सिल्वेस्टर आव्युह: Difference between revisions
No edit summary |
No edit summary |
||
Line 76: | Line 76: | ||
{{reflist}} | {{reflist}} | ||
* {{mathworld|urlname=SylvesterMatrix|title = Sylvester Matrix}} | * {{mathworld|urlname=SylvesterMatrix|title = Sylvester Matrix}} | ||
[[Category: मैट्रिसेस]] [[Category: बहुपदों]] | [[Category: मैट्रिसेस]] [[Category: बहुपदों]] | ||
Revision as of 11:06, 7 August 2023
गणित में, सिल्वेस्टर आव्युह (गणित) क्षेत्र या क्रमविनिमेय वलय में गुणांक वाले दो अविभाज्य बहुपद से जुड़ा आव्यूह होता है। जो की दो बहुपदों के सिल्वेस्टर आव्युह की प्रविष्टियाँ बहुपदों के गुणांक हैं। अर्थात दो बहुपदों के सिल्वेस्टर आव्युह का निर्धारक उनका परिणामी होता है, जो शून्य होता है जब दो बहुपदों का सामान्य मूल (किसी क्षेत्र में गुणांक के स्तिथि में) या गैर-स्थिर सामान्य भाजक (एक अभिन्न कार्यक्षेत्र में गुणांक के स्तिथि में) होता है।
इस प्रकार से सिल्वेस्टर मैट्रिसेस का नाम जेम्स जोसेफ सिल्वेस्टर के नाम पर रखा गया है।
परिभाषा
औपचारिक रूप से, मान लीजिए कि p और q क्रमशः घात m और n के दो अशून्य बहुपद हैं।
इस प्रकार:
यदि p और q से जुड़ा सिल्वेस्टर आव्युह फिर आव्युह है जिसका निर्माण निम्नानुसार किया गया है:
- यदि n > 0, प्रथम पंक्ति है:
- द्वतीय पंक्ति प्रथम पंक्ति है, यदि स्तंभ को दाईं ओर स्थानांतरित कर दिया गया है; तब पंक्ति का प्रथम अवयव शून्य दर्शाता है.
- निम्नलिखित n − 2 पंक्तियों को उसी तरह से प्राप्त किया जाता है, जैसे गुणांक को हर बार स्तंभ में दाईं ओर स्थानांतरित किया जाता है और पंक्ति में अन्य प्रविष्टियों को 0 पर समुच्चय किया जाता है।
- यदि m > 0 तो (n+1)th पंक्ति है:
- निम्नलिखित पंक्तियाँ पहले की तरह ही प्राप्त की जाती हैं।
इस प्रकार, यदि m = 4 और n = 3, आव्युह है:
यदि डिग्री में से एक शून्य है (अर्थात, संबंधित बहुपद गैर-शून्य स्थिर बहुपद है), तो अन्य बहुपद के गुणांकों से युक्त शून्य पंक्तियाँ होती हैं, और सिल्वेस्टर आव्युह गैर-स्थिर बहुपद की डिग्री के आयाम का विकर्ण आव्युह है, जिसमें सभी विकर्ण गुणांक स्थिर बहुपद के समान होते हैं। यदि m = n = 0, तो सिल्वेस्टर आव्युह शून्य पंक्तियों और शून्य स्तंभ वाला रिक्त आव्युह है।
प्रकार
उपरोक्त परिभाषित सिल्वेस्टर आव्युह 1840 के सिल्वेस्टर पेपर में दिखाई देता है। अतः 1853 के पेपर में, सिल्वेस्टर ने निम्नलिखित आव्युह प्रस्तुत किये गए है, जो कि p और q के सिल्वेस्टर आव्युह की पंक्तियों के क्रमपरिवर्तन तक है, जिन्हें दोनों डिग्री अधिकतम (m, n)के रूप में माना जाता है।[1]
इस प्रकार यह एक -आव्युह है जिसमें पंक्तियों के जोड़े सम्मिलित हैं। चोंनकी मानते हुए इसे इस प्रकार प्राप्त किया जाता है:
- प्रथम जोड़ी है:
- द्वतीय जोड़ी प्रथम जोड़ी है, स्तंभ को दाईं ओर स्थानांतरित कर दिया गया है; अर्थात दो पंक्तियों में प्रथम अवयव शून्य हैं।
- शेष पंक्तियों के जोड़े ऊपर की तरह ही प्राप्त किए जाते हैं।
इस प्रकार, यदि m = 4 और n = 3, आव्युह है:
इस प्रकार से 1853 आव्युह का निर्धारक, संकेत तक, सिल्वेस्टर आव्युह (जिसे p और q का परिणाम कहा जाता है) के निर्धारक का उत्पाद (अभी भी मानता है) द्वारा किया जाता है।
अनुप्रयोग
इन आव्यूहों का उपयोग क्रमविनिमेय बीजगणित में किया जाता है, जैसे यह जांचने के लिए कि क्या दो बहुपदों में (अस्थिर) उभयनिष्ठ गुणनखंड है। ऐसे स्तिथि में, संबंधित सिल्वेस्टर आव्युह (जिसे दो बहुपदों का परिणाम कहा जाता है) का निर्धारक शून्य के समान होता है। इसका विपरीत भी सत्य है।
एक साथ रैखिक समीकरणों के समाधान है
जहाँ आकार का सदिश है और का आकार है, उनमें बहुपदों (क्रमशः डिग्री और ) के केवल उन युग्मों के गुणांक सदिश सम्मिलित हैं जो की पूर्ण करते हैं।
जहां बहुपद गुणन और जोड़ का उपयोग किया जाता है। इसका अर्थ है कि स्थानान्तरित सिल्वेस्टर आव्युह का कर्नेल बेज़आउट समीकरण के सभी समाधान देता है जहां और को दर्शाया गया है।
फलस्वरूप, सिल्वेस्टर आव्युह का रैंक_(रैखिक_बीजगणित) p और q के बहुपद के अधिक उच्च सामान्य भाजक की डिग्री निर्धारित करता है:
- इसके अतिरिक्त , इस अधिक उच्च सामान्य भाजक के गुणांक को सिल्वेस्टर आव्युह के उपआव्युह के निर्धारक के रूप में व्यक्त किया जा सकता है (उपपरिणाम देखें)।
यह भी देखें
- स्थानांतरण आव्युह
- बेज़आउट आव्युह
संदर्भ
- ↑ Akritas, A.G., Malaschonok, G.I., Vigklas, P.S.:Sturm Sequences and Modified Subresultant Polynomial Remainder Sequences. Serdica Journal of Computing, Vol. 8, No 1, 29--46, 2014