उपव्युत्पन्न: Difference between revisions

From Vigyanwiki
No edit summary
No edit summary
 
(3 intermediate revisions by 3 users not shown)
Line 2: Line 2:
[[File:Subderivative illustration.png|right|thumb|एक उत्तल फलन (नीला) और उपस्पर्शरेखा रेखाएँ <math>x_0</math> (लाल)।]]गणित में, सब[[ यौगिक ]], '''सबग्रेडिएंट''' और '''सबडिफरेंशियल''' व्युत्पन्न को [[उत्तल कार्य|उत्तल फलन]] के लिए सामान्यीकृत करते हैं जो आवश्यक रूप से भिन्न कार्य नहीं होते हैं। [[उत्तल विश्लेषण]] में उप-व्युत्पन्न उत्पन्न होते हैं, उत्तल फलन का अध्ययन, अक्सर [[उत्तल अनुकूलन]] के संबंध में उपयोग किया जाता है।
[[File:Subderivative illustration.png|right|thumb|एक उत्तल फलन (नीला) और उपस्पर्शरेखा रेखाएँ <math>x_0</math> (लाल)।]]गणित में, सब[[ यौगिक ]], '''सबग्रेडिएंट''' और '''सबडिफरेंशियल''' व्युत्पन्न को [[उत्तल कार्य|उत्तल फलन]] के लिए सामान्यीकृत करते हैं जो आवश्यक रूप से भिन्न कार्य नहीं होते हैं। [[उत्तल विश्लेषण]] में उप-व्युत्पन्न उत्पन्न होते हैं, उत्तल फलन का अध्ययन, अक्सर [[उत्तल अनुकूलन]] के संबंध में उपयोग किया जाता है।


माना <math>f:I \to \mathbb{R}</math> वास्तविक रेखा के संवृत अंतराल पर परिभाषित [[वास्तविक संख्या]]-मूल्यवान उत्तल फलन बनें थे। ऐसे फलन को सभी बिंदुओं पर भिन्न होने की आवश्यकता नहीं है: उदाहरण के लिए, निरपेक्ष मान फलन <math>f(x)=|x|</math> जब यह गैर-विभेदित <math>x=0</math> होता है चूँकि, जैसा कि दाईं ओर के ग्राफ़ में देखा गया है (जहाँ <math>f(x)</math> नीले रंग में निरपेक्ष मान फलन के समान गैर-विभेदित किंक हैं), किसी के लिए <math>x_0</math> फलन के डोमेन में कोई रेखा खींच सकता है जो बिंदु <math>(x_0,f(x_0))</math> से होकर जाती है और जो प्रत्येक समिष्ट या तो एफ के ग्राफ को छू रहा है या नीचे है। ऐसी रेखा की [[ढलान|स्लोप]] को उप-व्युत्पन्न कहा जाता है।
माना <math>f:I \to \mathbb{R}</math> वास्तविक रेखा के संवृत अंतराल पर परिभाषित [[वास्तविक संख्या]]-मूल्यवान उत्तल फलन बनें थे। ऐसे फलन को सभी बिंदुओं पर भिन्न होने की आवश्यकता नहीं है: उदाहरण के लिए, निरपेक्ष मान फलन <math>f(x)=|x|</math> जब यह गैर-विभेदित <math>x=0</math> होता है चूँकि, जैसा कि दाईं ओर के ग्राफ़ में देखा गया है (जहाँ <math>f(x)</math> नीले रंग में निरपेक्ष मान फलन के समान गैर-विभेदित किंक हैं), किसी के लिए <math>x_0</math> फलन के डोमेन में कोई रेखा खींच सकता है जो बिंदु <math>(x_0,f(x_0))</math> से होकर जाती है और जो प्रत्येक समिष्ट या तो एफ के ग्राफ को छू रहा है या नीचे है। ऐसी रेखा की [[ढलान|स्लोप]] को उप-व्युत्पन्न कहा जाता है।


