक्स,
- ात्मक मैट्रिक्स,
- सममित मैट्रिक्स,
- हर्मिटियन मैट्रिक्स,
- तिरछा-सममित मैट्रिक्स|तिरछा-सममित,
- तिरछा-Hermitian,
- सामान्य मैट्रिक्स.
यदि A व्युत्क्रमणीय है, तो, जैसा कि ऊपर बताया गया है, इसके लिए सूत्र है adj(A) निर्धारक और व्युत्क्रम के संदर्भ में A. कब A व्युत्क्रमणीय नहीं है, एडजुगेट भिन्न-भिन्न लेकिन निकट से संबंधित सूत्रों को संतुष्ट करता है।
- यदि rk(A) ≤ n − 2, तब adj(A) = 0.
- यदि rk(A) = n − 1, तब rk(adj(A)) = 1. (कुछ माइनर गैर-शून्य है, इसलिए adj(A) गैर-शून्य है और इसलिए इसकी रैंक (रैखिक बीजगणित) कम से कम है; पहचान adj(A) A = 0 तात्पर्य यह है कि शून्य स्थान का आयाम (वेक्टर स्थान)। adj(A) कम से कम है n − 1, इसलिए इसकी रैंक अधिकतम है।) यह उसका अनुसरण करता है adj(A) = αxyT, कहाँ α अदिश राशि है और x और y ऐसे सदिश हैं Ax = 0 और AT y = 0.
कॉलम प्रतिस्थापन और क्रैमर नियम
PARTITION A स्तंभ सदिश में:
होने देना b आकार का कॉलम वेक्टर बनें n. हल करना 1 ≤ i ≤ n और कॉलम को प्रतिस्थापित करके गठित मैट्रिक्स पर विचार करें i का A द्वारा b:
लाप्लास कॉलम के साथ इस मैट्रिक्स के निर्धारक का विस्तार करता है i. परिणाम प्रवेश है i उत्पाद की adj(A)b. विभिन्न संभावितों के लिए इन निर्धारकों को त्रित करना i कॉलम वैक्टर की समानता उत्पन्न करता है
इस सूत्र के निम्नलिखित ठोस परिणाम हैं। समीकरणों की रैखिक प्रणाली पर विचार करें
ये मान लीजिए A वचन मैट्रिक्स है|गैर-वचन। इस प्रणाली को बायीं ओर से गुणा करना adj(A) और निर्धारक पैदावार से विभाजित करना
इस स्थिति में पिछले सूत्र को प्रारम्भ करने से क्रैमर का नियम प्राप्त होता है,
कहाँ xi है iवीं प्रविष्टि x.
अभिलक्षणिक बहुपद
मान लीजिए कि इसका अभिलक्षणिक बहुपद है A होना
का पहला विभाजित अंतर p घात का सममित बहुपद है n − 1,
गुणा sI − A इसके adjugate द्वारा. तब से p(A) = 0 केली-हैमिल्टन प्रमेय द्वारा, कुछ प्राथमिक जोड़-तोड़ से पता चलता है
विशेष रूप से, संकल्पात्मक औपचारिकता A को परिभाषित किया गया है
और उपरोक्त सूत्र के अनुसार, यह बराबर है
जैकोबी का सूत्र
निर्धारक के व्युत्पन्न के लिए एडजुगेट जैकोबी के सूत्र में भी दिखाई देता है। यदि A(t) तो फिर लगातार भिन्न-भिन्न है
यह इस प्रकार है कि निर्धारक का कुल व्युत्पन्न सहायक का स्थानान्तरण है:
केली-हैमिल्टन सूत्र
होने देना pA(t) का अभिलक्षणिक बहुपद बनें A. केली-हैमिल्टन प्रमेय यह बताता है
अचर पद को भिन्न करना और समीकरण को इससे गुणा करना adj(A) उस निर्णय के लिए अभिव्यक्ति देता है जो केवल पर निर्भर करता है A और के गुणांक pA(t). इन गुणांकों को शक्तियों के ट्रेस (रैखिक बीजगणित) के संदर्भ में स्पष्ट रूप से दर्शाया जा सकता है A पूर्ण घातीय बेल बहुपद का उपयोग करना। परिणामी सूत्र है
कहाँ n का आयाम है A, और राशि ले ली जाती है s और सभी अनुक्रम kl ≥ 0 रैखिक डायोफैंटाइन समीकरण को संतुष्ट करना
2 × 2 मामले के लिए, यह देता है
3 × 3 मामले के लिए, यह देता है
4 × 4 मामले के लिए, यह देता है
वही सूत्र सीधे फद्दीव-लेवेरियर एल्गोरिथ्म के अंतिम चरण का अनुसरण करता है, जो कुशलता से विशेषता बहुपद को निर्धारित करता है A.
बाह्य बीजगणित से संबंध
बाहरी बीजगणित का उपयोग करके सहायक को अमूर्त शब्दों में देखा जा सकता है। होने देना V सेम n-आयामी सदिश समष्टि. बाहरी उत्पाद द्विरेखीय युग्मन को परिभाषित करता है
संक्षेप में, के लिए समरूपी है R, और ऐसी किसी भी समरूपता के तहत बाहरी उत्पाद आदर्श युग्मन है। इसलिए, यह समरूपता उत्पन्न करता है
स्पष्ट रूप से, यह जोड़ी भेजती है v ∈ V को , कहाँ
लगता है कि T : V → V रैखिक परिवर्तन है. द्वारा पुलबैक (n − 1)सेंट बाहरी शक्ति T का रूपवाद प्रेरित करता है Hom रिक्त स्थान. का निर्णायक T समग्र है
यदि V = Rn अपने विहित आधार से संपन्न है e1, …, en, और यदि का मैट्रिक्स Tइसमें आधार (रैखिक बीजगणित) है A, फिर का adjugate T का सहायक है A. यह देखने के लिए कि क्यों, दे दो बुनियाद
आधार वेक्टर ठीक करें ei का Rn. की छवि ei अंतर्गत यह इस आधार पर निर्धारित होता है कि यह आधार वैक्टर कहां भेजता है:
वेक्टर के आधार पर, (n − 1)सेंट बाहरी शक्ति T है
इनमें से प्रत्येक पद शून्य के अंतर्गत मैप करता है अतिरिक्त k = i अवधि। इसलिए, की वापसी जिसके लिए रैखिक परिवर्तन है
अर्थात् यह बराबर है
का व्युत्क्रमणीय लगाना दर्शाता है कि का adjugate T जिसके लिए रैखिक परिवर्तन है
परिणामस्वरूप, इसका मैट्रिक्स प्रतिनिधित्व का सहायक है A.
