अल्ट्राप्रोडक्ट: Difference between revisions
No edit summary |
No edit summary |
||
Line 2: | Line 2: | ||
'''अल्ट्राप्रोडक्ट''' गणित निर्माण है, जो मुख्य रूप से [[अमूर्त बीजगणित]] और [[गणितीय तर्क]], विशेष रूप से [[मॉडल सिद्धांत]] और समुच्चय सिद्धांत में में दिखाई देता है। अल्ट्राप्रोडक्ट [[संरचना (गणितीय तर्क)]] के समुदाय के [[प्रत्यक्ष उत्पाद]] का भागफल है। सभी कारकों पर समान [[हस्ताक्षर (तर्क)]] होना आवश्यक है। अल्ट्रापॉवर इस निर्माण का विशेष विषय है जिसमें सभी कारक समान हैं। | '''अल्ट्राप्रोडक्ट''' गणित निर्माण है, जो मुख्य रूप से [[अमूर्त बीजगणित]] और [[गणितीय तर्क]], विशेष रूप से [[मॉडल सिद्धांत]] और समुच्चय सिद्धांत में में दिखाई देता है। अल्ट्राप्रोडक्ट [[संरचना (गणितीय तर्क)]] के समुदाय के [[प्रत्यक्ष उत्पाद]] का भागफल है। सभी कारकों पर समान [[हस्ताक्षर (तर्क)]] होना आवश्यक है। अल्ट्रापॉवर इस निर्माण का विशेष विषय है जिसमें सभी कारक समान हैं। | ||
उदाहरण के लिए, दिए गए क्षेत्रों से नए क्षेत्र (गणित) का निर्माण करने के लिए अल्ट्रापावर का उपयोग किया जा सकता है। | उदाहरण के लिए, दिए गए क्षेत्रों से नए क्षेत्र (गणित) का निर्माण करने के लिए अल्ट्रापावर का उपयोग किया जा सकता है। [[वास्तविक संख्या|अतिवास्तविक संख्याएँ]], वास्तविक संख्याओं की अतिशक्ति, इसका विशेष विषय है। | ||
अल्ट्राप्रोडक्ट्स के कुछ उल्लेखनीय अनुप्रयोगों में [[सघनता प्रमेय]] और [[पूर्णता प्रमेय]] के | अल्ट्राप्रोडक्ट्स के कुछ उल्लेखनीय अनुप्रयोगों में [[सघनता प्रमेय]] और [[पूर्णता प्रमेय]] के अधिक सुंदर प्रमाण सम्मिलित हैं, एच. जेरोम केसलर का अल्ट्रापॉवर प्रमेय, जो प्राथमिक तुल्यता की अर्थ संबंधी धारणा का बीजगणितीय लक्षण वर्णन देता है, और विश्लेषण के गैर-मानक मॉडल बनाने के लिए सुपरस्ट्रक्चर और उनके मोनोमोर्फिज्म के उपयोग की रॉबिन्सन-ज़ैकोन प्रस्तुति, जिससे गैर-मानक विश्लेषण के क्षेत्र में वृद्धि हुई, जिसकी शुरुआत [[अब्राहम रॉबिन्सन]] द्वारा ने की थी (कॉम्पैक्टनेस के अनुप्रयोग के रूप में)। | ||
==परिभाषा== | ==परिभाषा== | ||
Line 21: | Line 21: | ||
यद्यपि <math>\mathcal{U}</math> यह माना गया था कि यह अल्ट्राफिल्टर है, उपरोक्त निर्माण अधिक सामान्यतः कभी भी किया जा सकता है <math>\mathcal{U}</math> केवल [[फ़िल्टर (सेट सिद्धांत)|फ़िल्टर (समुच्चय सिद्धांत)]] पर है <math>I,</math> किस स्थिति में परिणामी भागफल समुच्चय होता है <math>{\textstyle\prod\limits_{i \in I}} M_i / \, \mathcal{U}</math> ए कहा जाता है{{visible anchor|reduced product}}. | यद्यपि <math>\mathcal{U}</math> यह माना गया था कि यह अल्ट्राफिल्टर है, उपरोक्त निर्माण अधिक सामान्यतः कभी भी किया जा सकता है <math>\mathcal{U}</math> केवल [[फ़िल्टर (सेट सिद्धांत)|फ़िल्टर (समुच्चय सिद्धांत)]] पर है <math>I,</math> किस स्थिति में परिणामी भागफल समुच्चय होता है <math>{\textstyle\prod\limits_{i \in I}} M_i / \, \mathcal{U}</math> ए कहा जाता है{{visible anchor|reduced product}}. | ||