== परिभाषा                                                                                                                                                          ==
== परिभाषा                                                                                                                                                          ==
कठोरता से, उत्तल फलन का उपव्युत्पन्न <math>f:I \to \mathbb{R}</math> बिंदु पर <math>x_0</math> संवृत अंतराल में <math>I</math> वास्तविक संख्या <math>c</math> है ऐसा है कि
कठोरता से, उत्तल फलन का उपव्युत्पन्न <math>f:I \to \mathbb{R}</math> बिंदु पर <math>x_0</math> संवृत अंतराल में <math>I</math> वास्तविक संख्या <math>c</math> है ऐसा है कि
<math display="block">f(x)-f(x_0)\ge c(x-x_0)</math>
<math display="block">f(x)-f(x_0)\ge c(x-x_0)</math>
सभी के लिए <math>x\in I</math>. [[माध्य मान प्रमेय]] के व्युत्क्रम द्वारा, उपअवकलजों का समुच्चय (गणित) <math>x_0</math> उत्तल फलन के लिए [[खाली सेट|खाली]] समुच्चय [[बंद अंतराल|विवृत अंतराल]] है <math>[a,b]</math>, जहाँ <math>a</math> और <math>b</math> [[एकतरफ़ा सीमा]]एँ हैं
सभी के लिए <math>x\in I</math>. [[माध्य मान प्रमेय]] के व्युत्क्रम द्वारा, उपअवकलजों का समुच्चय (गणित) <math>x_0</math> उत्तल फलन के लिए [[खाली सेट|खाली]] समुच्चय [[बंद अंतराल|विवृत अंतराल]] है <math>[a,b]</math>, जहाँ <math>a</math> और <math>b</math> [[एकतरफ़ा सीमा]]एँ हैं
<math display="block">a=\lim_{x\to x_0^-} \frac{f(x)-f(x_0)}{x-x_0},</math>
<math display="block">a=\lim_{x\to x_0^-} \frac{f(x)-f(x_0)}{x-x_0},</math><math display="block">b=\lim_{x\to x_0^+} \frac{f(x)-f(x_0)}{x-x_0}.</math>
<math display="block">b=\lim_{x\to x_0^+} \frac{f(x)-f(x_0)}{x-x_0}.</math>
समुच्चय <math>[a,b]</math> सभी उपअवकलन को फलन <math>f</math> पर <math>x_0</math>, द्वारा चिह्नित <math>\partial f(x_0)</math> का उपविभेदक कहा जाता है. यदि <math>f</math> उत्तल है, तो किसी भी बिंदु पर इसका उपविभेदक गैर-रिक्त है। इसके अतिरिक्त, यदि यह उपविभेदक <math>x_0</math> है इसमें बिल्कुल उप-व्युत्पन्न सम्मिलित है इस प्रकार <math>\partial f(x_0)=\{f'(x_0)\}</math> और <math>f</math> पर भिन्न <math>x_0</math> है <ref>{{cite book |first=R. T. |last=Rockafellar |author-link=R. T. Rockafellar |title=उत्तल विश्लेषण|publisher=Princeton University Press |year=1970 |isbn=0-691-08069-0 |page=242 [Theorem 25.1] }}</ref>
समुच्चय <math>[a,b]</math> सभी उपअवकलन को फलन <math>f</math> पर <math>x_0</math>, द्वारा चिह्नित <math>\partial f(x_0)</math> का उपविभेदक कहा जाता है. यदि <math>f</math> उत्तल है, तो किसी भी बिंदु पर इसका उपविभेदक गैर-रिक्त है। इसके अतिरिक्त, यदि यह उपविभेदक <math>x_0</math> है इसमें बिल्कुल उप-व्युत्पन्न सम्मिलित है इस प्रकार <math>\partial f(x_0)=\{f'(x_0)\}</math> और <math>f</math> पर भिन्न <math>x_0</math> है <ref>{{cite book |first=R. T. |last=Rockafellar |author-link=R. T. Rockafellar |title=उत्तल विश्लेषण|publisher=Princeton University Press |year=1970 |isbn=0-691-08069-0 |page=242 [Theorem 25.1] }}</ref>
 
