अपरिवर्तनीय अनुमानक: Difference between revisions
No edit summary |
No edit summary |
||
Line 1: | Line 1: | ||
आंकड़ों में, एक अपरिवर्तनीय अनुमानक होने की अवधारणा एक मानदंड है जिसका उपयोग एक ही मात्रा के लिए विभिन्न अनुमानकों के गुणों की तुलना करने के लिए किया जा सकता है। यह इस विचार को औपचारिक रूप देने का एक | आंकड़ों में, एक अपरिवर्तनीय अनुमानक होने की अवधारणा एक मानदंड है जिसका उपयोग एक ही मात्रा के लिए विभिन्न अनुमानकों के गुणों की तुलना करने के लिए किया जा सकता है। यह इस विचार को औपचारिक रूप देने का एक विधि है कि एक अनुमानकर्ता के पास कुछ सहज रूप से आकर्षक गुण होने चाहिए। कड़ाई से बोलते हुए, "अपरिवर्तनीय" का अर्थ यह होगा कि जब माप और पैरामीटर दोनों को संगत विधियों से बदल दिया जाता है तो अनुमान स्वयं अपरिवर्तित होते हैं, किन्तु ऐसे परिवर्तनों के साथ अनुमानों को उचित विधियों से बदलने की अनुमति देने के लिए अर्थ बढ़ाया गया है।<ref>see section 5.2.1 in Gourieroux, C. and Monfort, A. (1995). Statistics and econometric models, volume 1. Cambridge University Press.</ref> शब्द [[समतुल्य मानचित्र|समतुल्य अनुमानक]] का उपयोग औपचारिक गणितीय संदर्भों में किया जाता है जिसमें डेटासेट और पैरामीटराइजेशन में परिवर्तन के जवाब में अनुमानक के परिवर्तन के विधियों के संबंध का त्रुटिहीन विवरण सम्मिलित होता है: यह अधिक सामान्य गणित में "समतुल्य" के उपयोग से मेल खाता है। | ||
==सामान्य सेटिंग== | ==सामान्य सेटिंग== | ||
Line 5: | Line 5: | ||
===पृष्ठभूमि=== | ===पृष्ठभूमि=== | ||
सांख्यिकीय अनुमान में, [[अनुमान सिद्धांत]] के कई दृष्टिकोण हैं जिनका उपयोग तुरंत यह तय करने के लिए किया जा सकता है कि उन दृष्टिकोणों के अनुसार कौन से अनुमानकों का उपयोग किया जाना चाहिए। उदाहरण के लिए, बायेसियन अनुमान के विचार सीधे [[बायेसियन अनुमानक|बायेसियन अनुमानकों]] तक ले जाएंगे। इसी प्रकार, पारंपरिक सांख्यिकीय अनुमान का सिद्धांत कभी-कभी इस बारे में | सांख्यिकीय अनुमान में, [[अनुमान सिद्धांत]] के कई दृष्टिकोण हैं जिनका उपयोग तुरंत यह तय करने के लिए किया जा सकता है कि उन दृष्टिकोणों के अनुसार कौन से अनुमानकों का उपयोग किया जाना चाहिए। उदाहरण के लिए, बायेसियन अनुमान के विचार सीधे [[बायेसियन अनुमानक|बायेसियन अनुमानकों]] तक ले जाएंगे। इसी प्रकार, पारंपरिक सांख्यिकीय अनुमान का सिद्धांत कभी-कभी इस बारे में शक्तिशाली निष्कर्ष निकाल सकता है कि किस अनुमानक का उपयोग किया जाना चाहिए। चूँकि, इन सिद्धांतों की उपयोगिता पूरी तरह से निर्धारित [[सांख्यिकीय मॉडल]] पर निर्भर करती है और अनुमानक को निर्धारित करने के लिए प्रासंगिक लॉस फलन पर भी निर्भर हो सकती है। इस प्रकार एक बायेसियन विश्लेषण किया जा सकता है, जिससे प्रासंगिक