सदिश सॉलिटॉन: Difference between revisions

From Vigyanwiki
No edit summary
No edit summary
Line 1: Line 1:
[[भौतिक प्रकाशिकी]] या [[तरंग प्रकाशिकी]] में, वेक्टर [[सॉलिटन]] एकल तरंग होती है जिसमें कई घटक साथ जुड़े होते हैं जो प्रसार के दौरान अपना आकार बनाए रखते हैं। साधारण सॉलिटॉन अपना आकार बनाए रखते हैं लेकिन प्रभावी रूप से केवल (स्केलर) ध्रुवीकरण घटक होता है, जबकि वेक्टर सॉलिटॉन में दो अलग-अलग ध्रुवीकरण घटक होते हैं। सभी प्रकार के सॉलिटॉन के बीच, ऑप्टिकल वेक्टर सॉलिटॉन अपने व्यापक अनुप्रयोगों के कारण सबसे अधिक ध्यान आकर्षित करते हैं, विशेष रूप से अल्ट्राफास्ट पल्स और प्रकाश नियंत्रण प्रौद्योगिकी उत्पन्न करने में। ऑप्टिकल वेक्टर सॉलिटॉन को टेम्पोरल वेक्टर सॉलिटॉन और स्थानिक वेक्टर सॉलिटॉन में वर्गीकृत किया जा सकता है। टेम्पोरल सॉलिटॉन और स्थानिक सॉलिटॉन दोनों के प्रसार के दौरान, द्विअपवर्तन वाले माध्यम में होने के बावजूद, वेक्टर सॉलिटॉन के दो ध्रुवीकरणों के बीच मजबूत क्रॉस-चरण मॉड्यूलेशन और सुसंगत ऊर्जा विनिमय के कारण ऑर्थोगोनल ध्रुवीकरण बिना विभाजन के इकाई के रूप में सहप्रसारित हो सकता है जो इन दो ध्रुवीकरणों के बीच तीव्रता के अंतर को प्रेरित कर सकता है। इस प्रकार वेक्टर सॉलिटॉन अब रैखिक रूप से ध्रुवीकृत नहीं हैं, बल्कि अण्डाकार रूप से ध्रुवीकृत हैं।
[[भौतिक प्रकाशिकी]] या [[तरंग प्रकाशिकी]] में, '''सदिश [[सॉलिटन]]''' एकल तरंग होती है जिसमें कई अवयव साथ जुड़े होते हैं जो प्रसार के समय अपना आकार बनाए रखते हैं। साधारण सॉलिटॉन अपना आकार बनाए रखते हैं किन्तु प्रभावी रूप से केवल (स्केलर) ध्रुवीकरण अवयव होता है, जबकि सदिश सॉलिटॉन में दो अलग-अलग ध्रुवीकरण अवयव होते हैं। सभी प्रकार के सॉलिटॉन के मध्य, ऑप्टिकल सदिश सॉलिटॉन अपने व्यापक अनुप्रयोगों के कारण सबसे अधिक ध्यान आकर्षित करते हैं, विशेष रूप से अल्ट्राफास्ट पल्स और प्रकाश नियंत्रण प्रौद्योगिकी उत्पन्न करने में ऑप्टिकल सदिश सॉलिटॉन को टेम्पोरल सदिश सॉलिटॉन और स्थानिक सदिश सॉलिटॉन में वर्गीकृत किया जा सकता है। टेम्पोरल सॉलिटॉन और स्थानिक सॉलिटॉन दोनों के प्रसार के समय, द्विअपवर्तन वाले माध्यम में होने के अतिरिक्त, सदिश सॉलिटॉन के दो ध्रुवीकरणों के मध्य सशक्त क्रॉस-फेज मॉड्यूलेशन और सुसंगत ऊर्जा विनिमय के कारण ऑर्थोगोनल ध्रुवीकरण बिना विभाजन के इकाई के रूप में सहप्रसारित हो सकता है जो इन दो ध्रुवीकरणों के मध्य तीव्रता के अंतर को प्रेरित कर सकता है। इस प्रकार सदिश सॉलिटॉन अब रैखिक रूप से ध्रुवीकृत नहीं हैं, किन्तु वृत्ताकार रूप से ध्रुवीकृत हैं।


==परिभाषा==
==परिभाषा==


सी.आर. मेन्युक ने सबसे पहले कमजोर द्विअपवर्तन के तहत एकल-मोड ऑप्टिकल फाइबर (एसएमएफ) में नॉनलाइनियर पल्स प्रसार समीकरण प्राप्त किया। फिर, मेन्युक ने वेक्टर सॉलिटॉन को ऑर्थोगोनल ध्रुवीकरण के साथ दो सॉलिटॉन (अधिक सटीक रूप से सॉलिटरी तरंगें कहा जाता है) के रूप में वर्णित किया, जो अपनी ऊर्जा को फैलाए बिना और अपने आकार को बनाए रखते हुए साथ सह-प्रचारित होते हैं। इन दो ध्रुवीकरणों के बीच गैर-रेखीय संपर्क के कारण, इन दो ध्रुवीकरण मोडों के बीच द्विअपवर्तन के अस्तित्व के बावजूद, वे अभी भी अपने समूह वेग को समायोजित कर सकते हैं और साथ फंस सकते हैं।<ref>C.R. Menyuk, ''Optics Letters'', 12, 614 (1987); J. Opt. Soc. Am. B 5, 392(1988);  "Nonlinear Pulse-Propagation in Birefringent Optical Fibers", IEEE J. Quantum Electron. QE-23, 174&ndash;176 (1987).</ref>
सी.आर. मेन्युक ने सबसे पहले अशक्त द्विअपवर्तन के अनुसार एकल-मोड ऑप्टिकल फाइबर (एसएमएफ) में नॉनलाइनियर पल्स प्रसार समीकरण प्राप्त किया था। फिर, मेन्युक ने सदिश सॉलिटॉन को ऑर्थोगोनल ध्रुवीकरण के साथ दो सॉलिटॉन (अधिक स्पष्ट रूप से सॉलिटरी तरंगें कहा जाता है) के रूप में वर्णित किया था, जो अपनी ऊर्जा को विस्तृत किए बिना और अपने आकार को बनाए रखते हुए एक साथ सह-प्रचारित होते हैं। इन दो ध्रुवीकरणों के मध्य गैर-रेखीय संपर्क के कारण, इन दो ध्रुवीकरण मोडों के मध्य द्विअपवर्तन के अस्तित्व के अतिरिक्त, वह अभी भी अपने समूह वेग को समायोजित कर सकते हैं और साथ फंस सकते हैं।<ref>C.R. Menyuk, ''Optics Letters'', 12, 614 (1987); J. Opt. Soc. Am. B 5, 392(1988);  "Nonlinear Pulse-Propagation in Birefringent Optical Fibers", IEEE J. Quantum Electron. QE-23, 174&ndash;176 (1987).</ref>
वेक्टर सॉलिटॉन स्थानिक या लौकिक हो सकते हैं, और एकल ऑप्टिकल क्षेत्र के दो ऑर्थोगोनली ध्रुवीकृत घटकों या विभिन्न आवृत्तियों के दो क्षेत्रों लेकिन ही ध्रुवीकरण से बनते हैं।
 
सदिश सॉलिटॉन स्थानिक या लौकिक हो सकते हैं, और एकल ऑप्टिकल क्षेत्र के दो ऑर्थोगोनली ध्रुवीकृत अवयवो या विभिन्न आवृत्तियों के दो क्षेत्रों किन्तु ही ध्रुवीकरण से बनते हैं।


==इतिहास==
==इतिहास==


1987 में मेन्युक ने पहली बार कमजोर द्विअपवर्तन के तहत एसएमएफ में नॉनलाइनियर पल्स प्रसार समीकरण प्राप्त किया। इस मौलिक समीकरण ने शोधकर्ताओं के लिए अदिश सॉलिटॉन का नया क्षेत्र खोल दिया। उनका समीकरण वेक्टर सॉलिटॉन के दो ऑर्थोगोनल ध्रुवीकरण घटकों के बीच नॉनलाइनियर इंटरैक्शन (क्रॉस-फ़ेज़ मॉड्यूलेशन और सुसंगत ऊर्जा विनिमय) से संबंधित है। शोधकर्ताओं ने कमजोर, मध्यम और यहां तक ​​कि मजबूत द्विअपवर्तन के तहत इस समीकरण के विश्लेषणात्मक और संख्यात्मक दोनों समाधान प्राप्त किए हैं।
1987 में मेन्युक ने पहली बार अशक्त द्विअपवर्तन के अनुसार एसएमएफ में नॉनलाइनियर पल्स प्रसार समीकरण प्राप्त किया था। इस मौलिक समीकरण ने शोधकर्ताओं के लिए अदिश सॉलिटॉन का नया क्षेत्र खोल दिया था। उनका समीकरण सदिश सॉलिटॉन के दो ऑर्थोगोनल ध्रुवीकरण अवयवो के मध्य नॉनलाइनियर इंटरैक्शन (क्रॉस-फ़ेज़ मॉड्यूलेशन और सुसंगत ऊर्जा विनिमय) से संबंधित है। शोधकर्ताओं ने अशक्त, मध्यम और यहां तक ​​कि सशक्त द्विअपवर्तन के अनुसार इस समीकरण के विश्लेषणात्मक और संख्यात्मक दोनों समाधान प्राप्त किए हैं।
 
1988 में क्रिस्टोडौलाइड्स और जोसेफ ने पहली बार सैद्धांतिक रूप से द्विअर्थी फैलाने वाले मीडिया में फेज-लॉक सदिश सॉलिटॉन के उपन्यास रूप की पूर्वानुमान किया था, जिसे अब एसएमएफ में उच्च-क्रम फेज-लॉक सदिश सॉलिटॉन के रूप में जाना जाता है। इसमें तुलनीय तीव्रता वाले दो ऑर्थोगोनल ध्रुवीकरण अवयव हैं। द्विअपवर्तन के अस्तित्व के अतिरिक्त, यह दोनों ध्रुवीकरण अपनी केंद्रीय आवृत्तियों को स्थानांतरित करते समय समान समूह वेग के साथ फैल सकते हैं।<ref>D.N. Christodoulides and R.I. Joseph, Opt. Lett., 13, 53(1988).</ref>
 
2000 में, कंडिफ़ और अखमेदिव ने पाया कि ये दो ध्रुवीकरण न केवल तथाकथित समूह-वेग-लॉक सदिश सॉलिटॉन किन्तु ध्रुवीकरण-लॉक सदिश सॉलिटॉन भी बना सकते हैं। उन्होंने बताया कि इन दोनों ध्रुवीकरणों की तीव्रता का अनुपात लगभग 0.25-1.00 हो सकता है।<ref>S.T. Cundiff et al., Phys. Rev. Lett., 82, 3988(1999); N.N. Akhmediev et al., Opt. Lett., 23, 852(1998); B.C. Collings et al., J. Opt. Soc. Am, B 17, 354(2000).</ref>


1988 में क्रिस्टोडौलाइड्स और जोसेफ ने पहली बार सैद्धांतिक रूप से द्विअर्थी फैलाने वाले मीडिया में चरण-लॉक वेक्टर सॉलिटॉन के उपन्यास रूप की भविष्यवाणी की थी, जिसे अब एसएमएफ में उच्च-क्रम चरण-लॉक वेक्टर सॉलिटॉन के रूप में जाना जाता है। इसमें तुलनीय तीव्रता वाले दो ऑर्थोगोनल ध्रुवीकरण घटक हैं। द्विअपवर्तन के अस्तित्व के बावजूद, ये दोनों ध्रुवीकरण अपनी केंद्रीय आवृत्तियों को स्थानांतरित करते समय समान समूह वेग के साथ फैल सकते हैं।<ref>D.N. Christodoulides and R.I. Joseph, Opt. Lett., 13, 53(1988).</ref>
चूँकि, वर्तमान में, अन्य प्रकार का सदिश सॉलिटॉन, प्रेरित सदिश सॉलिटॉन देखा गया है। ऐसा सदिश सॉलिटॉन इस मायने में नया है कि दो ऑर्थोगोनल ध्रुवीकरणों के मध्य तीव्रता का अंतर बहुत बड़ा (20 डीबी) है। ऐसा लगता है कि अशक्त ध्रुवीकरण सामान्यतः सदिश सॉलिटॉन का अवयव बनाने में असमर्थ होते हैं। चूँकि, सशक्त और अशक्त ध्रुवीकरण अवयवो के मध्य क्रॉस-ध्रुवीकरण मॉड्यूलेशन के कारण, अशक्त सॉलिटॉन भी बन सकता है। इस प्रकार यह दर्शाता है कि प्राप्त सॉलिटॉन रैखिक ध्रुवीकरण मोड के साथ स्केलर सॉलिटॉन नहीं है, किन्तु बड़े अण्डाकारता के साथ सदिश सॉलिटॉन है। यह सदिश सॉलिटॉन के सीमा का विस्तार करता है जिससे सदिश सॉलिटॉन के सशक्त और अशक्त अवयवो के मध्य तीव्रता का अनुपात 0.25-1.0 तक सीमित नही होते है, किन्तु अब 20 डीबी तक बढ़ सकता है।<ref>{{cite journal | author = Zhang H. | display-authors = etal | year = 2008 | title = एक द्विअपवर्तक गुहा फाइबर लेजर में क्रॉस ध्रुवीकरण युग्मन द्वारा निर्मित प्रेरित सॉलिटॉन| url = http://www.sciencenet.cn/upload/blog/file/2009/1/2009130111724898121.pdf | journal = Opt. Lett. | volume = 33 | issue =  20| pages = 2317–2319 | doi = 10.1364/ol.33.002317 | pmid = 18923608 | arxiv = 0910.5830 | bibcode = 2008OptL...33.2317Z | hdl = 10397/5644 | s2cid = 20930489 | access-date = 2011-07-07 | archive-url = https://web.archive.org/web/20110707051358/http://www.sciencenet.cn/upload/blog/file/2009/1/2009130111724898121.pdf | archive-date = 2011-07-07 | url-status = dead }}</ref>
2000 में, कंडिफ़ और अखमेदिव ने पाया कि ये दो ध्रुवीकरण न केवल तथाकथित समूह-वेग-लॉक वेक्टर सॉलिटॉन बल्कि ध्रुवीकरण-लॉक वेक्टर सॉलिटॉन भी बना सकते हैं। उन्होंने बताया कि इन दोनों ध्रुवीकरणों की तीव्रता का अनुपात लगभग 0.25-1.00 हो सकता है।<ref>S.T. Cundiff et al., Phys. Rev. Lett., 82, 3988(1999); N.N. Akhmediev et al., Opt. Lett., 23, 852(1998); B.C. Collings et al., J. Opt. Soc. Am, B 17, 354(2000).</ref>
 