कब <math>\mathcal{U}</math> [[प्रमुख अल्ट्राफिल्टर]] है (जो तब होता है जब और केवल यदि <math>\mathcal{U}</math> इसमें इसका [[कर्नेल (सेट सिद्धांत)|कर्नेल (समुच्चय सिद्धांत)]] | कब <math>\mathcal{U}</math> [[प्रमुख अल्ट्राफिल्टर]] है (जो तब होता है जब और केवल यदि <math>\mathcal{U}</math> इसमें इसका [[कर्नेल (सेट सिद्धांत)|कर्नेल (समुच्चय सिद्धांत)]] सम्मिलित है <math>\cap \, \mathcal{U}</math>) तो अल्ट्राप्रोडक्ट कारकों में से के लिए आइसोमोर्फिक है। | ||
और इसलिए आमतौर पर, <math>\mathcal{U}</math> प्रमुख अल्ट्राफ़िल्टर नहीं है, जो तब होता है जब और केवल यदि <math>\mathcal{U}</math> मुफ़्त है (मतलब) <math>\cap \, \mathcal{U} = \varnothing</math>), या समकक्ष, यदि प्रत्येक सह-परिमित उपसमुच्चय <math>I</math> का तत्व है <math>\mathcal{U}.</math> चूँकि परिमित समुच्चय पर प्रत्येक अल्ट्राफिल्टर प्रमुख होता है, सूचकांक समुच्चय होता है <math>I</math> फलस्वरूप आमतौर पर अनंत भी होता है। | और इसलिए आमतौर पर, <math>\mathcal{U}</math> प्रमुख अल्ट्राफ़िल्टर नहीं है, जो तब होता है जब और केवल यदि <math>\mathcal{U}</math> मुफ़्त है (मतलब) <math>\cap \, \mathcal{U} = \varnothing</math>), या समकक्ष, यदि प्रत्येक सह-परिमित उपसमुच्चय <math>I</math> का तत्व है <math>\mathcal{U}.</math> चूँकि परिमित समुच्चय पर प्रत्येक अल्ट्राफिल्टर प्रमुख होता है, सूचकांक समुच्चय होता है <math>I</math> फलस्वरूप आमतौर पर अनंत भी होता है। | ||
Line 59: | Line 59: | ||
===उदाहरण=== | ===उदाहरण=== | ||
होने देना <math>R</math> संरचना में ात्मक संबंध हो <math>M,</math> और की पराशक्ति का निर्माण करते हैं <math>M.</math> फिर समुच्चय <math>S = \{x \in M : R x\}</math> एनालॉग है <math>{}^* S</math> अल्ट्रापॉवर में, और प्रथम-क्रम फ़ार्मुलों में | होने देना <math>R</math> संरचना में ात्मक संबंध हो <math>M,</math> और की पराशक्ति का निर्माण करते हैं <math>M.</math> फिर समुच्चय <math>S = \{x \in M : R x\}</math> एनालॉग है <math>{}^* S</math> अल्ट्रापॉवर में, और प्रथम-क्रम फ़ार्मुलों में सम्मिलित हैं <math>S</math> के लिए भी मान्य हैं <math>{}^* S.</math> उदाहरण के लिए, चलो <math>M</math> असली बनो, और चलो <math>R x</math> अगर पकड़ो <math>x</math> परिमेय संख्या है. में फिर <math>M</math> हम ऐसा किसी भी तर्कसंगत जोड़ी के लिए कह सकते हैं <math>x</math> और <math>y,</math> वहाँ और संख्या मौजूद है <math>z</math> ऐसा है कि <math>z</math> तर्कसंगत नहीं है, और <math>x < z < y.</math> चूँकि इसे प्रासंगिक औपचारिक भाषा में प्रथम-क्रम तार्किक सूत्र में अनुवादित किया जा सकता है, Łoś के प्रमेय का तात्पर्य है कि <math>{}^* S</math> समान संपत्ति है. अर्थात्, हम हाइपररेशनल संख्याओं की धारणा को परिभाषित कर सकते हैं, जो हाइपररियल्स का उपसमूह हैं, और उनमें परिमेय के समान प्रथम-क्रम गुण होते हैं। | ||