मापदंडों के लिए एक पश्च वितरण हो सकता है, किन्तु एक विशिष्ट उपयोगिता या लॉस फलन का उपयोग अस्पष्ट हो सकता है। अपरिवर्तनीयता के विचारों को पश्च वितरण को सारांशित करने के फलन पर प्रायुक्त किया जा सकता है। अन्य स्थितियों में, सांख्यिकीय विश्लेषण पूरी तरह से परिभाषित सांख्यिकीय मॉडल के बिना किए जाते हैं या सांख्यिकीय अनुमान के पारंपरिक सिद्धांत को आसानी से प्रायुक्त नहीं किया जा सकता है क्योंकि जिन मॉडलों के परिवार पर विचार किया जा रहा है वे इस प्रकार के उपचार के लिए उत्तरदायी नहीं हैं। इन स्थितियों के अतिरिक्त जहां सामान्य सिद्धांत एक अनुमानक को निर्धारित नहीं करता है, एक अनुमानक के अपरिवर्तनीयता की अवधारणा को वैकल्पिक रूपों के अनुमानकों की खोज करते समय प्रायुक्त किया जा सकता है, या तो अनुमानक के आवेदन की सादगी के लिए या जिससे अनुमानक [[मजबूत आँकड़े|शक्तिशाली आँकड़े]] हो। | ||
अपरिवर्तनीयता की अवधारणा का उपयोग कभी-कभी अनुमानकर्ताओं के | अपरिवर्तनीयता की अवधारणा का उपयोग कभी-कभी अनुमानकर्ताओं के मध्य चयन करने के विधियों के रूप में किया जाता है, किन्तु यह आवश्यक रूप से निश्चित नहीं है। उदाहरण के लिए, अपरिवर्तनीयता की आवश्यकता इस आवश्यकता के साथ असंगत हो सकती है कि [[एक अनुमानक का पूर्वाग्रह|अनुमानक का पूर्वाग्रह]] माध्य-निष्पक्ष हो; दूसरी ओर, मध्य-निष्पक्षता की जाँच को अनुमानक के नमूना वितरण के संदर्भ में परिभाषित किया गया है और इसलिए यह कई परिवर्तनों के अनुसार अपरिवर्तनीय है। | ||
अपरिवर्तनशीलता की अवधारणा का उपयोग वह है जहां आकलनकर्ताओं का वर्ग या परिवार प्रस्तावित किया जाता है और इनमें से विशेष सूत्रीकरण का चयन किया जाना चाहिए। प्रक्रिया प्रासंगिक अपरिवर्तनीय गुणों को | अपरिवर्तनशीलता की अवधारणा का उपयोग वह है जहां आकलनकर्ताओं का वर्ग या परिवार प्रस्तावित किया जाता है और इनमें से विशेष सूत्रीकरण का चयन किया जाना चाहिए। प्रक्रिया प्रासंगिक अपरिवर्तनीय गुणों को प्रायुक्त करना है और फिर इस वर्ग के अन्दर उस फॉर्मूलेशन को ढूंढना है जिसमें सर्वोत्तम गुण हैं, जिससे इष्टतम अपरिवर्तनीय अनुमानक कहा जाता है। | ||
===अपरिवर्तनीय अनुमानकों के कुछ वर्ग=== | ===अपरिवर्तनीय अनुमानकों के कुछ वर्ग=== | ||
ऐसे कई प्रकार के परिवर्तन हैं जिन पर अपरिवर्तनीय अनुमानकों के साथ व्यवहार करते समय उपयोगी रूप से विचार किया जाता है। प्रत्येक आकलनकर्ताओं के वर्ग को जन्म देता है जो उन विशेष प्रकार के परिवर्तनों के लिए अपरिवर्तनीय हैं। | ऐसे कई प्रकार के परिवर्तन हैं जिन पर अपरिवर्तनीय अनुमानकों के साथ व्यवहार करते समय उपयोगी रूप से विचार किया जाता है। प्रत्येक आकलनकर्ताओं के वर्ग को जन्म देता है जो उन विशेष प्रकार के परिवर्तनों के लिए अपरिवर्तनीय हैं। | ||