हालाँकि, हाल ही में, अन्य प्रकार का वेक्टर सॉलिटॉन, प्रेरित वेक्टर सॉलिटॉन देखा गया है। ऐसा वेक्टर सॉलिटॉन इस मायने में नया है कि दो ऑर्थोगोनल ध्रुवीकरणों के बीच तीव्रता का अंतर बहुत बड़ा (20 डीबी) है। ऐसा लगता है कि कमजोर ध्रुवीकरण आमतौर पर वेक्टर सॉलिटॉन का घटक बनाने में असमर्थ होते हैं। हालाँकि, मजबूत और कमजोर ध्रुवीकरण घटकों के बीच क्रॉस-ध्रुवीकरण मॉड्यूलेशन के कारण, कमजोर सॉलिटॉन भी बन सकता है। इस प्रकार यह दर्शाता है कि प्राप्त सॉलिटॉन रैखिक ध्रुवीकरण मोड के साथ स्केलर सॉलिटॉन नहीं है, बल्कि बड़े अण्डाकारता के साथ वेक्टर सॉलिटॉन है। यह वेक्टर सॉलिटॉन के दायरे का विस्तार करता है ताकि वेक्टर सॉलिटॉन के मजबूत और कमजोर घटकों के बीच तीव्रता का अनुपात 0.25-1.0 तक सीमित न रहे, बल्कि अब 20 डीबी तक बढ़ सकता है।<ref>{{cite journal | author = Zhang H. | display-authors = etal | year = 2008 | title = एक द्विअपवर्तक गुहा फाइबर लेजर में क्रॉस ध्रुवीकरण युग्मन द्वारा निर्मित प्रेरित सॉलिटॉन| url = http://www.sciencenet.cn/upload/blog/file/2009/1/2009130111724898121.pdf | journal = Opt. Lett. | volume = 33 | issue =  20| pages = 2317–2319 | doi = 10.1364/ol.33.002317 | pmid = 18923608 | arxiv = 0910.5830 | bibcode = 2008OptL...33.2317Z | hdl = 10397/5644 | s2cid = 20930489 | access-date = 2011-07-07 | archive-url = https://web.archive.org/web/20110707051358/http://www.sciencenet.cn/upload/blog/file/2009/1/2009130111724898121.pdf | archive-date = 2011-07-07 | url-status = dead }}</ref>
क्रिस्टोडौलाइड्स और जोसेफ के क्लासिक कार्य पर आधारित,<ref>D.N. Christodoulides and R.I. Joseph, Opt. Lett., 13, 53(1988)</ref> जो एसएमएफ में उच्च-क्रम फेज-लॉक सदिश सॉलिटॉन से संबंधित है, स्थिर उच्च-क्रम फेज-लॉक सदिश सॉलिटॉन वर्तमान में फाइबर लेजर में बनाया गया है। इसकी विशेषता यह है कि न केवल दो ऑर्थोगोनली ध्रुवीकृत सॉलिटॉन अवयव फेज-लॉक होते हैं, किन्तु अवयवो में से में डबल-कूबड़ वाली तीव्रता प्रोफ़ाइल भी होती है।<ref name="www3.ntu.edu.sg">[http://www3.ntu.edu.sg/home2006/zhan0174/Observation%20of%20High-Order%20Polarization-Locked%20Vector%20Solitons%20in%20a%20Fiber%20Laser.pdf D.Y. Tang et al., "Observation of high-order polarization-locked vector solitons in a fiber laser"] {{Webarchive|url=https://web.archive.org/web/20100120024539/http://www3.ntu.edu.sg/home2006/zhan0174/Observation%20of%20High-Order%20Polarization-Locked%20Vector%20Solitons%20in%20a%20Fiber%20Laser.pdf |date=2010-01-20 }}, ''Physical Review Letters'', 101, 153904 (2008).</ref> निम्नलिखित चित्रों से पता चलता है कि, जब फाइबर बाइरफ्रिंजेंस को ध्यान में रखा जाता है, तो एकल नॉनलाइनियर श्रोडिंगर समीकरण (एनएलएसई) सॉलिटॉन गतिशीलता का वर्णन करने में विफल रहता है, किन्तु इसके अतिरिक्त दो युग्मित एनएलएसई की आवश्यकता होती है। फिर, दो ध्रुवीकरण मोड वाले सॉलिटॉन को संख्यात्मक रूप से प्राप्त किया जा सकता है।
क्रिस्टोडौलाइड्स और जोसेफ के क्लासिक काम पर आधारित,<ref>D.N. Christodoulides and R.I. Joseph, Opt. Lett., 13, 53(1988)</ref> जो एसएमएफ में उच्च-क्रम चरण-लॉक वेक्टर सॉलिटॉन से संबंधित है, स्थिर उच्च-क्रम चरण-लॉक वेक्टर सॉलिटॉन हाल ही में फाइबर लेजर में बनाया गया है। इसकी विशेषता यह है कि न केवल दो ऑर्थोगोनली ध्रुवीकृत सॉलिटॉन घटक चरण-लॉक होते हैं, बल्कि घटकों में से में डबल-कूबड़ वाली तीव्रता प्रोफ़ाइल भी होती है।<ref name="www3.ntu.edu.sg">[http://www3.ntu.edu.sg/home2006/zhan0174/Observation%20of%20High-Order%20Polarization-Locked%20Vector%20Solitons%20in%20a%20Fiber%20Laser.pdf D.Y. Tang et al., "Observation of high-order polarization-locked vector solitons in a fiber laser"] {{Webarchive|url=https://web.archive.org/web/20100120024539/http://www3.ntu.edu.sg/home2006/zhan0174/Observation%20of%20High-Order%20Polarization-Locked%20Vector%20Solitons%20in%20a%20Fiber%20Laser.pdf |date=2010-01-20 }}, ''Physical Review Letters'', 101, 153904 (2008).</ref>
निम्नलिखित चित्रों से पता चलता है कि, जब फाइबर बाइरफ्रिंजेंस को ध्यान में रखा जाता है, तो एकल नॉनलाइनियर श्रोडिंगर समीकरण (एनएलएसई) सॉलिटॉन गतिशीलता का वर्णन करने में विफल रहता है, लेकिन इसके बजाय दो युग्मित एनएलएसई की आवश्यकता होती है। फिर, दो ध्रुवीकरण मोड वाले सॉलिटॉन को संख्यात्मक रूप से प्राप्त किया जा सकता है।


[[Image:Vectorsoliton origin in 2009.jpg|500px|वेक्टर सॉलिटॉन क्यों उत्पन्न होते हैं?]]
[[Image:Vectorsoliton origin in 2009.jpg|500px|वेक्टर सॉलिटॉन क्यों उत्पन्न होते हैं?]]


==वेक्टर सोलिटॉन में एफडब्ल्यूएम वर्णक्रमीय साइडबैंड==
==सदिश सोलिटॉन में एफडब्ल्यूएम वर्णक्रमीय साइडबैंड==


वर्णक्रमीय साइडबैंड का नया पैटर्न पहली बार प्रयोगात्मक रूप से फाइबर लेजर के ध्रुवीकरण-बंद वेक्टर सॉलिटॉन के ध्रुवीकरण-समाधान सॉलिटॉन स्पेक्ट्रा पर देखा गया था। नए वर्णक्रमीय साइडबैंड की विशेषता इस तथ्य से है कि सॉलिटॉन के स्पेक्ट्रम पर उनकी स्थिति रैखिक गुहा द्विअर्थीता की ताकत के साथ बदलती रहती है, और जबकि ध्रुवीकरण घटक के साइडबैंड में वर्णक्रमीय शिखर होता है, ऑर्थोगोनल ध्रुवीकरण घटक में वर्णक्रमीय गिरावट होती है, जो वेक्टर सॉलिटॉन के दो ऑर्थोगोनल ध्रुवीकरण घटकों के बीच ऊर्जा विनिमय का संकेत देती है। संख्यात्मक सिमुलेशन ने यह भी पुष्टि की कि नए प्रकार के वर्णक्रमीय साइडबैंड का गठन दो ध्रुवीकरण घटकों के बीच एफडब्ल्यूएम के कारण हुआ था।<ref>H. Zhang et al., "Coherent energy exchange between components of a vector soliton in fiber lasers", ''Optics Express'', 16,12618&ndash;12623 (2008).</ref>
वर्णक्रमीय साइडबैंड का नया पैटर्न पहली बार प्रयोगात्मक रूप से फाइबर लेजर के ध्रुवीकरण-बंद सदिश सॉलिटॉन के ध्रुवीकरण-समाधान सॉलिटॉन स्पेक्ट्रा पर देखा गया था। नए वर्णक्रमीय साइडबैंड की विशेषता इस तथ्य से है कि सॉलिटॉन के स्पेक्ट्रम पर उनकी स्थिति रैखिक गुहा द्विअर्थीता की ताकत के साथ परिवर्तित होती रहती है, और जबकि ध्रुवीकरण अवयव के साइडबैंड में वर्णक्रमीय शिखर होता है, ऑर्थोगोनल ध्रुवीकरण अवयव में वर्णक्रमीय क्षय होती है, जो सदिश सॉलिटॉन के दो ऑर्थोगोनल ध्रुवीकरण अवयवो के मध्य ऊर्जा विनिमय का संकेत देती है। संख्यात्मक सिमुलेशन ने यह भी पुष्टि की कि नए प्रकार के वर्णक्रमीय साइडबैंड का गठन दो ध्रुवीकरण अवयवो के मध्य एफडब्ल्यूएम के कारण हुआ था।<ref>H. Zhang et al., "Coherent energy exchange between components of a vector soliton in fiber lasers", ''Optics Express'', 16,12618&ndash;12623 (2008).</ref>




==बाउंड वेक्टर सॉलिटॉन==
दो आसन्न वेक्टर सॉलिटॉन बाध्य अवस्था बना सकते हैं। स्केलर बाउंड सॉलिटॉन की तुलना में, इस सॉलिटॉन की ध्रुवीकरण स्थिति अधिक जटिल है। क्रॉस इंटरैक्शन के कारण, बाध्य वेक्टर सॉलिटॉन में स्केलर सॉलिटॉन के बीच मौजूद होने की तुलना में अधिक मजबूत इंटरैक्शन बल हो सकते हैं।<ref>{{cite journal | author = Sun Zhi-Yuan | display-authors = etal | year = 2009 | title = Bound vector solitons and soliton complexes for the coupled nonlinear Schrödinger equations | journal = Phys. Rev. E | volume = 80 | issue = 6| page = 066608 | doi=10.1103/physreve.80.066608| pmid = 20365295 | bibcode = 2009PhRvE..80f6608S}}</ref>


==बाउंड सदिश सॉलिटॉन==
दो आसन्न सदिश सॉलिटॉन बाध्य अवस्था बना सकते हैं। स्केलर बाउंड सॉलिटॉन की तुलना में, इस सॉलिटॉन की ध्रुवीकरण स्थिति अधिक काम्प्लेक्स है। क्रॉस इंटरैक्शन के कारण, बाध्य सदिश सॉलिटॉन में स्केलर सॉलिटॉन के मध्य उपस्थित होने की तुलना में अधिक सशक्त इंटरैक्शन बल हो सकते हैं।<ref>{{cite journal | author = Sun Zhi-Yuan | display-authors = etal | year = 2009 | title = Bound vector solitons and soliton complexes for the coupled nonlinear Schrödinger equations | journal = Phys. Rev. E | volume = 80 | issue = 6| page = 066608 | doi=10.1103/physreve.80.066608| pmid = 20365295 | bibcode = 2009PhRvE..80f6608S}}</ref>


==वेक्टर डार्क सॉलिटॉन==
डार्क सोलिटन्स<ref>P. Emplit et al., Opt. Commun. 62, 374 (1987).</ref> अधिक तीव्र निरंतर तरंग पृष्ठभूमि की तुलना में तीव्रता में स्थानीयकृत कमी से बनने की विशेषता है। स्केलर डार्क सॉलिटॉन (रैखिक रूप से ध्रुवीकृत डार्क सॉलिटॉन) सभी सामान्य फैलाव फाइबर लेजर में गैर-रेखीय ध्रुवीकरण रोटेशन विधि द्वारा मोड-लॉक किया जा सकता है और बल्कि स्थिर हो सकता है। वेक्टर डार्क सॉलिटॉन<ref>Y.S. Kivshar and S.K. Turitsyn, Opt. Lett. 18, 337 (1993); Y.S. Kivshar and B. Luther-Davies, Phys. Rep. 298, 81 (1998), and refs. therein.</ref> दो ध्रुवीकरण घटकों के बीच क्रॉस-इंटरैक्शन के कारण बहुत कम स्थिर हैं। इसलिए, यह जांच करना दिलचस्प है कि इन दो ध्रुवीकरण घटकों की ध्रुवीकरण स्थिति कैसे विकसित होती है।