यदि V आंतरिक उत्पाद और वॉल्यूम फॉर्म से संपन्न है, फिर मानचित्र φ को और अधिक विघटित किया जा सकता है। इस मामले में, φ को हॉज स्टार ऑपरेटर और दोहरीकरण के संयोजन के रूप में समझा जा सकता है। विशेष रूप से, यदि ω आयतन रूप है, तो यह, आंतरिक उत्पाद के साथ मिलकर, समरूपता निर्धारित करता है
यह समरूपता को प्रेरित करता है
सदिश v में Rn रैखिक कार्यात्मकता से मेल खाता है
हॉज स्टार ऑपरेटर की परिभाषा के अनुसार, यह रैखिक कार्यात्मकता दोहरी है *v. वह है, ω∨∘ φ बराबर है v ↦ *v∨.
उच्च adjugates
होने देना A सेम n × n मैट्रिक्स, और ठीक करें r ≥ 0.rवां उच्चतर अधिनिर्णय A मैट्रिक्स, निरूपित adjr A, जिनकी प्रविष्टियाँ आकार के आधार पर अनुक्रमित की जाती हैं r उपसमुच्चय I और J का {1, ..., m}. होने देना Ic और Jc के पूरक (सेट सिद्धांत) को निरूपित करें I और J, क्रमश। चलो भी के सबमैट्रिक्स को निरूपित करें A जिसमें वे पंक्तियाँ और स्तंभ शामिल हैं जिनके सूचकांक हैं Ic और Jc, क्रमश। फिर (I, J)की प्रविष्टि adjr A है
कहाँ σ(I) और σ(J) के तत्वों का योग है I और J, क्रमश।
उच्च adjugates के मूल गुणों में शामिल हैं:
- adj0(A) = det A.
- adj1(A) = adj A.
- adjn(A) = 1.
- adjr(BA) = adjr(A) adjr(B).
- , कहाँ Cr(A) दर्शाता है r&हेयरस्प;यौगिक मैट्रिक्स।
उच्चतर एडजुगेट को सामान्य एडजुगेट, प्रतिस्थापन के समान ही अमूर्त बीजीय शब्दों में परिभाषित किया जा सकता है और के लिए और , क्रमश।
पुनरावृत्त adjugates
व्युत्क्रमणीय मैट्रिक्स ए का एडजुगेट लेते हुए पुनरावृत्त फ़ंक्शन k गुना पैदावार होती है
उदाहरण के लिए,
यह भी देखें
- केली-हैमिल्टन प्रमेय
- क्रैमर का नियम
- ट्रेस आरेख
- जैकोबी का सूत्र
- फद्दीव-लेवेरियर एल्गोरिदम
- यौगिक मैट्रिक्स
संदर्भ
- ↑ Gantmacher, F. R. (1960). मैट्रिक्स का सिद्धांत. Vol. 1. New York: Chelsea. pp. 76–89. ISBN 0-8218-1376-5.
- ↑ Strang, Gilbert (1988). "Section 4.4: Applications of determinants". रेखीय बीजगणित और इसके अनुप्रयोग (3rd ed.). Harcourt Brace Jovanovich. pp. 231–232. ISBN 0-15-551005-3.
- ↑ Claeyssen, J.C.R. (1990). "गतिशील मैट्रिक्स समाधानों का उपयोग करके गैर-रूढ़िवादी रैखिक कंपन प्रणालियों की प्रतिक्रिया की भविष्यवाणी करने पर". Journal of Sound and Vibration. 140 (1): 73–84. doi:10.1016/0022-460X(90)90907-H.
- ↑ Chen, W.; Chen, W.; Chen, Y.J. (2004). "गुंजयमान रिंग जाली उपकरणों के विश्लेषण के लिए एक विशेषता मैट्रिक्स दृष्टिकोण". IEEE Photonics Technology Letters. 16 (2): 458–460. doi:10.1109/LPT.2003.823104.
- ↑ Householder, Alston S. (2006). संख्यात्मक विश्लेषण में मैट्रिक्स का सिद्धांत. Dover Books on Mathematics. pp. 166–168. ISBN 0-486-44972-6.
ग्रन्थसूची
- Roger A. Horn and Charles R. Johnson (2013), Matrix Analysis, Second Edition. Cambridge University Press, ISBN 978-0-521-54823-6
- Roger A. Horn and Charles R. Johnson (1991), Topics in Matrix Analysis. Cambridge University Press, ISBN 978-0-521-46713-1
बाहरी संबंध
- Matrix Reference Manual
- Online matrix calculator (determinant, track, inverse, adjoint, transpose) Compute Adjugate matrix up to order 8
- "Adjugate of { { a, b, c }, { d, e, f }, { g, h, i } }". Wolfram Alpha.
{{cite web}}
: CS1 maint: url-status (link)