हालाँकि, वास्तविक की आर्किमिडीयन संपत्ति पर विचार करें, जो बताती है कि कोई वास्तविक संख्या नहीं है <math>x</math> ऐसा है कि <math>x > 1, \; x > 1 + 1, \; x > 1 + 1 + 1, \ldots</math> अनंत सूची में प्रत्येक असमानता के लिए। Łoś का प्रमेय आर्किमिडीज़ संपत्ति पर लागू नहीं होता है, क्योंकि आर्किमिडीज़ संपत्ति को प्रथम-क्रम तर्क में नहीं बताया जा सकता है। वास्तव में, आर्किमिडीज़ संपत्ति हाइपररियल के लिए गलत है, जैसा कि हाइपररियल संख्या के निर्माण से पता चलता है <math>\omega</math> ऊपर। | हालाँकि, वास्तविक की आर्किमिडीयन संपत्ति पर विचार करें, जो बताती है कि कोई वास्तविक संख्या नहीं है <math>x</math> ऐसा है कि <math>x > 1, \; x > 1 + 1, \; x > 1 + 1 + 1, \ldots</math> अनंत सूची में प्रत्येक असमानता के लिए। Łoś का प्रमेय आर्किमिडीज़ संपत्ति पर लागू नहीं होता है, क्योंकि आर्किमिडीज़ संपत्ति को प्रथम-क्रम तर्क में नहीं बताया जा सकता है। वास्तव में, आर्किमिडीज़ संपत्ति हाइपररियल के लिए गलत है, जैसा कि हाइपररियल संख्या के निर्माण से पता चलता है <math>\omega</math> ऊपर। | ||
Line 72: | Line 72: | ||
==अल्ट्राप्रोडक्ट मोनड== | ==अल्ट्राप्रोडक्ट मोनड== | ||
[[अल्ट्राफिल्टर मोनाड]] [[फिनसेट|फिनसमुच्चय]] को [[सेट की श्रेणी|समुच्चय की श्रेणी]] में | [[अल्ट्राफिल्टर मोनाड]] [[फिनसेट|फिनसमुच्चय]] को [[सेट की श्रेणी|समुच्चय की श्रेणी]] में सम्मिलित करने का [[कोडेन्सिटी मोनाड]] है।<ref name="Leinster2013">{{cite journal|last=Leinster|first=Tom|year=2013|title=कोडेन्सिटी और अल्ट्राफिल्टर मोनैड|journal=Theory and Applications of Categories|volume=28|pages=332–370|bibcode=2012arXiv1209.3606L|arxiv=1209.3606|url=http://www.tac.mta.ca/tac/volumes/28/13/28-13.pdf}}</ref> इसी प्रकार, {{visible anchor|Ultraproduct monad|text=ultraproduct monad}} श्रेणी के समावेशन का कोडेन्सिटी मोनड है <math>\mathbf{FinFam}</math> [[अनुक्रमित परिवार|अनुक्रमित समुदाय]] के|श्रेणी में समुच्चय के अंतिम रूप से अनुक्रमित समुदाय <math>\mathbf{Fam}</math> समुच्चय के सभी अनुक्रमित समुदाय समुदायों में से। तो इस अर्थ में, अल्ट्राप्रोडक्ट्स स्पष्ट रूप से अपरिहार्य हैं।<ref name="Leinster2013">{{cite journal|last=Leinster|first=Tom|year=2013|title=कोडेन्सिटी और अल्ट्राफिल्टर मोनैड|journal=Theory and Applications of Categories|volume=28|pages=332–370|bibcode=2012arXiv1209.3606L|arxiv=1209.3606|url=http://www.tac.mta.ca/tac/volumes/28/13/28-13.pdf}}</ref> स्पष्ट रूप से, की वस्तु <math>\mathbf{Fam}</math> इसमें गैर-रिक्त [[सूचकांक सेट|सूचकांक समुच्चय]] सम्मिलित है <math>I</math> और अनुक्रमित समुदाय <math>\left(M_i\right)_{i \in I}</math> समुच्चय का. | ||