2009 में, कैविटी में पोलराइज़र के साथ सभी सामान्य फैलाव वाले एरबियम-डोप्ड फाइबर लेजर में पहला डार्क सॉलिटॉन फाइबर लेजर सफलतापूर्वक प्राप्त किया गया है। प्रयोगात्मक रूप से पाया गया कि उज्ज्वल पल्स उत्सर्जन के अलावा, उचित परिस्थितियों में फाइबर लेजर एकल या एकाधिक डार्क पल्स भी उत्सर्जित कर सकता है। संख्यात्मक सिमुलेशन के आधार पर हम डार्क सॉलिटॉन आकार देने के परिणामस्वरूप लेजर में डार्क पल्स गठन की व्याख्या करते हैं।<ref>{{cite journal | author = Zhang Han | author2 = Tang Dingyuan | author3 = Zhao Luming | author4 = Xuan Wu | year = 2009 | title = फ़ाइबर लेज़र का डार्क पल्स उत्सर्जन| url = http://www3.ntu.edu.sg/home2006/ZHAN0174/pra.pdf | journal = Physical Review A | volume = 80 | issue =  4| page = 045803 | doi = 10.1103/physreva.80.045803 | arxiv = 0910.5799 | bibcode = 2009PhRvA..80d5803Z | s2cid = 118581850 | access-date = 2009-10-30 | archive-url = https://web.archive.org/web/20110717122857/http://www3.ntu.edu.sg/home2006/ZHAN0174/pra.pdf | archive-date = 2011-07-17 | url-status = dead }}</ref>
==सदिश डार्क सॉलिटॉन==
डार्क सोलिटन्स <ref>P. Emplit et al., Opt. Commun. 62, 374 (1987).</ref> अधिक तीव्र निरंतर तरंग पृष्ठभूमि की तुलना में तीव्रता में स्थानीयकृत कमी से बनने की विशेषता है। स्केलर डार्क सॉलिटॉन (रैखिक रूप से ध्रुवीकृत डार्क सॉलिटॉन) सभी सामान्य विस्तार फाइबर लेजर में गैर-रेखीय ध्रुवीकरण रोटेशन विधि द्वारा मोड-लॉक किया जा सकता है और किन्तु स्थिर हो सकता है। सदिश डार्क सॉलिटॉन <ref>Y.S. Kivshar and S.K. Turitsyn, Opt. Lett. 18, 337 (1993); Y.S. Kivshar and B. Luther-Davies, Phys. Rep. 298, 81 (1998), and refs. therein.</ref> दो ध्रुवीकरण अवयवो के मध्य क्रॉस-इंटरैक्शन के कारण बहुत कम स्थिर हैं। इसलिए, यह जांच करना रोचक है कि इन दो ध्रुवीकरण अवयवो की ध्रुवीकरण स्थिति कैसे विकसित होती है।


2009 में, कैविटी में पोलराइज़र के साथ सभी सामान्य विस्तार वाले एरबियम-डोप्ड फाइबर लेजर में पहला डार्क सॉलिटॉन फाइबर लेजर सफलतापूर्वक प्राप्त किया गया है। प्रयोगात्मक रूप से पाया गया कि उज्ज्वल पल्स उत्सर्जन के अतिरिक्त, उचित परिस्थितियों में फाइबर लेजर एकल या एकाधिक डार्क पल्स भी उत्सर्जित कर सकता है। संख्यात्मक सिमुलेशन के आधार पर हम डार्क सॉलिटॉन आकार देने के परिणामस्वरूप लेजर में डार्क पल्स गठन की व्याख्या करते हैं।<ref>{{cite journal | author = Zhang Han | author2 = Tang Dingyuan | author3 = Zhao Luming | author4 = Xuan Wu | year = 2009 | title = फ़ाइबर लेज़र का डार्क पल्स उत्सर्जन| url = http://www3.ntu.edu.sg/home2006/ZHAN0174/pra.pdf | journal = Physical Review A | volume = 80 | issue =  4| page = 045803 | doi = 10.1103/physreva.80.045803 | arxiv = 0910.5799 | bibcode = 2009PhRvA..80d5803Z | s2cid = 118581850 | access-date = 2009-10-30 | archive-url = https://web.archive.org/web/20110717122857/http://www3.ntu.edu.sg/home2006/ZHAN0174/pra.pdf | archive-date = 2011-07-17 | url-status = dead }}</ref>


==वेक्टर गहरा चमकीला सॉलिटॉन==


एक उज्ज्वल सॉलिटॉन को सतत तरंग (सीडब्ल्यू) पृष्ठभूमि के ऊपर स्थानीय तीव्रता शिखर के रूप में चित्रित किया जाता है, जबकि गहरे सॉलिटॉन को निरंतर तरंग (सीडब्ल्यू) पृष्ठभूमि के नीचे स्थानीयकृत तीव्रता डुबकी के रूप में चित्रित किया जाता है। वेक्टर डार्क ब्राइट सॉलिटॉन का मतलब है कि ध्रुवीकरण अवस्था ब्राइट सॉलिटॉन है जबकि दूसरा ध्रुवीकरण डार्क सॉलिटॉन है।<ref>Y.S. Kivshar, Opt. Lett. 17, 1322 (1992); V.V. Afanasyev et al., Opt. Lett. 14, 805 (1989).</ref> वेक्टर डार्क ब्राइट सॉलिटॉन को स्व-डिफोकसिंग माध्यम में असंगत रूप से युग्मित स्थानिक डीबीवीएस में और दो-प्रजाति के पदार्थ-तरंग डीबीवीएस में प्रतिकारक बिखरने वाले इंटरैक्शन के साथ सूचित किया गया है,<ref>{{cite journal | author = Christodoulides D.N. | display-authors = etal | year = 1996 | title = पक्षपाती फोटोरिफ़्रेक्टिव क्रिस्टल में असंगत रूप से युग्मित सॉलिटॉन जोड़े| journal = Appl. Phys. Lett. | volume = 68 | issue = 13| page = 1763 | doi=10.1063/1.116659| bibcode = 1996ApPhL..68.1763C| s2cid = 120162256 }}</ref><ref>{{cite journal | author = Chen Z. | display-authors = etal | year = 1996 | title =  Incoherently coupled dark–bright photorefractive solitons| journal = Opt. Lett. | volume = 21 | issue = 22| pages = 1821–1823 | doi=10.1364/ol.21.001821| pmid = 19881813 | bibcode = 1996OptL...21.1821C| citeseerx = 10.1.1.159.9273 }}</ref><ref>{{cite journal | author = Krolikowski W. | display-authors = etal | year = 1996 | title = फोटोरिफ़्रेक्टिव मीडिया में उज्ज्वल और गहरे वेक्टर सॉलिटॉन की मल्टीमोड संरचना| journal = Opt. Lett. | volume = 21 | issue = 11| pages = 782–4 | doi=10.1364/ol.21.000782| pmid = 19876157 | bibcode = 1996OptL...21..782K}}</ref> लेकिन ऑप्टिकल फाइबर के क्षेत्र में कभी सत्यापित नहीं किया गया।
==वेक्टर डार्क ब्राइट सॉलिटॉन==


==प्रेरित वेक्टर सॉलिटॉन==
एक उज्ज्वल सॉलिटॉन को सतत तरंग (सीडब्ल्यू) पृष्ठभूमि के ऊपर स्थानीय तीव्रता शिखर के रूप में चित्रित किया जाता है, जबकि डार्क सॉलिटॉन को निरंतर तरंग (सीडब्ल्यू) पृष्ठभूमि के नीचे स्थानीयकृत तीव्रता डुबकी के रूप में चित्रित किया जाता है। सदिश डार्क ब्राइट सॉलिटॉन का कारण है कि ध्रुवीकरण अवस्था ब्राइट सॉलिटॉन है जबकि दूसरा ध्रुवीकरण डार्क सॉलिटॉन है।<ref>Y.S. Kivshar, Opt. Lett. 17, 1322 (1992); V.V. Afanasyev et al., Opt. Lett. 14, 805 (1989).</ref> सदिश डार्क ब्राइट सॉलिटॉन को स्व-डिफोकसिंग माध्यम में असंगत रूप से युग्मित स्थानिक डीबीवीएस में और दो-प्रजाति के पदार्थ-तरंग डीबीवीएस में प्रतिकारक बिखरने वाले इंटरैक्शन के साथ सूचित किया गया है,<ref>{{cite journal | author = Christodoulides D.N. | display-authors = etal | year = 1996 | title = पक्षपाती फोटोरिफ़्रेक्टिव क्रिस्टल में असंगत रूप से युग्मित सॉलिटॉन जोड़े| journal = Appl. Phys. Lett. | volume = 68 | issue = 13| page = 1763 | doi=10.1063/1.116659| bibcode = 1996ApPhL..68.1763C| s2cid = 120162256 }}</ref><ref>{{cite journal | author = Chen Z. | display-authors = etal | year = 1996 | title =  Incoherently coupled dark–bright photorefractive solitons| journal = Opt. Lett. | volume = 21 | issue = 22| pages = 1821–1823 | doi=10.1364/ol.21.001821| pmid = 19881813 | bibcode = 1996OptL...21.1821C| citeseerx = 10.1.1.159.9273 }}</ref><ref>{{cite journal | author = Krolikowski W. | display-authors = etal | year = 1996 | title = फोटोरिफ़्रेक्टिव मीडिया में उज्ज्वल और गहरे वेक्टर सॉलिटॉन की मल्टीमोड संरचना| journal = Opt. Lett. | volume = 21 | issue = 11| pages = 782–4 | doi=10.1364/ol.21.000782| pmid = 19876157 | bibcode = 1996OptL...21..782K}}</ref> किन्तु ऑप्टिकल फाइबर के क्षेत्र में कभी सत्यापित नहीं किया गया था।


एक द्विअर्थी गुहा फाइबर लेजर का उपयोग करके, दो ऑर्थोगोनल ध्रुवीकरण घटकों के बीच क्रॉस-युग्मन के कारण प्रेरित वेक्टर सॉलिटॉन का गठन किया जा सकता है। यदि प्रमुख ध्रुवीकरण अक्ष के साथ मजबूत सॉलिटॉन बनता है, तो ऑर्थोगोनल ध्रुवीकरण अक्ष के साथ कमजोर सॉलिटॉन प्रेरित होगा। प्रेरित वेक्टर सॉलिटॉन में कमजोर घटक की तीव्रता इतनी कमजोर हो सकती है कि यह स्वयं एसपीएम में सॉलिटॉन नहीं बना सकता है। इस प्रकार के सॉलिटॉन की विशेषताओं को संख्यात्मक रूप से मॉडल किया गया है और प्रयोग द्वारा पुष्टि की गई है।<ref>H. Zhang et al., "Induced solitons formed by cross polarization coupling in a birefringent cavity fiber laser", Opt. Lett. 33, 2317&ndash;2319 (2008).</ref>
==प्रेरित सदिश सॉलिटॉन==


एक द्विअर्थी गुहा फाइबर लेजर का उपयोग करके, दो ऑर्थोगोनल ध्रुवीकरण अवयवो के मध्य क्रॉस-युग्मन के कारण प्रेरित सदिश सॉलिटॉन का गठन किया जा सकता है। यदि प्रमुख ध्रुवीकरण अक्ष के साथ सशक्त सॉलिटॉन बनता है, जिससे ऑर्थोगोनल ध्रुवीकरण अक्ष के साथ अशक्त सॉलिटॉन प्रेरित होता है। प्रेरित सदिश सॉलिटॉन में अशक्त अवयव की तीव्रता इतनी अशक्त हो सकती है कि यह स्वयं एसपीएम में सॉलिटॉन नहीं बना सकता है। इस प्रकार के सॉलिटॉन की विशेषताओं को संख्यात्मक रूप से मॉडल किया गया है और प्रयोग द्वारा पुष्टि की गई है।<ref>H. Zhang et al., "Induced solitons formed by cross polarization coupling in a birefringent cavity fiber laser", Opt. Lett. 33, 2317&ndash;2319 (2008).</ref>


==वेक्टर [[विघटनकारी सॉलिटॉन]]==


नेट पॉजिटिव फैलाव के साथ लेजर कैविटी में वेक्टर डिसिपेटिव सॉलिटॉन का गठन किया जा सकता है, और इसका गठन तंत्र सामान्य कैविटी फैलाव, कैविटी फाइबर नॉनलाइनियर केर प्रभाव, लेजर गेन संतृप्ति और गेन बैंडविड्थ फ़िल्टरिंग के बीच आपसी नॉनलाइनियर इंटरैक्शन का प्राकृतिक परिणाम है। पारंपरिक सॉलिटॉन के लिए, यह केवल फैलाव और गैर-रैखिकता के बीच संतुलन है। पारंपरिक सॉलिटॉन से भिन्न, वेक्टर डिसिपेटिव सॉलिटॉन दृढ़ता से आवृत्ति चहचहाता है। यह अज्ञात है कि फाइबर लेजर में चरण-लॉक लाभ-निर्देशित वेक्टर सॉलिटॉन का गठन किया जा सकता है या नहीं: या तो ध्रुवीकरण-घूर्णन या चरण-लॉक विघटनकारी वेक्टर सॉलिटॉन को बड़े शुद्ध सामान्य गुहा समूह वेग फैलाव के साथ फाइबर लेजर में बनाया जा सकता है। इसके अलावा, पारंपरिक डिसिपेटिव वेक्टर सॉलिटॉन के समान सॉलिटॉन मापदंडों और हार्मोनिक मोड-लॉकिंग के साथ कई वेक्टर डिसिपेटिव सॉलिटॉन को SESAM के साथ निष्क्रिय मोड-लॉक फाइबर लेजर में भी बनाया जा सकता है।<ref>[http://www.sciencenet.cn/upload/blog/file/2009/2/200921182267621.pdf H. Zhang et al., "Dissipative vector solitons in a dispersionmanaged cavity fiber laser with net positive cavity dispersion"], ''Optics Express'', Vol. 17, Issue 2, pp. 455&ndash;460.</ref>
==सदिश [[विघटनकारी सॉलिटॉन]]==
 