 
== उदाहरण ==
== उदाहरण ==


फलन <math>f(x)=|x|</math> पर विचार करें जो उत्तल है. फिर <math>[-1,1]</math> मूल पर उपविभेदक अंतराल है . किसी भी बिंदु पर उपविभेदक <math>x_0<0</math> [[सिंगलटन सेट|सिंगलटन]] समुच्चय <math>\{-1\}</math> है , जबकि किसी भी बिंदु पर उपविभेदक <math>x_0>0</math> सिंगलटन समुच्चय <math>\{1\}</math> है यह [[साइन फ़ंक्शन|साइन फलन]] के समान है, किन्तु एकल-मूल्यवान <math>0</math> नहीं है , इसके अतिरिक्त सभी संभावित उप-व्युत्पन्न सम्मिलित हैं।
फलन <math>f(x)=|x|</math> पर विचार करें जो उत्तल है. फिर <math>[-1,1]</math> मूल पर उपविभेदक अंतराल है . किसी भी बिंदु पर उपविभेदक <math>x_0<0</math> [[सिंगलटन सेट|सिंगलटन]] समुच्चय <math>\{-1\}</math> है , जबकि किसी भी बिंदु पर उपविभेदक <math>x_0>0</math> सिंगलटन समुच्चय <math>\{1\}</math> है यह [[साइन फ़ंक्शन|साइन फलन]] के समान है, किन्तु एकल-मूल्यवान <math>0</math> नहीं है , इसके अतिरिक्त सभी संभावित उप-व्युत्पन्न सम्मिलित हैं।