रूपवाद <math>\left(N_i\right)_{j \in J} \to \left(M_i\right)_{i \in I}</math> दो वस्तुओं के बीच फ़ंक्शन होता है <math>\phi : I \to J</math> सूचकांक समुच्चय और ए के बीच <math>J</math>-अनुक्रमित समुदाय <math>\left(\phi_j\right)_{j \in J}</math> समारोह का <math>\phi_j : M_{\phi(j)} \to N_j.</math> श्रेणी <math>\mathbf{FinFam}</math> की इस श्रेणी की पूर्ण उपश्रेणी है <math>\mathbf{Fam}</math> सभी वस्तुओं से मिलकर बना हुआ <math>\left(M_i\right)_{i \in I}</math> जिसका सूचकांक समुच्चय है <math>I</math> परिमित है. | रूपवाद <math>\left(N_i\right)_{j \in J} \to \left(M_i\right)_{i \in I}</math> दो वस्तुओं के बीच फ़ंक्शन होता है <math>\phi : I \to J</math> सूचकांक समुच्चय और ए के बीच <math>J</math>-अनुक्रमित समुदाय <math>\left(\phi_j\right)_{j \in J}</math> समारोह का <math>\phi_j : M_{\phi(j)} \to N_j.</math> श्रेणी <math>\mathbf{FinFam}</math> की इस श्रेणी की पूर्ण उपश्रेणी है <math>\mathbf{Fam}</math> सभी वस्तुओं से मिलकर बना हुआ <math>\left(M_i\right)_{i \in I}</math> जिसका सूचकांक समुच्चय है <math>I</math> परिमित है. | ||
समावेशन मानचित्र का कोडेन्सिटी मोनैड <math>\mathbf{FinFam} \hookrightarrow \mathbf{Fam}</math> तब, संक्षेप में, द्वारा दिया जाता है | समावेशन मानचित्र का कोडेन्सिटी मोनैड <math>\mathbf{FinFam} \hookrightarrow \mathbf{Fam}</math> तब, संक्षेप में, द्वारा दिया जाता है |
Revision as of 18:11, 3 August 2023
अल्ट्राप्रोडक्ट गणित निर्माण है, जो मुख्य रूप से अमूर्त बीजगणित और गणितीय तर्क, विशेष रूप से मॉडल सिद्धांत और समुच्चय सिद्धांत में में दिखाई देता है। अल्ट्राप्रोडक्ट संरचना (गणितीय तर्क) के समुदाय के प्रत्यक्ष उत्पाद का भागफल है। सभी कारकों पर समान हस्ताक्षर (तर्क) होना आवश्यक है। अल्ट्रापॉवर इस निर्माण का विशेष विषय है जिसमें सभी कारक समान हैं।
उदाहरण के लिए, दिए गए क्षेत्रों से नए क्षेत्र (गणित) का निर्माण करने के लिए अल्ट्रापावर का उपयोग किया जा सकता है। अतिवास्तविक संख्याएँ, वास्तविक संख्याओं की अतिशक्ति, इसका विशेष विषय है।
अल्ट्राप्रोडक्ट्स के कुछ उल्लेखनीय अनुप्रयोगों में सघनता प्रमेय और पूर्णता प्रमेय के अधिक सुंदर प्रमाण सम्मिलित हैं, एच. जेरोम केसलर का अल्ट्रापॉवर प्रमेय, जो प्राथमिक तुल्यता की अर्थ संबंधी धारणा का बीजगणितीय लक्षण वर्णन देता है, और विश्लेषण के गैर-मानक मॉडल बनाने के लिए सुपरस्ट्रक्चर और उनके मोनोमोर्फिज्म के उपयोग की रॉबिन्सन-ज़ैकोन प्रस्तुति, जिससे गैर-मानक विश्लेषण के क्षेत्र में वृद्धि हुई, जिसकी शुरुआत अब्राहम रॉबिन्सन द्वारा ने की थी (कॉम्पैक्टनेस के अनुप्रयोग के रूप में)।