नेट पॉजिटिव विस्तार के साथ लेजर कैविटी में सदिश डिसिपेटिव सॉलिटॉन का गठन किया जा सकता है, और इसका गठन तंत्र सामान्य कैविटी विस्तार, कैविटी फाइबर नॉनलाइनियर केर प्रभाव, लेजर गेन संतृप्ति और गेन बैंडविड्थ फ़िल्टरिंग के मध्य आपसी नॉनलाइनियर इंटरैक्शन का प्राकृतिक परिणाम है। पारंपरिक सॉलिटॉन के लिए, यह केवल विस्तार और गैर-रैखिकता के मध्य संतुलन है। पारंपरिक सॉलिटॉन से भिन्न, सदिश डिसिपेटिव सॉलिटॉन दृढ़ता से आवृत्ति ट्विटर है। यह अज्ञात है कि फाइबर लेजर में फेज-लॉक लाभ-निर्देशित सदिश सॉलिटॉन का गठन किया जा सकता है या नहीं: या तो ध्रुवीकरण-घूर्णन या फेज-लॉक विघटनकारी सदिश सॉलिटॉन को बड़े शुद्ध सामान्य गुहा समूह वेग विस्तार के साथ फाइबर लेजर में बनाया जा सकता है। इसके अतिरिक्त, पारंपरिक डिसिपेटिव सदिश सॉलिटॉन के समान सॉलिटॉन मापदंडों और हार्मोनिक मोड-लॉकिंग के साथ कई सदिश डिसिपेटिव सॉलिटॉन को SESAM के साथ निष्क्रिय मोड-लॉक फाइबर लेजर में भी बनाया जा सकता है।<ref>[http://www.sciencenet.cn/upload/blog/file/2009/2/200921182267621.pdf H. Zhang et al., "Dissipative vector solitons in a dispersionmanaged cavity fiber laser with net positive cavity dispersion"], ''Optics Express'', Vol. 17, Issue 2, pp. 455&ndash;460.</ref>




===मल्टीवेवलेंथ डिसिपेटिव सॉलिटॉन===
===मल्टीवेवलेंथ डिसिपेटिव सॉलिटॉन===


हाल ही में, एसईएसएएम के साथ निष्क्रिय मोड-लॉक किए गए सभी सामान्य फैलाव फाइबर लेजर में मल्टीवेवलेंथ डिसिपेटिव सॉलिटॉन उत्पन्न किया गया है। यह पाया गया है कि कैविटी बाइरफ्रिंजेंस के आधार पर, लेजर में स्थिर सिंगल-, डुअल- और ट्रिपल-वेवलेंथ डिसिपेटिव सॉलिटॉन का गठन किया जा सकता है। इसके उत्पादन तंत्र का पता अपव्यय सॉलिटॉन की प्रकृति से लगाया जा सकता है।<ref>[http://www.opticsinfobase.org/abstract.cfm?URI=oe-17-15-12692 H. Zhang et al., "Multi-wavelength dissipative soliton operation of an erbium-doped fiber laser"], ''Optics Express'', Vol. 17, Issue 2, pp.12692-12697</ref>
वर्तमान में, एसईएसएएम के साथ निष्क्रिय मोड-लॉक किए गए सभी सामान्य विस्तार फाइबर लेजर में मल्टीवेवलेंथ डिसिपेटिव सॉलिटॉन उत्पन्न किया गया है। यह पाया गया है कि कैविटी बाइरफ्रिंजेंस के आधार पर, लेजर में स्थिर सिंगल-, डुअल- और ट्रिपल-वेवलेंथ डिसिपेटिव सॉलिटॉन का गठन किया जा सकता है। इसके उत्पादन तंत्र का पता अपव्यय सॉलिटॉन की प्रकृति से लगाया जा सकता है।<ref>[http://www.opticsinfobase.org/abstract.cfm?URI=oe-17-15-12692 H. Zhang et al., "Multi-wavelength dissipative soliton operation of an erbium-doped fiber laser"], ''Optics Express'', Vol. 17, Issue 2, pp.12692-12697</ref>




==वेक्टर सॉलिटॉन का ध्रुवीकरण घूर्णन==
==सदिश सॉलिटॉन का ध्रुवीकरण घूर्णन==


स्केलर सॉलिटॉन में, इन-कैविटी पोलराइज़र के अस्तित्व के कारण आउटपुट ध्रुवीकरण हमेशा रैखिक होता है। लेकिन वेक्टर सॉलिटॉन के लिए, ध्रुवीकरण स्थिति मनमाने ढंग से घूम सकती है लेकिन फिर भी कैविटी राउंड-ट्रिप समय या उसके पूर्णांक गुणज पर लॉक हो सकती है।<ref>[http://www.sciencenet.cn/upload/blog/file/2009/2/200921017037656137.pdf L.M. Zhao et al., "Polarization rotation locking of vector solitons in a fiber ring laser"] {{Webarchive|url=https://web.archive.org/web/20110707051330/http://www.sciencenet.cn/upload/blog/file/2009/2/200921017037656137.pdf |date=2011-07-07 }}, ''Optics Express'', 16,10053&ndash;10058 (2008).</ref>
स्केलर सॉलिटॉन में, इन-कैविटी पोलराइज़र के अस्तित्व के कारण आउटपुट ध्रुवीकरण सदैव रैखिक होता है। किन्तु सदिश सॉलिटॉन के लिए, ध्रुवीकरण स्थिति अनैतिक रूप से घूम सकती है किन्तु फिर भी कैविटी राउंड-ट्रिप समय या उसके पूर्णांक गुणज पर लॉक हो सकती है।<ref>[http://www.sciencenet.cn/upload/blog/file/2009/2/200921017037656137.pdf L.M. Zhao et al., "Polarization rotation locking of vector solitons in a fiber ring laser"] {{Webarchive|url=https://web.archive.org/web/20110707051330/http://www.sciencenet.cn/upload/blog/file/2009/2/200921017037656137.pdf |date=2011-07-07 }}, ''Optics Express'', 16,10053&ndash;10058 (2008).</ref>




==उच्च-क्रम वेक्टर सॉलिटॉन==
==उच्च-क्रम सदिश सॉलिटॉन==


उच्च-क्रम वाले वेक्टर सॉलिटॉन में, न केवल दो ऑर्थोगोनली ध्रुवीकृत सॉलिटॉन घटक चरण-लॉक होते हैं, बल्कि घटकों में से में डबल-कूबड़ वाली तीव्रता प्रोफ़ाइल भी होती है। समान सॉलिटॉन मापदंडों और वेक्टर सॉलिटॉन के हार्मोनिक मोड-लॉकिंग वाले कई ऐसे चरण-लॉक उच्च-क्रम वेक्टर सॉलिटॉन भी लेजर में प्राप्त किए गए हैं। संख्यात्मक सिमुलेशन ने फाइबर लेजर में स्थिर उच्च-क्रम वेक्टर सॉलिटॉन के अस्तित्व की पुष्टि की।<ref name="www3.ntu.edu.sg"/>
उच्च-क्रम वाले सदिश सॉलिटॉन में, न केवल दो ऑर्थोगोनली ध्रुवीकृत सॉलिटॉन अवयव फेज-लॉक होते हैं, किन्तु अवयवो में से में डबल-कूबड़ वाली तीव्रता प्रोफ़ाइल भी होती है। समान सॉलिटॉन मापदंडों और सदिश सॉलिटॉन के हार्मोनिक मोड-लॉकिंग वाले कई ऐसे फेज-लॉक उच्च-क्रम सदिश सॉलिटॉन भी लेजर में प्राप्त किए गए हैं। संख्यात्मक सिमुलेशन ने फाइबर लेजर में स्थिर उच्च-क्रम सदिश सॉलिटॉन के अस्तित्व की पुष्टि की थी।<ref name="www3.ntu.edu.sg"/>




==ऑप्टिकल डोमेन वॉल सॉलिटॉन==
==ऑप्टिकल डोमेन वॉल सॉलिटॉन==


हाल ही में, चरण-लॉक डार्क-डार्क वेक्टर सॉलिटॉन केवल सकारात्मक फैलाव के फाइबर लेजर में देखा गया था, चरण-लॉक डार्क-ब्राइट वेक्टर सॉलिटॉन सकारात्मक या नकारात्मक फैलाव के फाइबर लेजर में प्राप्त किया गया था। संख्यात्मक सिमुलेशन ने प्रयोगात्मक टिप्पणियों की पुष्टि की, और आगे दिखाया कि देखे गए वेक्टर सॉलिटॉन सैद्धांतिक रूप से अनुमानित दो प्रकार के चरण-बंद ध्रुवीकरण डोमेन-दीवार सॉलिटॉन हैं।<ref>[https://arxiv.org/abs/0907.5496 Han Zhang, D. Y. Tang, L. M. Zhao, X. Wu "Observation of polarization domain wall solitons in weakly birefringent cavity fiber lasers" arXiv:0907.5496v1]</ref>
वर्तमान में, फेज-लॉक डार्क-डार्क सदिश सॉलिटॉन केवल धनात्मक विस्तार के फाइबर लेजर में देखा गया था, फेज-लॉक डार्क-ब्राइट सदिश सॉलिटॉन धनात्मक या ऋणात्मक विस्तार के फाइबर लेजर में प्राप्त किया गया था। संख्यात्मक सिमुलेशन ने प्रयोगात्मक टिप्पणियों की पुष्टि की थी, और आगे दिखाया कि देखे गए सदिश सॉलिटॉन सैद्धांतिक रूप से अनुमानित दो प्रकार के फेज-बंद ध्रुवीकरण डोमेन-दीवार सॉलिटॉन हैं।<ref>[https://arxiv.org/abs/0907.5496 Han Zhang, D. Y. Tang, L. M. Zhao, X. Wu "Observation of polarization domain wall solitons in weakly birefringent cavity fiber lasers" arXiv:0907.5496v1]</ref>
 
 
==परमाणु लेयर ग्राफीन के साथ सदिश सॉलिटॉन फाइबर लेजर==


पारंपरिक अर्धचालक संतृप्त अवशोषक दर्पण (एसईएसएएम) को छोड़कर, जो वितरित ब्रैग रिफ्लेक्टर (डीबीआर) पर विकसित III-V अर्धचालक एकाधिक क्वांटम वेल का उपयोग करते हैं, कई शोधकर्ताओं ने संतृप्त अवशोषक के रूप में अन्य सामग्रियों पर अपना ध्यान केंद्रित किया है। अधिकांशतः इसलिए क्योंकि SESAMs से जुड़ी कई कमियां हैं। उदाहरण के लिए, SESAMs को मेटल-ऑर्गेनिक केमिकल वेपर डिपोजिशन (MOCVD) या मॉलिक्यूलर बीम एपिटैक्सी (MBE) जैसे काम्प्लेक्स और महंगे क्लीन-रूम-आधारित फैब्रिकेशन सिस्टम की आवश्यकता होती है, और कुछ स्थितियों में अतिरिक्त सब्सट्रेट हटाने की प्रक्रिया की आवश्यकता होती है; शॉर्ट-पल्स लेजर मोड-लॉकिंग अनुप्रयोगों के लिए आवश्यक पिकोसेकंड शासन के लिए डिवाइस पुनर्प्राप्ति समय (सामान्यतः कुछ नैनोसेकंड) को कम करने के लिए दोष साइटों को प्रस्तुत करने के लिए उच्च-ऊर्जा भारी-आयन प्रत्यारोपण की आवश्यकता होती है; चूँकि SESAM परावर्तक उपकरण है, इसका उपयोग केवल कुछ प्रकार की रैखिक गुहा टोपोलॉजी तक ही सीमित है।


==परमाणु परत ग्राफीन के साथ वेक्टर सॉलिटॉन फाइबर लेजर==
अन्य लेज़र कैविटी टोपोलॉजी जैसे कि रिंग-कैविटी डिज़ाइन, जिसके लिए ट्रांसमिशन-मोड डिवाइस की आवश्यकता होती है, जो किसी दिए गए कैविटी लंबाई के लिए पुनरावृत्ति दर को दोगुना करने जैसे लाभ प्रदान करता है, और जो ऑप्टिकल आइसोलेटर्स के उपयोग के साथ प्रतिबिंब-प्रेरित अस्थिरता के प्रति कम संवेदनशील है, तब तक संभव नहीं है जब तक कि ऑप्टिकल सर्कुलेटर कार्यरत न हो, जो कैविटी हानि और लेजर जटिलता को बढ़ाता है; SESAMs भी कम ऑप्टिकल क्षति सीमा से ग्रस्त हैं। किन्तु फाइबर लेजर के निष्क्रिय मोड-लॉकिंग के लिए एसईएसएएम के साथ प्रतिस्पर्धा करने के लिए कोई वैकल्पिक संतृप्त अवशोषित पदार्थ नहीं थी।