*'''शिफ्ट इनवेरिएंस''': सैद्धांतिक रूप से, किसी [[स्थान पैरामीटर]] का अनुमान डेटा मानों के सरल बदलावों के लिए अपरिवर्तनीय होना चाहिए। यदि सभी डेटा मान निश्चित राशि से बढ़ जाते हैं, तो अनुमान उसी राशि से बदलना चाहिए। [[भारित औसत]] का उपयोग करके अनुमान पर विचार करते समय, इस अपरिवर्तनीय आवश्यकता का तुरंत तात्पर्य यह है कि भार का योग होना चाहिए। जबकि समान परिणाम | *'''शिफ्ट इनवेरिएंस''': सैद्धांतिक रूप से, किसी [[स्थान पैरामीटर]] का अनुमान डेटा मानों के सरल बदलावों के लिए अपरिवर्तनीय होना चाहिए। यदि सभी डेटा मान निश्चित राशि से बढ़ जाते हैं, तो अनुमान उसी राशि से बदलना चाहिए। [[भारित औसत]] का उपयोग करके अनुमान पर विचार करते समय, इस अपरिवर्तनीय आवश्यकता का तुरंत तात्पर्य यह है कि भार का योग होना चाहिए। जबकि समान परिणाम अधिकांश निष्पक्षता की आवश्यकता से प्राप्त होता है, अपरिवर्तनीयता के उपयोग के लिए यह आवश्यक नहीं है कि कोई औसत मान उपस्थित हो और किसी भी संभाव्यता वितरण का कोई उपयोग नहीं होता है। | ||
*[[स्केल अपरिवर्तनीयता|'''स्केल अपरिवर्तनीयता''']]: ध्यान दें कि अनुमानक स्केल पैरामीटर के इनवेरिएंस के बारे में इस विषय को समग्र गुणों (भौतिकी में) के अनुसार सिस्टम के व्यवहार के बारे में अधिक सामान्य पैमाने के इनवेरिएंस के साथ भ्रमित नहीं किया जाना चाहिए। | *[[स्केल अपरिवर्तनीयता|'''स्केल अपरिवर्तनीयता''']]: ध्यान दें कि अनुमानक स्केल पैरामीटर के इनवेरिएंस के बारे में इस विषय को समग्र गुणों (भौतिकी में) के अनुसार सिस्टम के व्यवहार के बारे में अधिक सामान्य पैमाने के इनवेरिएंस के साथ भ्रमित नहीं किया जाना चाहिए। | ||
*'''पैरामीटर-परिवर्तन अपरिवर्तनीयता''': यहां, परिवर्तन अकेले पैरामीटर पर | *'''पैरामीटर-परिवर्तन अपरिवर्तनीयता''': यहां, परिवर्तन अकेले पैरामीटर पर प्रायुक्त होता है। यहां अवधारणा यह है कि अनिवार्य रूप से डेटा और पैरामीटर θ वाले मॉडल से ही अनुमान लगाया जाना चाहिए, जैसा कि उसी डेटा से बनाया जाएगा यदि मॉडल पैरामीटर φ का उपयोग करता है, जहां φ, θ, φ=h(θ) का एक-से-परिवर्तन है। इस प्रकार के अपरिवर्तनीयता के अनुसार, परिवर्तन-अपरिवर्तनीय अनुमानकों के परिणाम भी φ=h(θ) से संबंधित होने चाहिए। जब परिवर्तन [[मोनोटोनिक फ़ंक्शन|मोनोटोनिक फलन]] होता है तो [[अधिकतम संभावना अनुमानक|अधिकतम संभावना अनुमानकों]] के पास यह गुण होती है। यद्यपि अनुमानक के स्पर्शोन्मुख गुण अपरिवर्तनीय हो सकते हैं, छोटे नमूना गुण भिन्न हो सकते हैं, और विशिष्ट वितरण प्राप्त करने की आवश्यकता होती है।<ref>Gouriéroux and Monfort (1995)</ref> | ||