परिभाषा
अल्ट्राप्रोडक्ट्स प्राप्त करने की सामान्य विधि इंडेक्स समुच्चय का उपयोग करती है संरचना (गणितीय तर्क) (इस आलेख में गैर-रिक्त माना गया है) प्रत्येक तत्व के लिए (सभी ही हस्ताक्षर (तर्क)), और अल्ट्राफिल्टर (समुच्चय सिद्धांत) पर किन्हीं दो तत्वों के लिए और कार्टेशियन उत्पाद का
उन्हें घोषित करें -equivalent, लिखा हुआ या यदि और केवल यदि सूचकांकों का समुच्चय जिस पर वे सहमत हैं वह तत्व है प्रतीकों में,
ultraproduct of modulo }h> का भागफल समुच्चय है इसके संबंध में और इसलिए कभी-कभी इसे निरूपित किया जाता है
या स्पष्ट रूप से, यदि -किसी तत्व का समतुल्य वर्ग द्वारा निरूपित किया जाता है
कब प्रमुख अल्ट्राफिल्टर है (जो तब होता है जब और केवल यदि इसमें इसका कर्नेल (समुच्चय सिद्धांत) सम्मिलित है ) तो अल्ट्राप्रोडक्ट कारकों में से के लिए आइसोमोर्फिक है। और इसलिए आमतौर पर, प्रमुख अल्ट्राफ़िल्टर नहीं है, जो तब होता है जब और केवल यदि मुफ़्त है (मतलब) ), या समकक्ष, यदि प्रत्येक सह-परिमित उपसमुच्चय का तत्व है चूँकि परिमित समुच्चय पर प्रत्येक अल्ट्राफिल्टर प्रमुख होता है, सूचकांक समुच्चय होता है फलस्वरूप आमतौर पर अनंत भी होता है।
अल्ट्राप्रोडक्ट फिल्टर उत्पाद स्थान के रूप में कार्य करता है जहां तत्व समान होते हैं यदि वे केवल फ़िल्टर किए गए घटकों पर समान होते हैं (गैर-फ़िल्टर किए गए घटकों को समतुल्यता के तहत अनदेखा किया जाता है)। कोई परिमित योगात्मक माप (गणित) को परिभाषित कर सकता है सूचकांक समुच्चय पर कहने से अगर और अन्यथा। तब कार्टेशियन उत्पाद के दो सदस्य सटीक रूप से समतुल्य हैं यदि वे सूचकांक समुच्चय पर लगभग हर जगह समान हैं। अल्ट्राप्रोडक्ट इस प्रकार उत्पन्न समतुल्य वर्गों का समूह है।
कार्टेशियन उत्पाद पर वित्तीय संचालन (गणित)। बिंदुवार परिभाषित किया गया है (उदाहरण के लिए, यदि तो यह बाइनरी फ़ंक्शन है ). अन्य संबंध (गणित) को इसी तरह बढ़ाया जा सकता है:
अल्ट्रापावर
अल्ट्रापॉवर अल्ट्राप्रोडक्ट है जिसके लिए सभी कारक हैं बराबर हैं। स्पष्ट रूप से, ultrapower of a set modulo अल्ट्राप्रोडक्ट है अनुक्रमित समुदाय का द्वारा परिभाषित प्रत्येक सूचकांक के लिए अतिशक्ति को इसके द्वारा निरूपित किया जा सकता है या (तब से) प्रायः द्वारा दर्शाया जाता है ) द्वारा
natural embedding of into }h> नक्शा है वह तत्व भेजता है तक -निरंतर टुपल का समतुल्य वर्ग
उदाहरण
हाइपररियल संख्याएं प्रत्येक प्राकृतिक संख्या के लिए वास्तविक संख्याओं की प्रति का अल्ट्राप्रोडक्ट हैं, सभी सह-परिमित समुच्चयों वाली प्राकृतिक संख्याओं पर अल्ट्राफिल्टर के संबंध में। उनका क्रम वास्तविक संख्याओं के क्रम का विस्तार है। उदाहरण के लिए, अनुक्रम द्वारा दिए गए समतुल्य वर्ग को परिभाषित करता है जो अतिवास्तविक संख्या का प्रतिनिधित्व करता है जो किसी भी वास्तविक संख्या से अधिक है।