पारंपरिक अर्धचालक संतृप्त अवशोषक दर्पण (एसईएसएएम) को छोड़कर, जो वितरित ब्रैग रिफ्लेक्टर (डीबीआर) पर विकसित III-V अर्धचालक एकाधिक क्वांटम कुओं का उपयोग करते हैं, कई शोधकर्ताओं ने संतृप्त अवशोषक के रूप में अन्य सामग्रियों पर अपना ध्यान केंद्रित किया है। खासकर इसलिए क्योंकि SESAMs से जुड़ी कई कमियां हैं। उदाहरण के लिए, SESAMs को मेटल-ऑर्गेनिक केमिकल वेपर डिपोजिशन (MOCVD) या मॉलिक्यूलर बीम एपिटैक्सी (MBE) जैसे जटिल और महंगे क्लीन-रूम-आधारित फैब्रिकेशन सिस्टम की आवश्यकता होती है, और कुछ मामलों में अतिरिक्त सब्सट्रेट हटाने की प्रक्रिया की आवश्यकता होती है; शॉर्ट-पल्स लेजर मोड-लॉकिंग अनुप्रयोगों के लिए आवश्यक पिकोसेकंड शासन के लिए डिवाइस पुनर्प्राप्ति समय (आमतौर पर कुछ नैनोसेकंड) को कम करने के लिए दोष साइटों को पेश करने के लिए उच्च-ऊर्जा भारी-आयन प्रत्यारोपण की आवश्यकता होती है; चूँकि SESAM परावर्तक उपकरण है, इसका उपयोग केवल कुछ प्रकार की रैखिक गुहा टोपोलॉजी तक ही सीमित है।
वर्तमान में, ~1 पिकोसेकंड के अल्ट्राफास्ट संतृप्ति पुनर्प्राप्ति समय के साथ निकट-अवरक्त क्षेत्र में एकल दीवार कार्बन नैनोट्यूब (एसडब्ल्यूसीएनटी) में संतृप्त अवशोषण गुणों के आधार पर, शोधकर्ताओं ने सफलतापूर्वक नए प्रकार के प्रभावी संतृप्त अवशोषक का उत्पादन किया है जो संरचना और निर्माण में एसईएसएएम से अधिक अलग है, और वास्तव में, पिको- या सबपिकोसेकंड एर्बियम-डोप्ड फाइबर (ईडीएफ) लेजर के प्रदर्शन का नेतृत्व किया है। इन लेज़रों में, ठोस SWCNT संतृप्त अवशोषक का निर्माण फ्लैट ग्लास सब्सट्रेट्स, मिरर सब्सट्रेट्स, या ऑप्टिकल फाइबर के अंतिम पहलुओं पर SWCNT फिल्मों के सीधे जमाव द्वारा किया गया है। चूँकि, SWNTs के गैर-समान चिरल गुण संतृप्त अवशोषक के गुणों के स्पष्ट नियंत्रण के लिए अंतर्निहित समस्याएं प्रस्तुत करते हैं। इसके अतिरिक्त, बंडल और उलझे हुए एसडब्ल्यूएनटी, उत्प्रेरक कणों की उपस्थिति और बबल के गठन से गुहा में उच्च गैर-संतृप्त हानि होता है, इस तथ्य के अतिरिक्त कि पॉलिमर होस्ट कुछ हद तक इनमें से कुछ समस्याओं को रोक सकता है और डिवाइस एकीकरण में सरलता प्रदान कर सकता है। इसके अतिरिक्त, बड़ी ऊर्जा अल्ट्राशॉर्ट पल्स के अनुसार मल्टी-फोटॉन प्रभाव प्रेरित ऑक्सीकरण होता है, जो अवशोषक की दीर्घकालिक स्थिरता को कम कर देता है।


अन्य लेज़र कैविटी टोपोलॉजी जैसे कि रिंग-कैविटी डिज़ाइन, जिसके लिए ट्रांसमिशन-मोड डिवाइस की आवश्यकता होती है, जो किसी दिए गए कैविटी लंबाई के लिए पुनरावृत्ति दर को दोगुना करने जैसे लाभ प्रदान करता है, और जो ऑप्टिकल आइसोलेटर्स के उपयोग के साथ प्रतिबिंब-प्रेरित अस्थिरता के प्रति कम संवेदनशील है, तब तक संभव नहीं है जब तक कि ऑप्टिकल सर्कुलेटर कार्यरत न हो, जो कैविटी हानि और लेजर जटिलता को बढ़ाता है; SESAMs भी कम ऑप्टिकल क्षति सीमा से ग्रस्त हैं। लेकिन फाइबर लेजर के निष्क्रिय मोड-लॉकिंग के लिए एसईएसएएम के साथ प्रतिस्पर्धा करने के लिए कोई वैकल्पिक संतृप्त अवशोषित सामग्री नहीं थी।
ग्राफीन हेक्सागोनल जाली में व्यवस्थित कार्बन परमाणु की एकल द्वि-आयामी (2डी) परमाणु लेयर है। यद्यपि पृथक फिल्म के रूप में यह शून्य बैंडगैप अर्धचालक है, यह पाया गया है कि एसडब्ल्यूसीएनटी की तरह, ग्राफीन में भी संतृप्त अवशोषण होता है। विशेष रूप से, चूंकि इसमें कोई बैंडगैप नहीं है, इसका संतृप्त अवशोषण तरंग दैर्ध्य स्वतंत्र है। लेजर मोड लॉकिंग के लिए वाइडबैंड संतृप्त अवशोषक बनाने के लिए ग्राफीन या ग्राफीन-पॉलीमर मिश्रित का उपयोग करना संभावित रूप से संभव है। इसके अतिरिक्त, एसडब्ल्यूसीएनटी के साथ तुलना करने पर, चूंकि ग्राफीन में 2डी संरचना होती है, इसलिए इसमें बहुत कम गैर-संतृप्त हानि और बहुत अधिक क्षति सीमा होनी चाहिए। दरअसल, एर्बियम-डोप्ड फाइबर लेजर के साथ हमने स्व-स्टार्टेड मोड लॉकिंग और उच्च ऊर्जा के साथ स्थिर सॉलिटॉन पल्स उत्सर्जन प्राप्त किया है।


हाल ही में, ~1 पिकोसेकंड के अल्ट्राफास्ट संतृप्ति पुनर्प्राप्ति समय के साथ निकट-अवरक्त क्षेत्र में एकल दीवार कार्बन नैनोट्यूब (एसडब्ल्यूसीएनटी) में संतृप्त अवशोषण गुणों के आधार पर, शोधकर्ताओं ने सफलतापूर्वक नए प्रकार के प्रभावी संतृप्त अवशोषक का उत्पादन किया है जो संरचना और निर्माण में एसईएसएएम से काफी अलग है, और वास्तव में, पिको- या सबपिकोसेकंड एर्बियम-डोप्ड फाइबर (ईडीएफ) लेजर के प्रदर्शन का नेतृत्व किया है। इन लेज़रों में, ठोस SWCNT संतृप्त अवशोषक का निर्माण फ्लैट ग्लास सब्सट्रेट्स, मिरर सब्सट्रेट्स, या ऑप्टिकल फाइबर के अंतिम पहलुओं पर SWCNT फिल्मों के सीधे जमाव द्वारा किया गया है। हालाँकि, SWNTs के गैर-समान चिरल गुण संतृप्त अवशोषक के गुणों के सटीक नियंत्रण के लिए अंतर्निहित समस्याएं पेश करते हैं। इसके अलावा, बंडल और उलझे हुए एसडब्ल्यूएनटी, उत्प्रेरक कणों की उपस्थिति और बुलबुले के गठन से गुहा में उच्च गैर-संतृप्त नुकसान होता है, इस तथ्य के बावजूद कि पॉलिमर होस्ट कुछ हद तक इनमें से कुछ समस्याओं को रोक सकता है और डिवाइस एकीकरण में आसानी प्रदान कर सकता है। इसके अलावा, बड़ी ऊर्जा अल्ट्राशॉर्ट पल्स के तहत मल्टी-फोटॉन प्रभाव प्रेरित ऑक्सीकरण होता है, जो अवशोषक की दीर्घकालिक स्थिरता को कम कर देता है।
ग्राफीन के उत्तम आइसोट्रोपिक अवशोषण गुणों के कारण, उत्पन्न सॉलिटॉन को सदिश सॉलिटॉन माना जा सकता है। ग्राफीन की अंतःक्रिया के अनुसार सदिश सॉलिटॉन का विकास कैसे हुआ यह अभी भी अस्पष्ट किन्तु रोचक है, अधिकांशतः क्योंकि इसमें परमाणुओं के साथ नॉनलाइनियर ऑप्टिकल तरंग की पारस्परिक क्रिया सम्मिलित थी।<ref>Qiaoliang Bao, Han Zhang, Yu Wang, Zhenhua Ni, Yongli Yan, Ze Xiang Shen, Kian Ping Loh, and Ding Yuan Tang, Advanced Functional Materials,"Atomic layer graphene as saturable absorber for ultrafast pulsed lasers "http://www3.ntu.edu.sg/home2006/zhan0174/AFM.pdf {{Webarchive|url=https://web.archive.org/web/20110717122454/http://www3.ntu.edu.sg/home2006/zhan0174/AFM.pdf |date=2011-07-17 }}</ref><ref>H. Zhang, D. Y. Tang, L. M. Zhao, Q. L. Bao, K. P. Loh,"Large energy mode locking of an erbium-doped fiber laser with atomic layer graphene " OPTICS EXPRESS, Vol. 17, P17630. http://www3.ntu.edu.sg/home2006/zhan0174/OE_graphene.pdf {{Webarchive|url=https://web.archive.org/web/20110717122606/http://www3.ntu.edu.sg/home2006/zhan0174/OE_graphene.pdf |date=2011-07-17 }}</ref><ref>{{cite journal|author1=Han Zhang|author2=Qiaoliang Bao|author3=Dingyuan Tang|author4=Luming Zhao|author5=Kianping Loh|name-list-style=amp|title=ग्राफीन-पॉलीमर कम्पोजिट मोड लॉकर के साथ बड़ी ऊर्जा सॉलिटॉन एर्बियम-डोप्ड फाइबर लेजर|journal=Applied Physics Letters|volume=95|issue=14|page=P141103|url=http://www3.ntu.edu.sg/home2006/zhan0174/apl.pdf|doi=10.1063/1.3244206|arxiv=0909.5540|bibcode=2009ApPhL..95n1103Z|access-date=2009-02-05|archive-url=https://web.archive.org/web/20110717122745/http://www3.ntu.edu.sg/home2006/zhan0174/apl.pdf|archive-date=2011-07-17|url-status=dead|year=2009|s2cid=119284608}}</ref> जिसे नेचर एशिया मटेरियल्स में हाइलाइट और नैनोवर्क किया गया था <ref>{{Cite web |url=http://www.natureasia.com/asia-materials/highlight.php?id=594 |title=Graphene: Mode-locked lasers : Research highlight : NPG Asia Materials |access-date=2009-12-21 |archive-url=https://web.archive.org/web/20120219075851/http://www.natureasia.com/asia-materials/highlight.php?id=594 |archive-date=2012-02-19 |url-status=dead }}</ref>  <ref>{{Cite web|url=http://www.nanowerk.com/spotlight/spotid=14231.php|title = The rise of graphene in ultra-fast photonics}}</ref>


ग्राफीन हेक्सागोनल जाली में व्यवस्थित कार्बन परमाणु की एकल द्वि-आयामी (2डी) परमाणु परत है। यद्यपि पृथक फिल्म के रूप में यह शून्य बैंडगैप अर्धचालक है, यह पाया गया है कि एसडब्ल्यूसीएनटी की तरह, ग्राफीन में भी संतृप्त अवशोषण होता है। विशेष रूप से, चूंकि इसमें कोई बैंडगैप नहीं है, इसका संतृप्त अवशोषण तरंग दैर्ध्य स्वतंत्र है। लेजर मोड लॉकिंग के लिए वाइडबैंड संतृप्त अवशोषक बनाने के लिए ग्राफीन या ग्राफीन-पॉलीमर मिश्रित का उपयोग करना संभावित रूप से संभव है। इसके अलावा, एसडब्ल्यूसीएनटी के साथ तुलना करने पर, चूंकि ग्राफीन में 2डी संरचना होती है, इसलिए इसमें बहुत कम गैर-संतृप्त हानि और बहुत अधिक क्षति सीमा होनी चाहिए। दरअसल, एर्बियम-डोप्ड फाइबर लेजर के साथ हमने स्व-स्टार्टेड मोड लॉकिंग और उच्च ऊर्जा के साथ स्थिर सॉलिटॉन पल्स उत्सर्जन हासिल किया है।
इसके अतिरिक्त, परमाणु लेयर ग्राफीन में तरंग दैर्ध्य-असंवेदनशील अल्ट्राफास्ट संतृप्त अवशोषण होता है, जिसका उपयोग पूर्ण-बैंड मोड लॉकर के रूप में किया जा सकता है। कुछ लेयर ग्राफीन के साथ लॉक किए गए एर्बियम-डोप्ड डिसिपेटिव सॉलिटॉन फाइबर लेजर मोड के साथ, यह प्रयोगात्मक रूप से दिखाया गया है कि 30 एनएम (1570 एनएम-1600 एनएम) जितनी बड़ी निरंतर तरंग दैर्ध्य ट्यूनिंग के साथ डिसिपेटिव सॉलिटॉन प्राप्त किया जा सकता है।<ref>{{cite journal|author=Zhang, H.|display-authors=etal|title=ग्राफीन मोड लॉक, तरंग दैर्ध्य-ट्यून करने योग्य, डिसिपेटिव सॉलिटॉन फाइबर लेजर|journal=Applied Physics Letters|volume=96|issue=11|page=111112|url=http://www.sciencenet.cn/upload/blog/file/2010/3/20103191224576536.pdf|doi=10.1063/1.3367743|bibcode=2010ApPhL..96k1112Z|arxiv=1003.0154|access-date=2010-03-19|archive-url=https://web.archive.org/web/20101115121043/http://www.sciencenet.cn/upload/blog/file/2010/3/20103191224576536.pdf|archive-date=2010-11-15|url-status=dead|year=2010|s2cid=119233725}}</ref>