== गुण ==
== गुण ==


* एक उत्तल कार्य <math>f:I\to\mathbb{R}</math> पर भिन्न <math>x_0</math> है यदि और केवल यदि उपविभेदक सिंगलटन समुच्चय है, जो <math>\{f'(x_0)\}</math> है .
* एक उत्तल कार्य <math>f:I\to\mathbb{R}</math> पर भिन्न <math>x_0</math> है यदि और केवल यदि उपविभेदक सिंगलटन समुच्चय है, जो <math>\{f'(x_0)\}</math> है .
* एक बिंदु <math>x_0</math> उत्तल फलन का [[वैश्विक न्यूनतम]] <math>f</math> है यदि और केवल यदि शून्य उपविभेदक में निहित है। उदाहरण के लिए, उपरोक्त चित्र में, कोई ग्राफ़ के लिए क्षैतिज उपस्पर्शरेखा <math>f</math> पर <math>(x_0,f(x_0))</math> रेखा खींच सकता है यह अंतिम गुण इस तथ्य का सामान्यीकरण है कि समिष्टीय न्यूनतम पर अवकलनीय फलन का व्युत्पन्न शून्य है।
* एक बिंदु <math>x_0</math> उत्तल फलन का [[वैश्विक न्यूनतम]] <math>f</math> है यदि और केवल यदि शून्य उपविभेदक में निहित है। उदाहरण के लिए, उपरोक्त चित्र में, कोई ग्राफ़ के लिए क्षैतिज उपस्पर्शरेखा <math>f</math> पर <math>(x_0,f(x_0))</math> रेखा खींच सकता है यह अंतिम गुण इस तथ्य का सामान्यीकरण है कि समिष्टीय न्यूनतम पर अवकलनीय फलन का व्युत्पन्न शून्य है।
* यदि <math>f</math> और <math>g</math> उपविभेदकों के साथ उत्तल फलन हैं इस प्रकार <math>\partial f(x)</math> और <math>\partial g(x)</math> साथ <math>x</math> कार्यों में से किसी का आंतरिक बिंदु होते है, फिर उपविभेदक <math>f + g</math> है <math>\partial(f + g)(x) = \partial f(x) + \partial g(x)</math> (जहां अतिरिक्त ऑपरेटर मिन्कोव्स्की योग को दर्शाता है)। इसे इस प्रकार पढ़ा जाता है कि किसी योग का उपअंतर, उपविभेदकों का योग होता है।<ref>{{cite book|last1=Lemaréchal|first1=Claude|last2=Hiriart-Urruty|first2=Jean-Baptiste|title=उत्तल विश्लेषण के मूल सिद्धांत|url=https://archive.org/details/fundamentalsconv00hiri|url-access=limited|date=2001|publisher=Springer-Verlag Berlin Heidelberg|isbn=978-3-642-56468-0|page=[https://archive.org/details/fundamentalsconv00hiri/page/n193 183]}}</ref>
* यदि <math>f</math> और <math>g</math> उपविभेदकों के साथ उत्तल फलन हैं इस प्रकार <math>\partial f(x)</math> और <math>\partial g(x)</math> साथ <math>x</math> कार्यों में से किसी का आंतरिक बिंदु होते है, फिर उपविभेदक <math>f + g</math> है <math>\partial(f + g)(x) = \partial f(x) + \partial g(x)</math> (जहां अतिरिक्त ऑपरेटर मिन्कोव्स्की योग को दर्शाता है)। इसे इस प्रकार पढ़ा जाता है कि किसी योग का उपअंतर, उपविभेदकों का योग होता है।<ref>{{cite book|last1=Lemaréchal|first1=Claude|last2=Hiriart-Urruty|first2=Jean-Baptiste|title=उत्तल विश्लेषण के मूल सिद्धांत|url=https://archive.org/details/fundamentalsconv00hiri|url-access=limited|date=2001|publisher=Springer-Verlag Berlin Heidelberg|isbn=978-3-642-56468-0|page=[https://archive.org/details/fundamentalsconv00hiri/page/n193 183]}}</ref>
== उपग्रेडिएंट ==
== उपग्रेडिएंट ==
उप-व्युत्पन्न और उप-अंतर की अवधारणाओं को कई चर के कार्यों के लिए सामान्यीकृत किया जा सकता है। यदि <math>f:U\to\mathbb{R}</math> [[ यूक्लिडियन स्थान |यूक्लिडियन समिष्ट]] में [[उत्तल सेट|उत्तल]] समुच्चय [[ खुला सेट |खुला]] समुच्चय पर परिभाषित वास्तविक-मूल्यवान उत्तल फलन <math>\mathbb{R}^n</math> है , वेक्टर <math> v</math> उस समिष्ट को उपग्रेडिएंट <math>x_0\in U</math> कहा जाता है यदि किसी के लिए <math>x\in U</math> के पास वह है
उप-व्युत्पन्न और उप-अंतर की अवधारणाओं को कई चर के कार्यों के लिए सामान्यीकृत किया जा सकता है। यदि <math>f:U\to\mathbb{R}</math> [[ यूक्लिडियन स्थान |यूक्लिडियन समिष्ट]] में [[उत्तल सेट|उत्तल]] समुच्चय [[ खुला सेट |खुला]] समुच्चय पर परिभाषित वास्तविक-मूल्यवान उत्तल फलन <math>\mathbb{R}^n</math> है , वेक्टर <math> v</math> उस समिष्ट को उपग्रेडिएंट <math>x_0\in U</math> कहा जाता है यदि किसी के लिए <math>x\in U</math> के पास वह है
:<math>f(x)-f(x_0)\ge v\cdot (x-x_0),</math>
:<math>f(x)-f(x_0)\ge v\cdot (x-x_0),</math>
जहां डॉट [[डॉट उत्पाद]] को दर्शाता है। सभी उपग्रेडिएंट्स का समुच्चय <math>x_0</math> ''x<sub>0</sub>'' पर उपविभेदक कहा जाता है और <math>\partial f(x_0)</math> द्वारा दर्शाया गया है . उपविभेदक सदैव गैर-रिक्त उत्तल [[कॉम्पैक्ट सेट|कॉम्पैक्ट]] समुच्चय होता है।
जहां डॉट [[डॉट उत्पाद]] को दर्शाता है। सभी उपग्रेडिएंट्स का समुच्चय <math>x_0</math> ''x<sub>0</sub>'' पर उपविभेदक कहा जाता है और <math>\partial f(x_0)</math> द्वारा दर्शाया गया है . उपविभेदक सदैव गैर-रिक्त उत्तल [[कॉम्पैक्ट सेट|कॉम्पैक्ट]] समुच्चय होता है।