*'''क्रमपरिवर्तन अपरिवर्तनीयता''': जहां डेटा मानों के सेट को सांख्यिकीय मॉडल द्वारा दर्शाया जा सकता है कि वे [[स्वतंत्र और समान रूप से वितरित]] [[यादृच्छिक चर]] के परिणाम हैं, यह आवश्यकता | *'''क्रमपरिवर्तन अपरिवर्तनीयता''': जहां डेटा मानों के सेट को सांख्यिकीय मॉडल द्वारा दर्शाया जा सकता है कि वे [[स्वतंत्र और समान रूप से वितरित]] [[यादृच्छिक चर]] के परिणाम हैं, यह आवश्यकता प्रायुक्त करना उचित है कि सामान्य वितरण की किसी भी गुण का कोई भी अनुमानक क्रमपरिवर्तन-अपरिवर्तनीय होना चाहिए: विशेष रूप से अनुमानक, डेटा-मानों के सेट के फलन के रूप में माना जाता है, यदि डेटा की वस्तुओं को डेटासेट के अन्दर स्वैप किया जाता है तो उसे बदलना नहीं चाहिए। | ||
भारित औसत का उपयोग करके स्वतंत्र और समान रूप से वितरित डेटासेट से स्थान पैरामीटर का अनुमान लगाने के लिए क्रमपरिवर्तन अपरिवर्तनीयता और स्थान अपरिवर्तनीयता का संयोजन यह दर्शाता है कि वजन समान होना चाहिए और के बराबर होना चाहिए। किन्तु, भारित औसत के अतिरिक्त अन्य अनुमानक | भारित औसत का उपयोग करके स्वतंत्र और समान रूप से वितरित डेटासेट से स्थान पैरामीटर का अनुमान लगाने के लिए क्रमपरिवर्तन अपरिवर्तनीयता और स्थान अपरिवर्तनीयता का संयोजन यह दर्शाता है कि वजन समान होना चाहिए और के बराबर होना चाहिए। किन्तु, भारित औसत के अतिरिक्त अन्य अनुमानक उत्तम हो सकते हैं। | ||
===इष्टतम अपरिवर्तनीय अनुमानक=== | ===इष्टतम अपरिवर्तनीय अनुमानक=== | ||
इस सेटिंग के | इस सेटिंग के अनुसार, हमें माप <math>x</math> का एक सेट दिया जाता है जिसमें एक अज्ञात पैरामीटर <math>\theta</math> के बारे में जानकारी होती है। माप <math>x</math> को एक वेक्टर [[यादृच्छिक वेक्टर]] के रूप में तैयार किया गया है जिसमें संभाव्यता घनत्व फलन <math>f(x|\theta)</math> है जो एक पैरामीटर वेक्टर <math>\theta</math> पर निर्भर करता है। | ||
समस्या दिए गए <math>x</math> <math>\theta</math> का अनुमान लगाना है। <math>a</math> द्वारा दर्शाया गया अनुमान, माप का एक | समस्या दिए गए <math>x</math> <math>\theta</math> का अनुमान लगाना है। <math>a</math> द्वारा दर्शाया गया अनुमान, माप का एक फलन है और एक सेट <math>A</math> से संबंधित है। परिणाम की गुणवत्ता एक लॉस फलन <math>L=L(a,\theta)</math> द्वारा परिभाषित की जाती है जो एक रिस्क फलन <math>R=R(a,\theta)=E[L(a,\theta)|\theta]</math> निर्धारित करती है। <math>x</math>, <math>\theta</math>, और <math>a</math> के संभावित मानों के सेट को क्रमशः <math>X</math>, <math>\Theta</math>, और <math>A</math> द्वारा दर्शाया जाता है। | ||
===वर्गीकरण में=== | ===वर्गीकरण में=== | ||
Line 43: | Line 43: | ||
यदि <math>g\in G</math> के लिए <math>x_1=g(x_2)</math> है तो X में डेटासेट <math>x_1</math> और <math>x_2</math> समतुल्य हैं। सभी समतुल्य बिंदु समतुल्य वर्ग बनाते हैं। | यदि <math>g\in G</math> के लिए <math>x_1=g(x_2)</math> है तो X में डेटासेट <math>x_1</math> और <math>x_2</math> समतुल्य हैं। सभी समतुल्य बिंदु समतुल्य वर्ग बनाते हैं। | ||