ग्राफीन के उत्तम आइसोट्रोपिक अवशोषण गुणों के कारण, उत्पन्न सॉलिटॉन को वेक्टर सॉलिटॉन माना जा सकता है। ग्राफीन की अंतःक्रिया के तहत वेक्टर सॉलिटॉन का विकास कैसे हुआ यह अभी भी अस्पष्ट लेकिन दिलचस्प है, खासकर क्योंकि इसमें परमाणुओं के साथ नॉनलाइनियर ऑप्टिकल तरंग की पारस्परिक बातचीत शामिल थी।<ref>Qiaoliang Bao, Han Zhang, Yu Wang, Zhenhua Ni, Yongli Yan, Ze Xiang Shen, Kian Ping Loh, and Ding Yuan Tang, Advanced Functional Materials,"Atomic layer graphene as saturable absorber for ultrafast pulsed lasers "http://www3.ntu.edu.sg/home2006/zhan0174/AFM.pdf {{Webarchive|url=https://web.archive.org/web/20110717122454/http://www3.ntu.edu.sg/home2006/zhan0174/AFM.pdf |date=2011-07-17 }}</ref><ref>H. Zhang, D. Y. Tang, L. M. Zhao, Q. L. Bao, K. P. Loh,"Large energy mode locking of an erbium-doped fiber laser with atomic layer graphene " OPTICS EXPRESS, Vol. 17, P17630. http://www3.ntu.edu.sg/home2006/zhan0174/OE_graphene.pdf {{Webarchive|url=https://web.archive.org/web/20110717122606/http://www3.ntu.edu.sg/home2006/zhan0174/OE_graphene.pdf |date=2011-07-17 }}</ref><ref>{{cite journal|author1=Han Zhang|author2=Qiaoliang Bao|author3=Dingyuan Tang|author4=Luming Zhao|author5=Kianping Loh|name-list-style=amp|title=ग्राफीन-पॉलीमर कम्पोजिट मोड लॉकर के साथ बड़ी ऊर्जा सॉलिटॉन एर्बियम-डोप्ड फाइबर लेजर|journal=Applied Physics Letters|volume=95|issue=14|page=P141103|url=http://www3.ntu.edu.sg/home2006/zhan0174/apl.pdf|doi=10.1063/1.3244206|arxiv=0909.5540|bibcode=2009ApPhL..95n1103Z|access-date=2009-02-05|archive-url=https://web.archive.org/web/20110717122745/http://www3.ntu.edu.sg/home2006/zhan0174/apl.pdf|archive-date=2011-07-17|url-status=dead|year=2009|s2cid=119284608}}</ref> जिसे नेचर एशिया मटेरियल्स में हाइलाइट किया गया था<ref>{{Cite web |url=http://www.natureasia.com/asia-materials/highlight.php?id=594 |title=Graphene: Mode-locked lasers : Research highlight : NPG Asia Materials |access-date=2009-12-21 |archive-url=https://web.archive.org/web/20120219075851/http://www.natureasia.com/asia-materials/highlight.php?id=594 |archive-date=2012-02-19 |url-status=dead }}</ref> और नैनोवर्क।<ref>{{Cite web|url=http://www.nanowerk.com/spotlight/spotid=14231.php|title = The rise of graphene in ultra-fast photonics}}</ref>
इसके अलावा, परमाणु परत ग्राफीन में तरंग दैर्ध्य-असंवेदनशील अल्ट्राफास्ट संतृप्त अवशोषण होता है, जिसका उपयोग पूर्ण-बैंड मोड लॉकर के रूप में किया जा सकता है। कुछ परत ग्राफीन के साथ लॉक किए गए एर्बियम-डोप्ड डिसिपेटिव सॉलिटॉन फाइबर लेजर मोड के साथ, यह प्रयोगात्मक रूप से दिखाया गया है कि 30 एनएम (1570 एनएम-1600 एनएम) जितनी बड़ी निरंतर तरंग दैर्ध्य ट्यूनिंग के साथ डिसिपेटिव सॉलिटॉन प्राप्त किया जा सकता है।<ref>{{cite journal|author=Zhang, H.|display-authors=etal|title=ग्राफीन मोड लॉक, तरंग दैर्ध्य-ट्यून करने योग्य, डिसिपेटिव सॉलिटॉन फाइबर लेजर|journal=Applied Physics Letters|volume=96|issue=11|page=111112|url=http://www.sciencenet.cn/upload/blog/file/2010/3/20103191224576536.pdf|doi=10.1063/1.3367743|bibcode=2010ApPhL..96k1112Z|arxiv=1003.0154|access-date=2010-03-19|archive-url=https://web.archive.org/web/20101115121043/http://www.sciencenet.cn/upload/blog/file/2010/3/20103191224576536.pdf|archive-date=2010-11-15|url-status=dead|year=2010|s2cid=119233725}}</ref>




Line 87: Line 93:
* [[कॉम्पैक्टन]], कॉम्पैक्ट सपोर्ट वाला सॉलिटॉन
* [[कॉम्पैक्टन]], कॉम्पैक्ट सपोर्ट वाला सॉलिटॉन
* [[ लैपिंग ]]
* [[ लैपिंग ]]
* [[अजीब लहर]]ें संबंधित घटना हो सकती हैं
* फेंक वेव संबंधित घटना हो सकती हैं
* [[ऑसिलॉन]]
* [[ऑसिलॉन]]
* पीकॉन, गैर-विभेदित शिखर वाला सॉलिटॉन
* पीकॉन, गैर-विभेदित शिखर वाला सॉलिटॉन
* [[क्यू गेंद]], गैर-टोपोलॉजिकल सॉलिटॉन
* [[क्यू गेंद|क्यू बॉल]], गैर-टोपोलॉजिकल सॉलिटॉन
* [[सॉलिटॉन (सामयिक)]]
* [[सॉलिटॉन (सामयिक)]]
* [[सॉलिटॉन (प्रकाशिकी)]]
* [[सॉलिटॉन (प्रकाशिकी)]]
* तंत्रिका आवेग प्रसार का [[सॉलिटॉन मॉडल]]
* तंत्रिका आवेग प्रसार का [[सॉलिटॉन मॉडल]]
* [[स्थानिक सॉलिटॉन]]
* [[स्थानिक सॉलिटॉन]]
* [[एकान्त तरंग (बहुविकल्पी)]]एस असतत मीडिया में [http://www.livescience.com/technology/050614_baby_waves.html]
* [[एकान्त तरंग (बहुविकल्पी)]] एस असतत मीडिया में [http://www.livescience.com/technology/050614_baby_waves.html]
* [[टोपोलॉजिकल क्वांटम संख्या]]
* [[टोपोलॉजिकल क्वांटम संख्या]]
* [[साइन-गॉर्डन समीकरण]]
* [[साइन-गॉर्डन समीकरण]]
Line 101: Line 107:
* नॉनलाइनियर श्रोडिंगर समीकरण
* नॉनलाइनियर श्रोडिंगर समीकरण


==संदर्भ==
==संदर्भ                                                                                                                                                                                                       ==
{{Reflist}}
{{Reflist}}
[[Category: भौतिक प्रकाशिकी]]  
[[Category: भौतिक प्रकाशिकी]]  

Revision as of 10:34, 4 August 2023

भौतिक प्रकाशिकी या तरंग प्रकाशिकी में, सदिश सॉलिटन एकल तरंग होती है जिसमें कई अवयव साथ जुड़े होते हैं जो प्रसार के समय अपना आकार बनाए रखते हैं। साधारण सॉलिटॉन अपना आकार बनाए रखते हैं किन्तु प्रभावी रूप से केवल (स्केलर) ध्रुवीकरण अवयव होता है, जबकि सदिश सॉलिटॉन में दो अलग-अलग ध्रुवीकरण अवयव होते हैं। सभी प्रकार के सॉलिटॉन के मध्य, ऑप्टिकल सदिश सॉलिटॉन अपने व्यापक अनुप्रयोगों के कारण सबसे अधिक ध्यान आकर्षित करते हैं, विशेष रूप से अल्ट्राफास्ट पल्स और प्रकाश नियंत्रण प्रौद्योगिकी उत्पन्न करने में ऑप्टिकल सदिश सॉलिटॉन को टेम्पोरल सदिश सॉलिटॉन और स्थानिक सदिश सॉलिटॉन में वर्गीकृत किया जा सकता है। टेम्पोरल सॉलिटॉन और स्थानिक सॉलिटॉन दोनों के प्रसार के समय, द्विअपवर्तन वाले माध्यम में होने के अतिरिक्त, सदिश सॉलिटॉन के दो ध्रुवीकरणों के मध्य सशक्त क्रॉस-फेज मॉड्यूलेशन और सुसंगत ऊर्जा विनिमय के कारण ऑर्थोगोनल ध्रुवीकरण बिना विभाजन के इकाई के रूप में सहप्रसारित हो सकता है जो इन दो ध्रुवीकरणों के मध्य तीव्रता के अंतर को प्रेरित कर सकता है। इस प्रकार सदिश सॉलिटॉन अब रैखिक रूप से ध्रुवीकृत नहीं हैं, किन्तु वृत्ताकार रूप से ध्रुवीकृत हैं।

परिभाषा

सी.आर. मेन्युक ने सबसे पहले अशक्त द्विअपवर्तन के अनुसार एकल-मोड ऑप्टिकल फाइबर (एसएमएफ) में नॉनलाइनियर पल्स प्रसार समीकरण प्राप्त किया था। फिर, मेन्युक ने सदिश सॉलिटॉन को ऑर्थोगोनल ध्रुवीकरण के साथ दो सॉलिटॉन (अधिक स्पष्ट रूप से सॉलिटरी तरंगें कहा जाता है) के रूप में वर्णित किया था, जो अपनी ऊर्जा को विस्तृत किए बिना और अपने आकार को बनाए रखते हुए एक साथ सह-प्रचारित होते हैं। इन दो ध्रुवीकरणों के मध्य गैर-रेखीय संपर्क के कारण, इन दो ध्रुवीकरण मोडों के मध्य द्विअपवर्तन के अस्तित्व के अतिरिक्त, वह अभी भी अपने समूह वेग को समायोजित कर सकते हैं और साथ फंस सकते हैं।[1]

सदिश सॉलिटॉन स्थानिक या लौकिक हो सकते हैं, और एकल ऑप्टिकल क्षेत्र के दो ऑर्थोगोनली ध्रुवीकृत अवयवो या विभिन्न आवृत्तियों के दो क्षेत्रों किन्तु ही ध्रुवीकरण से बनते हैं।

इतिहास

1987 में मेन्युक ने पहली बार अशक्त द्विअपवर्तन के अनुसार एसएमएफ में नॉनलाइनियर पल्स प्रसार समीकरण प्राप्त किया था। इस मौलिक समीकरण ने शोधकर्ताओं के लिए अदिश सॉलिटॉन का नया क्षेत्र खोल दिया था। उनका समीकरण सदिश सॉलिटॉन के दो ऑर्थोगोनल ध्रुवीकरण अवयवो के मध्य नॉनलाइनियर इंटरैक्शन (क्रॉस-फ़ेज़ मॉड्यूलेशन और सुसंगत ऊर्जा विनिमय) से संबंधित है। शोधकर्ताओं ने अशक्त, मध्यम और यहां तक ​​कि सशक्त द्विअपवर्तन के अनुसार इस समीकरण के विश्लेषणात्मक और संख्यात्मक दोनों समाधान प्राप्त किए हैं।

1988 में क्रिस्टोडौलाइड्स और जोसेफ ने पहली बार सैद्धांतिक रूप से द्विअर्थी फैलाने वाले मीडिया में फेज-लॉक सदिश सॉलिटॉन के उपन्यास रूप की पूर्वानुमान किया था, जिसे अब एसएमएफ में उच्च-क्रम फेज-लॉक सदिश सॉलिटॉन के रूप में जाना जाता है। इसमें तुलनीय तीव्रता वाले दो ऑर्थोगोनल ध्रुवीकरण अवयव हैं। द्विअपवर्तन के अस्तित्व के अतिरिक्त, यह दोनों ध्रुवीकरण अपनी केंद्रीय आवृत्तियों को स्थानांतरित करते समय समान समूह वेग के साथ फैल सकते हैं।[2]

2000 में, कंडिफ़ और अखमेदिव ने पाया कि ये दो ध्रुवीकरण न केवल तथाकथित समूह-वेग-लॉक सदिश सॉलिटॉन किन्तु ध्रुवीकरण-लॉक सदिश सॉलिटॉन भी बना सकते हैं। उन्होंने बताया कि इन दोनों ध्रुवीकरणों की तीव्रता का अनुपात लगभग 0.25-1.00 हो सकता है।[3]