ये अवधारणाएँ उत्तल कार्यों <math>f:U\to\mathbb{R}</math> को और अधिक सामान्यीकृत करती हैं [[स्थानीय रूप से उत्तल स्थान|समिष्टीय रूप से उत्तल समिष्ट]] में उत्तल समुच्चय पर <math>V</math>. कार्यात्मक <math>v^*</math> दोहरे समिष्ट में <math>V^*</math> को उपग्रेडिएंट <math>x_0</math> <math>U</math> कहा जाता है यदि सभी के लिए <math>x\in U</math>,
ये अवधारणाएँ उत्तल कार्यों <math>f:U\to\mathbb{R}</math> को और अधिक सामान्यीकृत करती हैं [[स्थानीय रूप से उत्तल स्थान|समिष्टीय रूप से उत्तल समिष्ट]] में उत्तल समुच्चय पर <math>V</math>. कार्यात्मक <math>v^*</math> दोहरे समिष्ट में <math>V^*</math> को उपग्रेडिएंट <math>x_0</math> <math>U</math> कहा जाता है यदि सभी के लिए <math>x\in U</math>,
:<math>f(x)-f(x_0)\ge v^*(x-x_0).</math>
:<math>f(x)-f(x_0)\ge v^*(x-x_0).</math>
सभी उपग्रेडिएंट्स का समुच्चय <math>x_0</math> पर उपविभेदक <math>x_0</math> कहा जाता है और फिर <math>\partial f(x_0)</math> से दर्शाया गया है . उपविभेदक सदैव उत्तल [[बंद सेट|विवृत]] समुच्चय होता है। यह खाली समुच्चय हो सकता है; उदाहरण के लिए [[अनबाउंड ऑपरेटर]] पर विचार करें, जो उत्तल है, किन्तु उसका कोई सबग्रेडिएंट नहीं है। यदि <math>f</math> सतत है, उपविभेदक अरिक्त है।
सभी उपग्रेडिएंट्स का समुच्चय <math>x_0</math> पर उपविभेदक <math>x_0</math> कहा जाता है और फिर <math>\partial f(x_0)</math> से दर्शाया गया है . उपविभेदक सदैव उत्तल [[बंद सेट|विवृत]] समुच्चय होता है। यह खाली समुच्चय हो सकता है; उदाहरण के लिए [[अनबाउंड ऑपरेटर]] पर विचार करें, जो उत्तल है, किन्तु उसका कोई सबग्रेडिएंट नहीं है। यदि <math>f</math> सतत है, उपविभेदक अरिक्त है।