ऐसे [[तुल्यता वर्ग]] को [[कक्षा (समूह सिद्धांत)]] (<math>X</math> में) कहा जाता है। ) <math>x_0</math> | ऐसे [[तुल्यता वर्ग]] को [[कक्षा (समूह सिद्धांत)|वर्ग (समूह सिद्धांत)]] (<math>X</math> में) कहा जाता है। ) <math>x_0</math> वर्ग <math>X(x_0)</math> समुच्चय <math>X(x_0)=\{g(x_0):g\in G\}</math> है। | ||
यदि <math>X</math> में एक ही | यदि <math>X</math> में एक ही वर्ग है तो <math>g</math> को संक्रमणीय कहा जाता है। | ||
घनत्व <math>F</math> के एक परिवार को समूह <math>G</math> के अंतर्गत अपरिवर्तनीय कहा जाता है यदि, प्रत्येक <math>g\in G</math> और <math>\theta\in \Theta</math> के लिए एक अद्वितीय <math>\theta^*\in \Theta</math> उपस्थित हो जैसे कि <math>Y=g(x)</math> का घनत्व <math>f(y|\theta^*)</math> है। <math>\theta^*</math> को <math>\bar{g}(\theta)</math> दर्शाया जाएगा। | घनत्व <math>F</math> के एक परिवार को समूह <math>G</math> के अंतर्गत अपरिवर्तनीय कहा जाता है यदि, प्रत्येक <math>g\in G</math> और <math>\theta\in \Theta</math> के लिए एक अद्वितीय <math>\theta^*\in \Theta</math> उपस्थित हो जैसे कि <math>Y=g(x)</math> का घनत्व <math>f(y|\theta^*)</math> है। <math>\theta^*</math> को <math>\bar{g}(\theta)</math> दर्शाया जाएगा। | ||
यदि <math>F</math> समूह <math>G</math> के अंतर्गत अपरिवर्तनीय है फिर | यदि <math>F</math> समूह <math>G</math> के अंतर्गत अपरिवर्तनीय है फिर लॉस फलन <math>L(\theta,a)</math> को <math>G</math> के अंतर्गत अपरिवर्तनीय कहा गया है यदि प्रत्येक <math>g\in G</math> और <math>a\in A</math> के लिए <math>a^*\in A</math> उपस्थित होता है वह <math>L(\theta,a)=L(\bar{g}(\theta),a^*)</math> सभी <math>\theta \in \Theta</math> के लिए है। परिवर्तित मूल्य <math>a^*</math> को <math>\tilde{g}(a)</math> द्वारा निरूपित किया जाता है। | ||
ऊपरोक्त में, <math>\bar{G}=\{\bar{g}:g\in G\}</math> से परिवर्तनों का समूह है <math>\Theta</math> अपने आप को और <math>\tilde{G}=\{\tilde{g}: g \in G\}</math> <math>A</math> से स्वयं में परिवर्तनों का एक समूह है। | ऊपरोक्त में, <math>\bar{G}=\{\bar{g}:g\in G\}</math> से परिवर्तनों का समूह है <math>\Theta</math> अपने आप को और <math>\tilde{G}=\{\tilde{g}: g \in G\}</math> <math>A</math> से स्वयं में परिवर्तनों का एक समूह है। | ||
Line 61: | Line 61: | ||
=== गुण === | === गुण === | ||