चूँकि, वर्तमान में, अन्य प्रकार का सदिश सॉलिटॉन, प्रेरित सदिश सॉलिटॉन देखा गया है। ऐसा सदिश सॉलिटॉन इस मायने में नया है कि दो ऑर्थोगोनल ध्रुवीकरणों के मध्य तीव्रता का अंतर बहुत बड़ा (20 डीबी) है। ऐसा लगता है कि अशक्त ध्रुवीकरण सामान्यतः सदिश सॉलिटॉन का अवयव बनाने में असमर्थ होते हैं। चूँकि, सशक्त और अशक्त ध्रुवीकरण अवयवो के मध्य क्रॉस-ध्रुवीकरण मॉड्यूलेशन के कारण, अशक्त सॉलिटॉन भी बन सकता है। इस प्रकार यह दर्शाता है कि प्राप्त सॉलिटॉन रैखिक ध्रुवीकरण मोड के साथ स्केलर सॉलिटॉन नहीं है, किन्तु बड़े अण्डाकारता के साथ सदिश सॉलिटॉन है। यह सदिश सॉलिटॉन के सीमा का विस्तार करता है जिससे सदिश सॉलिटॉन के सशक्त और अशक्त अवयवो के मध्य तीव्रता का अनुपात 0.25-1.0 तक सीमित नही होते है, किन्तु अब 20 डीबी तक बढ़ सकता है।[4]

क्रिस्टोडौलाइड्स और जोसेफ के क्लासिक कार्य पर आधारित,[5] जो एसएमएफ में उच्च-क्रम फेज-लॉक सदिश सॉलिटॉन से संबंधित है, स्थिर उच्च-क्रम फेज-लॉक सदिश सॉलिटॉन वर्तमान में फाइबर लेजर में बनाया गया है। इसकी विशेषता यह है कि न केवल दो ऑर्थोगोनली ध्रुवीकृत सॉलिटॉन अवयव फेज-लॉक होते हैं, किन्तु अवयवो में से में डबल-कूबड़ वाली तीव्रता प्रोफ़ाइल भी होती है।[6] निम्नलिखित चित्रों से पता चलता है कि, जब फाइबर बाइरफ्रिंजेंस को ध्यान में रखा जाता है, तो एकल नॉनलाइनियर श्रोडिंगर समीकरण (एनएलएसई) सॉलिटॉन गतिशीलता का वर्णन करने में विफल रहता है, किन्तु इसके अतिरिक्त दो युग्मित एनएलएसई की आवश्यकता होती है। फिर, दो ध्रुवीकरण मोड वाले सॉलिटॉन को संख्यात्मक रूप से प्राप्त किया जा सकता है।

वेक्टर सॉलिटॉन क्यों उत्पन्न होते हैं?

सदिश सोलिटॉन में एफडब्ल्यूएम वर्णक्रमीय साइडबैंड

वर्णक्रमीय साइडबैंड का नया पैटर्न पहली बार प्रयोगात्मक रूप से फाइबर लेजर के ध्रुवीकरण-बंद सदिश सॉलिटॉन के ध्रुवीकरण-समाधान सॉलिटॉन स्पेक्ट्रा पर देखा गया था। नए वर्णक्रमीय साइडबैंड की विशेषता इस तथ्य से है कि सॉलिटॉन के स्पेक्ट्रम पर उनकी स्थिति रैखिक गुहा द्विअर्थीता की ताकत के साथ परिवर्तित होती रहती है, और जबकि ध्रुवीकरण अवयव के साइडबैंड में वर्णक्रमीय शिखर होता है, ऑर्थोगोनल ध्रुवीकरण अवयव में वर्णक्रमीय क्षय होती है, जो सदिश सॉलिटॉन के दो ऑर्थोगोनल ध्रुवीकरण अवयवो के मध्य ऊर्जा विनिमय का संकेत देती है। संख्यात्मक सिमुलेशन ने यह भी पुष्टि की कि नए प्रकार के वर्णक्रमीय साइडबैंड का गठन दो ध्रुवीकरण अवयवो के मध्य एफडब्ल्यूएम के कारण हुआ था।[7]


बाउंड सदिश सॉलिटॉन

दो आसन्न सदिश सॉलिटॉन बाध्य अवस्था बना सकते हैं। स्केलर बाउंड सॉलिटॉन की तुलना में, इस सॉलिटॉन की ध्रुवीकरण स्थिति अधिक काम्प्लेक्स है। क्रॉस इंटरैक्शन के कारण, बाध्य सदिश सॉलिटॉन में स्केलर सॉलिटॉन के मध्य उपस्थित होने की तुलना में अधिक सशक्त इंटरैक्शन बल हो सकते हैं।[8]


सदिश डार्क सॉलिटॉन

डार्क सोलिटन्स [9] अधिक तीव्र निरंतर तरंग पृष्ठभूमि की तुलना में तीव्रता में स्थानीयकृत कमी से बनने की विशेषता है। स्केलर डार्क सॉलिटॉन (रैखिक रूप से ध्रुवीकृत डार्क सॉलिटॉन) सभी सामान्य विस्तार फाइबर लेजर में गैर-रेखीय ध्रुवीकरण रोटेशन विधि द्वारा मोड-लॉक किया जा सकता है और किन्तु स्थिर हो सकता है। सदिश डार्क सॉलिटॉन [10] दो ध्रुवीकरण अवयवो के मध्य क्रॉस-इंटरैक्शन के कारण बहुत कम स्थिर हैं। इसलिए, यह जांच करना रोचक है कि इन दो ध्रुवीकरण अवयवो की ध्रुवीकरण स्थिति कैसे विकसित होती है।

2009 में, कैविटी में पोलराइज़र के साथ सभी सामान्य विस्तार वाले एरबियम-डोप्ड फाइबर लेजर में पहला डार्क सॉलिटॉन फाइबर लेजर सफलतापूर्वक प्राप्त किया गया है। प्रयोगात्मक रूप से पाया गया कि उज्ज्वल पल्स उत्सर्जन के अतिरिक्त, उचित परिस्थितियों में फाइबर लेजर एकल या एकाधिक डार्क पल्स भी उत्सर्जित कर सकता है। संख्यात्मक सिमुलेशन के आधार पर हम डार्क सॉलिटॉन आकार देने के परिणामस्वरूप लेजर में डार्क पल्स गठन की व्याख्या करते हैं।[11]


वेक्टर डार्क ब्राइट सॉलिटॉन

एक उज्ज्वल सॉलिटॉन को सतत तरंग (सीडब्ल्यू) पृष्ठभूमि के ऊपर स्थानीय तीव्रता शिखर के रूप में चित्रित किया जाता है, जबकि डार्क सॉलिटॉन को निरंतर तरंग (सीडब्ल्यू) पृष्ठभूमि के नीचे स्थानीयकृत तीव्रता डुबकी के रूप में चित्रित किया जाता है। सदिश डार्क ब्राइट सॉलिटॉन का कारण है कि ध्रुवीकरण अवस्था ब्राइट सॉलिटॉन है जबकि दूसरा ध्रुवीकरण डार्क सॉलिटॉन है।[12] सदिश डार्क ब्राइट सॉलिटॉन को स्व-डिफोकसिंग माध्यम में असंगत रूप से युग्मित स्थानिक डीबीवीएस में और दो-प्रजाति के पदार्थ-तरंग डीबीवीएस में प्रतिकारक बिखरने वाले इंटरैक्शन के साथ सूचित किया गया है,[13][14][15] किन्तु ऑप्टिकल फाइबर के क्षेत्र में कभी सत्यापित नहीं किया गया था।

प्रेरित सदिश सॉलिटॉन

एक द्विअर्थी गुहा फाइबर लेजर का उपयोग करके, दो ऑर्थोगोनल ध्रुवीकरण अवयवो के मध्य क्रॉस-युग्मन के कारण प्रेरित सदिश सॉलिटॉन का गठन किया जा सकता है। यदि प्रमुख ध्रुवीकरण अक्ष के साथ सशक्त सॉलिटॉन बनता है, जिससे ऑर्थोगोनल ध्रुवीकरण अक्ष के साथ अशक्त सॉलिटॉन प्रेरित होता है। प्रेरित सदिश सॉलिटॉन में अशक्त अवयव की तीव्रता इतनी अशक्त हो सकती है कि यह स्वयं एसपीएम में सॉलिटॉन नहीं बना सकता है। इस प्रकार के सॉलिटॉन की विशेषताओं को संख्यात्मक रूप से मॉडल किया गया है और प्रयोग द्वारा पुष्टि की गई है।[16]


सदिश विघटनकारी सॉलिटॉन

नेट पॉजिटिव विस्तार के साथ लेजर कैविटी में सदिश डिसिपेटिव सॉलिटॉन का गठन किया जा सकता है, और इसका गठन तंत्र सामान्य कैविटी विस्तार, कैविटी फाइबर नॉनलाइनियर केर प्रभाव, लेजर गेन संतृप्ति और गेन बैंडविड्थ फ़िल्टरिंग के मध्य आपसी नॉनलाइनियर इंटरैक्शन का प्राकृतिक परिणाम है। पारंपरिक सॉलिटॉन के लिए, यह केवल विस्तार और गैर-रैखिकता के मध्य संतुलन है। पारंपरिक सॉलिटॉन से भिन्न, सदिश डिसिपेटिव सॉलिटॉन दृढ़ता से आवृत्ति ट्विटर है। यह अज्ञात है कि फाइबर लेजर में फेज-लॉक लाभ-निर्देशित सदिश सॉलिटॉन का गठन किया जा सकता है या नहीं: या तो ध्रुवीकरण-घूर्णन या फेज-लॉक विघटनकारी सदिश सॉलिटॉन को बड़े शुद्ध सामान्य गुहा समूह वेग विस्तार के साथ फाइबर लेजर में बनाया जा सकता है। इसके अतिरिक्त, पारंपरिक डिसिपेटिव सदिश सॉलिटॉन के समान सॉलिटॉन मापदंडों और हार्मोनिक मोड-लॉकिंग के साथ कई सदिश डिसिपेटिव सॉलिटॉन को SESAM के साथ निष्क्रिय मोड-लॉक फाइबर लेजर में भी बनाया जा सकता है।[17]


मल्टीवेवलेंथ डिसिपेटिव सॉलिटॉन

वर्तमान में, एसईएसएएम के साथ निष्क्रिय मोड-लॉक किए गए सभी सामान्य विस्तार फाइबर लेजर में मल्टीवेवलेंथ डिसिपेटिव सॉलिटॉन उत्पन्न किया गया है। यह पाया गया है कि कैविटी बाइरफ्रिंजेंस के आधार पर, लेजर में स्थिर सिंगल-, डुअल- और ट्रिपल-वेवलेंथ डिसिपेटिव सॉलिटॉन का गठन किया जा सकता है। इसके उत्पादन तंत्र का पता अपव्यय सॉलिटॉन की प्रकृति से लगाया जा सकता है।[18]


सदिश सॉलिटॉन का ध्रुवीकरण घूर्णन

स्केलर सॉलिटॉन में, इन-कैविटी पोलराइज़र के अस्तित्व के कारण आउटपुट ध्रुवीकरण सदैव रैखिक होता है। किन्तु सदिश सॉलिटॉन के लिए, ध्रुवीकरण स्थिति अनैतिक रूप से घूम सकती है किन्तु फिर भी कैविटी राउंड-ट्रिप समय या उसके पूर्णांक गुणज पर लॉक हो सकती है।[19]


उच्च-क्रम सदिश सॉलिटॉन

उच्च-क्रम वाले सदिश सॉलिटॉन में, न केवल दो ऑर्थोगोनली ध्रुवीकृत सॉलिटॉन अवयव फेज-लॉक होते हैं, किन्तु अवयवो में से में डबल-कूबड़ वाली तीव्रता प्रोफ़ाइल भी होती है। समान सॉलिटॉन मापदंडों और सदिश सॉलिटॉन के हार्मोनिक मोड-लॉकिंग वाले कई ऐसे फेज-लॉक उच्च-क्रम सदिश सॉलिटॉन भी लेजर में प्राप्त किए गए हैं। संख्यात्मक सिमुलेशन ने फाइबर लेजर में स्थिर उच्च-क्रम सदिश सॉलिटॉन के अस्तित्व की पुष्टि की थी।[6]


ऑप्टिकल डोमेन वॉल सॉलिटॉन

वर्तमान में, फेज-लॉक डार्क-डार्क सदिश सॉलिटॉन केवल धनात्मक विस्तार के फाइबर लेजर में देखा गया था, फेज-लॉक डार्क-ब्राइट सदिश सॉलिटॉन धनात्मक या ऋणात्मक विस्तार के फाइबर लेजर में प्राप्त किया गया था। संख्यात्मक सिमुलेशन ने प्रयोगात्मक टिप्पणियों की पुष्टि की थी, और आगे दिखाया कि देखे गए सदिश सॉलिटॉन सैद्धांतिक रूप से अनुमानित दो प्रकार के फेज-बंद ध्रुवीकरण डोमेन-दीवार सॉलिटॉन हैं।[20]


परमाणु लेयर ग्राफीन के साथ सदिश सॉलिटॉन फाइबर लेजर

पारंपरिक अर्धचालक संतृप्त अवशोषक दर्पण (एसईएसएएम) को छोड़कर, जो वितरित ब्रैग रिफ्लेक्टर (डीबीआर) पर विकसित III-V अर्धचालक एकाधिक क्वांटम वेल का उपयोग करते हैं, कई शोधकर्ताओं ने संतृप्त अवशोषक के रूप में अन्य सामग्रियों पर अपना ध्यान केंद्रित किया है। अधिकांशतः इसलिए क्योंकि SESAMs से जुड़ी कई कमियां हैं। उदाहरण के लिए, SESAMs को मेटल-ऑर्गेनिक केमिकल वेपर डिपोजिशन (MOCVD) या मॉलिक्यूलर बीम एपिटैक्सी (MBE) जैसे काम्प्लेक्स और महंगे क्लीन-रूम-आधारित फैब्रिकेशन सिस्टम की आवश्यकता होती है, और कुछ स्थितियों में अतिरिक्त सब्सट्रेट हटाने की प्रक्रिया की आवश्यकता होती है; शॉर्ट-पल्स लेजर मोड-लॉकिंग अनुप्रयोगों के लिए आवश्यक पिकोसेकंड शासन के लिए डिवाइस पुनर्प्राप्ति समय (सामान्यतः कुछ नैनोसेकंड) को कम करने के लिए दोष साइटों को प्रस्तुत करने के लिए उच्च-ऊर्जा भारी-आयन प्रत्यारोपण की आवश्यकता होती है; चूँकि SESAM परावर्तक उपकरण है, इसका उपयोग केवल कुछ प्रकार की रैखिक गुहा टोपोलॉजी तक ही सीमित है।