अनुरूप रूप से, कोई संबंधित संरचनाओं की प्रतियों के अल्ट्राप्रोडक्ट को लेकर गैरमानक पूर्णांक, गैरमानक जटिल संख्याओं आदि को परिभाषित कर सकता है।
संबंधों को अल्ट्राप्रोडक्ट में ले जाने के उदाहरण के रूप में, अनुक्रम पर विचार करें द्वारा परिभाषित क्योंकि सभी के लिए यह इस प्रकार है कि तुल्यता वर्ग के तुल्यता वर्ग से बड़ा है ताकि इसकी व्याख्या अनंत संख्या के रूप में की जा सके जो मूल रूप से निर्मित संख्या से बड़ी है। हालाँकि, चलो के लिए असमान लेकिन जिस पर सूचकांकों का समुच्चय और सहमत किसी भी अल्ट्राफिल्टर का सदस्य है (क्योंकि और लगभग हर जगह सहमत), तो और ही समतुल्य वर्ग से संबंधित हैं।
बड़े कार्डिनल्स के सिद्धांत में, मानक निर्माण कुछ सावधानीपूर्वक चुने गए अल्ट्राफिल्टर के संबंध में पूरे समुच्चय-सैद्धांतिक ब्रह्मांड के अल्ट्राप्रोडक्ट को लेना है इस अल्ट्राफिल्टर के गुण अल्ट्राप्रोडक्ट के गुणों (उच्च क्रम) पर मजबूत प्रभाव पड़ता है; उदाहरण के लिए, यदि है -पूर्ण, तो अल्ट्राप्रोडक्ट फिर से अच्छी तरह से स्थापित हो जाएगा। (प्रोटोटाइपिकल उदाहरण के लिए मापने योग्य कार्डिनल देखें।)
मूस प्रमेय
मूस प्रमेय भी कहा जाता है the fundamental theorem of ultraproducts, जेरज़ी लोश के कारण है (उपनाम का उच्चारण किया जाता है [ˈwɔɕ], लगभग धो लें ). इसमें कहा गया है कि कोई भी प्रथम-क्रम विधेय कलन | प्रथम-क्रम सूत्र अल्ट्राप्रोडक्ट में सत्य है यदि और केवल यदि सूचकांकों का समुच्चय जैसे कि सूत्र सत्य है का सदस्य है ज्यादा ठीक:
होने देना हस्ताक्षर बनो, समुच्चय पर अल्ट्राफिल्टर और प्रत्येक के लिए होने देना हो -संरचना। होने देना या का अल्ट्राप्रोडक्ट बनें इसके संबंध में फिर, प्रत्येक के लिए कहाँ और हर किसी के लिए -सूत्र
उदाहरण
होने देना संरचना में ात्मक संबंध हो और की पराशक्ति का निर्माण करते हैं फिर समुच्चय एनालॉग है अल्ट्रापॉवर में, और प्रथम-क्रम फ़ार्मुलों में सम्मिलित हैं के लिए भी मान्य हैं उदाहरण के लिए, चलो असली बनो, और चलो अगर पकड़ो परिमेय संख्या है. में फिर हम ऐसा किसी भी तर्कसंगत जोड़ी के लिए कह सकते हैं और वहाँ और संख्या मौजूद है ऐसा है कि तर्कसंगत नहीं है, और चूँकि इसे प्रासंगिक औपचारिक भाषा में प्रथम-क्रम तार्किक सूत्र में अनुवादित किया जा सकता है, Łoś के प्रमेय का तात्पर्य है कि समान संपत्ति है. अर्थात्, हम हाइपररेशनल संख्याओं की धारणा को परिभाषित कर सकते हैं, जो हाइपररियल्स का उपसमूह हैं, और उनमें परिमेय के समान प्रथम-क्रम गुण होते हैं।
हालाँकि, वास्तविक की आर्किमिडीयन संपत्ति पर विचार करें, जो बताती है कि कोई वास्तविक संख्या नहीं है ऐसा है कि अनंत सूची में प्रत्येक असमानता के लिए। Łoś का प्रमेय आर्किमिडीज़ संपत्ति पर लागू नहीं होता है, क्योंकि आर्किमिडीज़ संपत्ति को प्रथम-क्रम तर्क में नहीं बताया जा सकता है। वास्तव में, आर्किमिडीज़ संपत्ति हाइपररियल के लिए गलत है, जैसा कि हाइपररियल संख्या के निर्माण से पता चलता है ऊपर।