== इतिहास ==
== इतिहास ==
Line 37: Line 32:
उत्तल कार्यों पर उपविभेदक की प्रारंभ 1960 के दशक की प्रारंभ में [[ जीन-जैक्स मोरो |जीन-जैक्स मोरो]] और आर. टायरेल रॉकफेलर द्वारा की गई थी। गैर-उत्तल कार्यों के लिए सामान्यीकृत उपविभेदक एफ.एच. क्लार्क और आर.टी. द्वारा प्रस्तुत किया गया था। 1980 के दशक की प्रारंभ में रॉकफेलर आया था।<ref>
उत्तल कार्यों पर उपविभेदक की प्रारंभ 1960 के दशक की प्रारंभ में [[ जीन-जैक्स मोरो |जीन-जैक्स मोरो]] और आर. टायरेल रॉकफेलर द्वारा की गई थी। गैर-उत्तल कार्यों के लिए सामान्यीकृत उपविभेदक एफ.एच. क्लार्क और आर.टी. द्वारा प्रस्तुत किया गया था। 1980 के दशक की प्रारंभ में रॉकफेलर आया था।<ref>
  {{cite book|last=Clarke|first=Frank H.|title=Optimization and nonsmooth analysis|url=https://archive.org/details/optimizationnons0000clar|url-access=registration|publisher=[[John Wiley & Sons]]|location=New York|year=1983|pages=xiii+308|isbn=0-471-87504-X|mr=0709590}}</ref>
  {{cite book|last=Clarke|first=Frank H.|title=Optimization and nonsmooth analysis|url=https://archive.org/details/optimizationnons0000clar|url-access=registration|publisher=[[John Wiley & Sons]]|location=New York|year=1983|pages=xiii+308|isbn=0-471-87504-X|mr=0709590}}</ref>
== यह भी देखें ==
== यह भी देखें ==
* [[कमजोर व्युत्पन्न|अशक्त व्युत्पन्न]]
* [[कमजोर व्युत्पन्न|अशक्त व्युत्पन्न]]
Line 49: Line 41:
* {{cite book |first1=Jean-Baptiste |last1=Hiriart-Urruty |first2=Claude |last2=Lemaréchal |author-link2=Claude Lemaréchal |title=Fundamentals of Convex Analysis |publisher=Springer |year=2001 |isbn=3-540-42205-6 }}
* {{cite book |first1=Jean-Baptiste |last1=Hiriart-Urruty |first2=Claude |last2=Lemaréchal |author-link2=Claude Lemaréchal |title=Fundamentals of Convex Analysis |publisher=Springer |year=2001 |isbn=3-540-42205-6 }}
* {{cite book|last=Zălinescu|first=C.|title=Convex analysis in general vector spaces|publisher=World Scientific Publishing&nbsp; Co.,&nbsp;Inc|year=2002|pages=xx+367|isbn=981-238-067-1|mr=1921556}}
* {{cite book|last=Zălinescu|first=C.|title=Convex analysis in general vector spaces|publisher=World Scientific Publishing&nbsp; Co.,&nbsp;Inc|year=2002|pages=xx+367|isbn=981-238-067-1|mr=1921556}}
== बाहरी संबंध                                                                                                                                                                                                                    ==
== बाहरी संबंध                                                                                                                                                                                                                    ==
*{{cite web |title=Uses of <math>\lim \limits_{h\to 0} \frac{f(x+h)-f(x-h)}{2h}</math> |date=September 18, 2011 |work=[[Stack Exchange]] |url=https://math.stackexchange.com/q/65569 }}
*{{cite web |title=Uses of <math>\lim \limits_{h\to 0} \frac{f(x+h)-f(x-h)}{2h}</math> |date=September 18, 2011 |work=[[Stack Exchange]] |url=https://math.stackexchange.com/q/65569 }}
[[Category: व्युत्पन्न का सामान्यीकरण]] [[Category: उत्तल अनुकूलन]] [[Category: विविधतापूर्ण विश्लेषण]]


[[Category: Machine Translated Page]]
[[Category:Created On 10/07/2023]]
[[Category:Created On 10/07/2023]]
[[Category:Lua-based templates]]
[[Category:Machine Translated Page]]
[[Category:Pages with script errors]]
[[Category:Short description with empty Wikidata description]]
[[Category:Templates Vigyan Ready]]
[[Category:Templates that add a tracking category]]
[[Category:Templates that generate short descriptions]]
[[Category:Templates using TemplateData]]
[[Category:उत्तल अनुकूलन]]
[[Category:विविधतापूर्ण विश्लेषण]]
[[Category:व्युत्पन्न का सामान्यीकरण]]