अन्य लेज़र कैविटी टोपोलॉजी जैसे कि रिंग-कैविटी डिज़ाइन, जिसके लिए ट्रांसमिशन-मोड डिवाइस की आवश्यकता होती है, जो किसी दिए गए कैविटी लंबाई के लिए पुनरावृत्ति दर को दोगुना करने जैसे लाभ प्रदान करता है, और जो ऑप्टिकल आइसोलेटर्स के उपयोग के साथ प्रतिबिंब-प्रेरित अस्थिरता के प्रति कम संवेदनशील है, तब तक संभव नहीं है जब तक कि ऑप्टिकल सर्कुलेटर कार्यरत न हो, जो कैविटी हानि और लेजर जटिलता को बढ़ाता है; SESAMs भी कम ऑप्टिकल क्षति सीमा से ग्रस्त हैं। किन्तु फाइबर लेजर के निष्क्रिय मोड-लॉकिंग के लिए एसईएसएएम के साथ प्रतिस्पर्धा करने के लिए कोई वैकल्पिक संतृप्त अवशोषित पदार्थ नहीं थी।

वर्तमान में, ~1 पिकोसेकंड के अल्ट्राफास्ट संतृप्ति पुनर्प्राप्ति समय के साथ निकट-अवरक्त क्षेत्र में एकल दीवार कार्बन नैनोट्यूब (एसडब्ल्यूसीएनटी) में संतृप्त अवशोषण गुणों के आधार पर, शोधकर्ताओं ने सफलतापूर्वक नए प्रकार के प्रभावी संतृप्त अवशोषक का उत्पादन किया है जो संरचना और निर्माण में एसईएसएएम से अधिक अलग है, और वास्तव में, पिको- या सबपिकोसेकंड एर्बियम-डोप्ड फाइबर (ईडीएफ) लेजर के प्रदर्शन का नेतृत्व किया है। इन लेज़रों में, ठोस SWCNT संतृप्त अवशोषक का निर्माण फ्लैट ग्लास सब्सट्रेट्स, मिरर सब्सट्रेट्स, या ऑप्टिकल फाइबर के अंतिम पहलुओं पर SWCNT फिल्मों के सीधे जमाव द्वारा किया गया है। चूँकि, SWNTs के गैर-समान चिरल गुण संतृप्त अवशोषक के गुणों के स्पष्ट नियंत्रण के लिए अंतर्निहित समस्याएं प्रस्तुत करते हैं। इसके अतिरिक्त, बंडल और उलझे हुए एसडब्ल्यूएनटी, उत्प्रेरक कणों की उपस्थिति और बबल के गठन से गुहा में उच्च गैर-संतृप्त हानि होता है, इस तथ्य के अतिरिक्त कि पॉलिमर होस्ट कुछ हद तक इनमें से कुछ समस्याओं को रोक सकता है और डिवाइस एकीकरण में सरलता प्रदान कर सकता है। इसके अतिरिक्त, बड़ी ऊर्जा अल्ट्राशॉर्ट पल्स के अनुसार मल्टी-फोटॉन प्रभाव प्रेरित ऑक्सीकरण होता है, जो अवशोषक की दीर्घकालिक स्थिरता को कम कर देता है।

ग्राफीन हेक्सागोनल जाली में व्यवस्थित कार्बन परमाणु की एकल द्वि-आयामी (2डी) परमाणु लेयर है। यद्यपि पृथक फिल्म के रूप में यह शून्य बैंडगैप अर्धचालक है, यह पाया गया है कि एसडब्ल्यूसीएनटी की तरह, ग्राफीन में भी संतृप्त अवशोषण होता है। विशेष रूप से, चूंकि इसमें कोई बैंडगैप नहीं है, इसका संतृप्त अवशोषण तरंग दैर्ध्य स्वतंत्र है। लेजर मोड लॉकिंग के लिए वाइडबैंड संतृप्त अवशोषक बनाने के लिए ग्राफीन या ग्राफीन-पॉलीमर मिश्रित का उपयोग करना संभावित रूप से संभव है। इसके अतिरिक्त, एसडब्ल्यूसीएनटी के साथ तुलना करने पर, चूंकि ग्राफीन में 2डी संरचना होती है, इसलिए इसमें बहुत कम गैर-संतृप्त हानि और बहुत अधिक क्षति सीमा होनी चाहिए। दरअसल, एर्बियम-डोप्ड फाइबर लेजर के साथ हमने स्व-स्टार्टेड मोड लॉकिंग और उच्च ऊर्जा के साथ स्थिर सॉलिटॉन पल्स उत्सर्जन प्राप्त किया है।

ग्राफीन के उत्तम आइसोट्रोपिक अवशोषण गुणों के कारण, उत्पन्न सॉलिटॉन को सदिश सॉलिटॉन माना जा सकता है। ग्राफीन की अंतःक्रिया के अनुसार सदिश सॉलिटॉन का विकास कैसे हुआ यह अभी भी अस्पष्ट किन्तु रोचक है, अधिकांशतः क्योंकि इसमें परमाणुओं के साथ नॉनलाइनियर ऑप्टिकल तरंग की पारस्परिक क्रिया सम्मिलित थी।[21][22][23] जिसे नेचर एशिया मटेरियल्स में हाइलाइट और नैनोवर्क किया गया था [24] [25]

इसके अतिरिक्त, परमाणु लेयर ग्राफीन में तरंग दैर्ध्य-असंवेदनशील अल्ट्राफास्ट संतृप्त अवशोषण होता है, जिसका उपयोग पूर्ण-बैंड मोड लॉकर के रूप में किया जा सकता है। कुछ लेयर ग्राफीन के साथ लॉक किए गए एर्बियम-डोप्ड डिसिपेटिव सॉलिटॉन फाइबर लेजर मोड के साथ, यह प्रयोगात्मक रूप से दिखाया गया है कि 30 एनएम (1570 एनएम-1600 एनएम) जितनी बड़ी निरंतर तरंग दैर्ध्य ट्यूनिंग के साथ डिसिपेटिव सॉलिटॉन प्राप्त किया जा सकता है।[26]


यह भी देखें

संदर्भ

  1. C.R. Menyuk, Optics Letters, 12, 614 (1987); J. Opt. Soc. Am. B 5, 392(1988); "Nonlinear Pulse-Propagation in Birefringent Optical Fibers", IEEE J. Quantum Electron. QE-23, 174–176 (1987).
  2. D.N. Christodoulides and R.I. Joseph, Opt. Lett., 13, 53(1988).
  3. S.T. Cundiff et al., Phys. Rev. Lett., 82, 3988(1999); N.N. Akhmediev et al., Opt. Lett., 23, 852(1998); B.C. Collings et al., J. Opt. Soc. Am, B 17, 354(2000).
  4. Zhang H.; et al. (2008). "एक द्विअपवर्तक गुहा फाइबर लेजर में क्रॉस ध्रुवीकरण युग्मन द्वारा निर्मित प्रेरित सॉलिटॉन" (PDF). Opt. Lett. 33 (20): 2317–2319. arXiv:0910.5830. Bibcode:2008OptL...33.2317Z. doi:10.1364/ol.33.002317. hdl:10397/5644. PMID 18923608. S2CID 20930489. Archived from the original (PDF) on 2011-07-07. Retrieved 2011-07-07.
  5. D.N. Christodoulides and R.I. Joseph, Opt. Lett., 13, 53(1988)
  6. 6.0 6.1 D.Y. Tang et al., "Observation of high-order polarization-locked vector solitons in a fiber laser" Archived 2010-01-20 at the Wayback Machine, Physical Review Letters, 101, 153904 (2008).
  7. H. Zhang et al., "Coherent energy exchange between components of a vector soliton in fiber lasers", Optics Express, 16,12618–12623 (2008).
  8. Sun Zhi-Yuan; et al. (2009). "Bound vector solitons and soliton complexes for the coupled nonlinear Schrödinger equations". Phys. Rev. E. 80 (6): 066608. Bibcode:2009PhRvE..80f6608S. doi:10.1103/physreve.80.066608. PMID 20365295.
  9. P. Emplit et al., Opt. Commun. 62, 374 (1987).
  10. Y.S. Kivshar and S.K. Turitsyn, Opt. Lett. 18, 337 (1993); Y.S. Kivshar and B. Luther-Davies, Phys. Rep. 298, 81 (1998), and refs. therein.
  11. Zhang Han; Tang Dingyuan; Zhao Luming; Xuan Wu (2009). "फ़ाइबर लेज़र का डार्क पल्स उत्सर्जन" (PDF). Physical Review A. 80 (4): 045803. arXiv:0910.5799. Bibcode:2009PhRvA..80d5803Z. doi:10.1103/physreva.80.045803. S2CID 118581850. Archived from the original (PDF) on 2011-07-17. Retrieved 2009-10-30.
  12. Y.S. Kivshar, Opt. Lett. 17, 1322 (1992); V.V. Afanasyev et al., Opt. Lett. 14, 805 (1989).
  13. Christodoulides D.N.; et al. (1996). "पक्षपाती फोटोरिफ़्रेक्टिव क्रिस्टल में असंगत रूप से युग्मित सॉलिटॉन जोड़े". Appl. Phys. Lett. 68 (13): 1763. Bibcode:1996ApPhL..68.1763C. doi:10.1063/1.116659. S2CID 120162256.
  14. Chen Z.; et al. (1996). "Incoherently coupled dark–bright photorefractive solitons". Opt. Lett. 21 (22): 1821–1823. Bibcode:1996OptL...21.1821C. CiteSeerX 10.1.1.159.9273. doi:10.1364/ol.21.001821. PMID 19881813.
  15. Krolikowski W.; et al. (1996). "फोटोरिफ़्रेक्टिव मीडिया में उज्ज्वल और गहरे वेक्टर सॉलिटॉन की मल्टीमोड संरचना". Opt. Lett. 21 (11): 782–4. Bibcode:1996OptL...21..782K. doi:10.1364/ol.21.000782. PMID 19876157.
  16. H. Zhang et al., "Induced solitons formed by cross polarization coupling in a birefringent cavity fiber laser", Opt. Lett. 33, 2317–2319 (2008).
  17. H. Zhang et al., "Dissipative vector solitons in a dispersionmanaged cavity fiber laser with net positive cavity dispersion", Optics Express, Vol. 17, Issue 2, pp. 455–460.
  18. H. Zhang et al., "Multi-wavelength dissipative soliton operation of an erbium-doped fiber laser", Optics Express, Vol. 17, Issue 2, pp.12692-12697
  19. L.M. Zhao et al., "Polarization rotation locking of vector solitons in a fiber ring laser" Archived 2011-07-07 at the Wayback Machine, Optics Express, 16,10053–10058 (2008).
  20. Han Zhang, D. Y. Tang, L. M. Zhao, X. Wu "Observation of polarization domain wall solitons in weakly birefringent cavity fiber lasers" arXiv:0907.5496v1
  21. Qiaoliang Bao, Han Zhang, Yu Wang, Zhenhua Ni, Yongli Yan, Ze Xiang Shen, Kian Ping Loh, and Ding Yuan Tang, Advanced Functional Materials,"Atomic layer graphene as saturable absorber for ultrafast pulsed lasers "http://www3.ntu.edu.sg/home2006/zhan0174/AFM.pdf Archived 2011-07-17 at the Wayback Machine
  22. H. Zhang, D. Y. Tang, L. M. Zhao, Q. L. Bao, K. P. Loh,"Large energy mode locking of an erbium-doped fiber laser with atomic layer graphene " OPTICS EXPRESS, Vol. 17, P17630. http://www3.ntu.edu.sg/home2006/zhan0174/OE_graphene.pdf Archived 2011-07-17 at the Wayback Machine
  23. Han Zhang; Qiaoliang Bao; Dingyuan Tang; Luming Zhao & Kianping Loh (2009). "ग्राफीन-पॉलीमर कम्पोजिट मोड लॉकर के साथ बड़ी ऊर्जा सॉलिटॉन एर्बियम-डोप्ड फाइबर लेजर" (PDF). Applied Physics Letters. 95 (14): P141103. arXiv:0909.5540. Bibcode:2009ApPhL..95n1103Z. doi:10.1063/1.3244206. S2CID 119284608. Archived from the original (PDF) on 2011-07-17. Retrieved 2009-02-05.
  24. "Graphene: Mode-locked lasers : Research highlight : NPG Asia Materials". Archived from the original on 2012-02-19. Retrieved 2009-12-21.
  25. "The rise of graphene in ultra-fast photonics".
  26. Zhang, H.; et al. (2010). "ग्राफीन मोड लॉक, तरंग दैर्ध्य-ट्यून करने योग्य, डिसिपेटिव सॉलिटॉन फाइबर लेजर" (PDF). Applied Physics Letters. 96 (11): 111112. arXiv:1003.0154. Bibcode:2010ApPhL..96k1112Z. doi:10.1063/1.3367743. S2CID 119233725. Archived from the original (PDF) on 2010-11-15. Retrieved 2010-03-19.