अतिशक्तियों की प्रत्यक्ष सीमाएँ (अल्ट्रालिमिट्स)
मॉडल सिद्धांत और समुच्चय सिद्धांत में, अल्ट्रापावर के अनुक्रम की प्रत्यक्ष सीमा पर अक्सर विचार किया जाता है। मॉडल सिद्धांत में, इस निर्माण को अल्ट्रालिमिट या सीमित अल्ट्रापॉवर के रूप में संदर्भित किया जा सकता है।
संरचना से शुरुआत करते हुए, और अल्ट्राफिल्टर, अतिशक्ति का निर्माण करें, फिर बनाने के लिए प्रक्रिया को दोहराएं इत्यादि। प्रत्येक के लिए विहित विकर्ण एम्बेडिंग है सीमा चरणों में, जैसे पहले के चरणों की प्रत्यक्ष सीमा बनाएं। कोई अनंत में जारी रह सकता है।
अल्ट्राप्रोडक्ट मोनड
अल्ट्राफिल्टर मोनाड फिनसमुच्चय को समुच्चय की श्रेणी में सम्मिलित करने का कोडेन्सिटी मोनाड है।[1] इसी प्रकार, ultraproduct monad श्रेणी के समावेशन का कोडेन्सिटी मोनड है अनुक्रमित समुदाय के|श्रेणी में समुच्चय के अंतिम रूप से अनुक्रमित समुदाय समुच्चय के सभी अनुक्रमित समुदाय समुदायों में से। तो इस अर्थ में, अल्ट्राप्रोडक्ट्स स्पष्ट रूप से अपरिहार्य हैं।[1] स्पष्ट रूप से, की वस्तु इसमें गैर-रिक्त सूचकांक समुच्चय सम्मिलित है और अनुक्रमित समुदाय समुच्चय का. रूपवाद दो वस्तुओं के बीच फ़ंक्शन होता है सूचकांक समुच्चय और ए के बीच -अनुक्रमित समुदाय समारोह का श्रेणी की इस श्रेणी की पूर्ण उपश्रेणी है सभी वस्तुओं से मिलकर बना हुआ जिसका सूचकांक समुच्चय है परिमित है. समावेशन मानचित्र का कोडेन्सिटी मोनैड तब, संक्षेप में, द्वारा दिया जाता है
यह भी देखें
टिप्पणियाँ
- ↑ 1.0 1.1 Leinster, Tom (2013). "कोडेन्सिटी और अल्ट्राफिल्टर मोनैड" (PDF). Theory and Applications of Categories. 28: 332–370. arXiv:1209.3606. Bibcode:2012arXiv1209.3606L.
Proofs
- ↑ Although is assumed to be an ultrafilter over this proof only requires that be a filter on Throughout, let and be elements of The relation always holds since is an element of filter Thus the reflexivity of follows from that of equality Similarly, is symmetric since equality is symmetric. For transitivity, assume that and are elements of it remains to show that also belongs to The transitivity of equality guarantees (since if then and ). Because is closed under binary intersections, Since is upward closed in it contains every superset of (that consists of indices); in particular, contains
संदर्भ
- Bell, John Lane; Slomson, Alan B. (2006) [1969]. Models and Ultraproducts: An Introduction (reprint of 1974 ed.). Dover Publications. ISBN 0-486-44979-3.
- Burris, Stanley N.; Sankappanavar, H.P. (2000) [1981]. A Course in Universal Algebra (Millennium ed.).