Latest revision as of 10:24, 4 August 2023

एक उत्तल फलन (नीला) और उपस्पर्शरेखा रेखाएँ (लाल)।

गणित में, सबयौगिक , सबग्रेडिएंट और सबडिफरेंशियल व्युत्पन्न को उत्तल फलन के लिए सामान्यीकृत करते हैं जो आवश्यक रूप से भिन्न कार्य नहीं होते हैं। उत्तल विश्लेषण में उप-व्युत्पन्न उत्पन्न होते हैं, उत्तल फलन का अध्ययन, अक्सर उत्तल अनुकूलन के संबंध में उपयोग किया जाता है।

माना वास्तविक रेखा के संवृत अंतराल पर परिभाषित वास्तविक संख्या-मूल्यवान उत्तल फलन बनें थे। ऐसे फलन को सभी बिंदुओं पर भिन्न होने की आवश्यकता नहीं है: उदाहरण के लिए, निरपेक्ष मान फलन जब यह गैर-विभेदित होता है चूँकि, जैसा कि दाईं ओर के ग्राफ़ में देखा गया है (जहाँ नीले रंग में निरपेक्ष मान फलन के समान गैर-विभेदित किंक हैं), किसी के लिए फलन के डोमेन में कोई रेखा खींच सकता है जो बिंदु से होकर जाती है और जो प्रत्येक समिष्ट या तो एफ के ग्राफ को छू रहा है या नीचे है। ऐसी रेखा की स्लोप को उप-व्युत्पन्न कहा जाता है।

परिभाषा

कठोरता से, उत्तल फलन का उपव्युत्पन्न बिंदु पर संवृत अंतराल में वास्तविक संख्या है ऐसा है कि

सभी के लिए . माध्य मान प्रमेय के व्युत्क्रम द्वारा, उपअवकलजों का समुच्चय (गणित) उत्तल फलन के लिए खाली समुच्चय विवृत अंतराल है , जहाँ और एकतरफ़ा सीमाएँ हैं
समुच्चय सभी उपअवकलन को फलन पर , द्वारा चिह्नित का उपविभेदक कहा जाता है. यदि उत्तल है, तो किसी भी बिंदु पर इसका उपविभेदक गैर-रिक्त है। इसके अतिरिक्त, यदि यह उपविभेदक है इसमें बिल्कुल उप-व्युत्पन्न सम्मिलित है इस प्रकार और पर भिन्न है [1]

उदाहरण

फलन पर विचार करें जो उत्तल है. फिर मूल पर उपविभेदक अंतराल है . किसी भी बिंदु पर उपविभेदक सिंगलटन समुच्चय है , जबकि किसी भी बिंदु पर उपविभेदक सिंगलटन समुच्चय है यह साइन फलन के समान है, किन्तु एकल-मूल्यवान नहीं है , इसके अतिरिक्त सभी संभावित उप-व्युत्पन्न सम्मिलित हैं।

गुण

  • एक उत्तल कार्य पर भिन्न है यदि और केवल यदि उपविभेदक सिंगलटन समुच्चय है, जो है .
  • एक बिंदु उत्तल फलन का वैश्विक न्यूनतम है यदि और केवल यदि शून्य उपविभेदक में निहित है। उदाहरण के लिए, उपरोक्त चित्र में, कोई ग्राफ़ के लिए क्षैतिज उपस्पर्शरेखा पर रेखा खींच सकता है यह अंतिम गुण इस तथ्य का सामान्यीकरण है कि समिष्टीय न्यूनतम पर अवकलनीय फलन का व्युत्पन्न शून्य है।
  • यदि और उपविभेदकों के साथ उत्तल फलन हैं इस प्रकार और साथ कार्यों में से किसी का आंतरिक बिंदु होते है, फिर उपविभेदक है (जहां अतिरिक्त ऑपरेटर मिन्कोव्स्की योग को दर्शाता है)। इसे इस प्रकार पढ़ा जाता है कि किसी योग का उपअंतर, उपविभेदकों का योग होता है।[2]

उपग्रेडिएंट

उप-व्युत्पन्न और उप-अंतर की अवधारणाओं को कई चर के कार्यों के लिए सामान्यीकृत किया जा सकता है। यदि यूक्लिडियन समिष्ट में उत्तल समुच्चय खुला समुच्चय पर परिभाषित वास्तविक-मूल्यवान उत्तल फलन है , वेक्टर उस समिष्ट को उपग्रेडिएंट कहा जाता है यदि किसी के लिए के पास वह है

जहां डॉट डॉट उत्पाद को दर्शाता है। सभी उपग्रेडिएंट्स का समुच्चय x0 पर उपविभेदक कहा जाता है और द्वारा दर्शाया गया है . उपविभेदक सदैव गैर-रिक्त उत्तल कॉम्पैक्ट समुच्चय होता है।

ये अवधारणाएँ उत्तल कार्यों को और अधिक सामान्यीकृत करती हैं समिष्टीय रूप से उत्तल समिष्ट में उत्तल समुच्चय पर . कार्यात्मक दोहरे समिष्ट में को उपग्रेडिएंट कहा जाता है यदि सभी के लिए ,

सभी उपग्रेडिएंट्स का समुच्चय पर उपविभेदक कहा जाता है और फिर से दर्शाया गया है . उपविभेदक सदैव उत्तल विवृत समुच्चय होता है। यह खाली समुच्चय हो सकता है; उदाहरण के लिए अनबाउंड ऑपरेटर पर विचार करें, जो उत्तल है, किन्तु उसका कोई सबग्रेडिएंट नहीं है। यदि सतत है, उपविभेदक अरिक्त है।

इतिहास

उत्तल कार्यों पर उपविभेदक की प्रारंभ 1960 के दशक की प्रारंभ में जीन-जैक्स मोरो और आर. टायरेल रॉकफेलर द्वारा की गई थी। गैर-उत्तल कार्यों के लिए सामान्यीकृत उपविभेदक एफ.एच. क्लार्क और आर.टी. द्वारा प्रस्तुत किया गया था। 1980 के दशक की प्रारंभ में रॉकफेलर आया था।[3]

यह भी देखें

संदर्भ

  1. Rockafellar, R. T. (1970). उत्तल विश्लेषण. Princeton University Press. p. 242 [Theorem 25.1]. ISBN 0-691-08069-0.
  2. Lemaréchal, Claude; Hiriart-Urruty, Jean-Baptiste (2001). उत्तल विश्लेषण के मूल सिद्धांत. Springer-Verlag Berlin Heidelberg. p. 183. ISBN 978-3-642-56468-0.
  3. Clarke, Frank H. (1983). Optimization and nonsmooth analysis. New York: John Wiley & Sons. pp. xiii+308. ISBN 0-471-87504-X. MR 0709590.
  • Borwein, Jonathan; Lewis, Adrian S. (2010). Convex Analysis and Nonlinear Optimization : Theory and Examples (2nd ed.). New York: Springer. ISBN 978-0-387-31256-9.
  • Hiriart-Urruty, Jean-Baptiste; Lemaréchal, Claude (2001). Fundamentals of Convex Analysis. Springer. ISBN 3-540-42205-6.
  • Zălinescu, C. (2002). Convex analysis in general vector spaces. World Scientific Publishing  Co., Inc. pp. xx+367. ISBN 981-238-067-1. MR 1921556.

बाहरी संबंध