# अपरिवर्तनीय अनुमानक का | # अपरिवर्तनीय अनुमानक का रिस्क फलन, <math>\delta</math>, की कक्षाओं पर <math>\Theta</math> स्थिर है। इसके तुल्य <math>R(\theta,\delta)=R(\bar{g}(\theta),\delta)</math> सभी के लिए <math>\theta \in \Theta</math> और <math>\bar{g}\in \bar{G}</math> है। | ||
# संक्रमणीय के साथ अपरिवर्तनीय अनुमानक का | # संक्रमणीय के साथ अपरिवर्तनीय अनुमानक का रिस्क फलन <math>\bar{g}</math> स्थिर है। | ||
किसी दी गई समस्या के लिए, सबसे कम | किसी दी गई समस्या के लिए, सबसे कम रिस्क वाले अपरिवर्तनीय अनुमानक को सर्वोत्तम अपरिवर्तनीय अनुमानक कहा जाता है। सर्वोत्तम अपरिवर्तनीय अनुमानक सदैव प्राप्त नहीं किया जा सकता। विशेष मामला जिसके लिए इसे प्राप्त किया जा सकता है वह है जब <math>\bar{g}</math> सकर्मक है। | ||
=== उदाहरण: स्थान पैरामीटर === | === उदाहरण: स्थान पैरामीटर === | ||
Line 70: | Line 70: | ||
कल्पना करना <math>\theta</math> यदि घनत्व स्थान पैरामीटर है <math>X</math> स्वरूप का है <math>f(x-\theta)</math>. के लिए <math> \Theta=A=\mathbb{R}^1 </math> और <math>L=L(a-\theta)</math>, के अंतर्गत समस्या अपरिवर्तनीय है <math>g=\bar{g}=\tilde{g}=\{g_c:g_c(x)=x+c, c\in \mathbb{R}\}</math>. इस स्थितियों में अपरिवर्तनीय अनुमानक को संतुष्ट होना चाहिए | कल्पना करना <math>\theta</math> यदि घनत्व स्थान पैरामीटर है <math>X</math> स्वरूप का है <math>f(x-\theta)</math>. के लिए <math> \Theta=A=\mathbb{R}^1 </math> और <math>L=L(a-\theta)</math>, के अंतर्गत समस्या अपरिवर्तनीय है <math>g=\bar{g}=\tilde{g}=\{g_c:g_c(x)=x+c, c\in \mathbb{R}\}</math>. इस स्थितियों में अपरिवर्तनीय अनुमानक को संतुष्ट होना चाहिए | ||
:<math>\delta(x+c)=\delta(x)+c, \text{ for all } c\in \mathbb{R},</math> | :<math>\delta(x+c)=\delta(x)+c, \text{ for all } c\in \mathbb{R},</math> | ||
इस प्रकार यह डेल्टा <math>\delta(x)=x+K</math> (<math>K\in \mathbb{R}</math>) के रूप का है। <math>\bar{g}</math> <math>\Theta</math> पर सकर्मक है इसलिए | इस प्रकार यह डेल्टा <math>\delta(x)=x+K</math> (<math>K\in \mathbb{R}</math>) के रूप का है। <math>\bar{g}</math> <math>\Theta</math> पर सकर्मक है इसलिए रिस्क <math>\theta</math> के साथ भिन्न नहीं होता है: अर्थात, <math>R(\theta,\delta)=R(0,\delta)=\operatorname{E}[L(X+K)|\theta=0]</math> है। सबसे अच्छा अपरिवर्तनीय अनुमानक वह है जो रिस्क <math>R(\theta,\delta)</math> को न्यूनतम पर लाता है। | ||
उस स्थिति में जब L वर्ग त्रुटि <math>\delta(x)=x-\operatorname{E}[X|\theta=0]</math> है। | उस स्थिति में जब L वर्ग त्रुटि <math>\delta(x)=x-\operatorname{E}[X|\theta=0]</math> है। | ||
Line 76: | Line 76: | ||
=== पिटमैन अनुमानक === | === पिटमैन अनुमानक === | ||
अनुमान की समस्या यही है <math>X=(X_1,\dots,X_n)</math> घनत्व है <math>f(x_1-\theta,\dots,x_n-\theta)</math>, जहां θ अनुमान लगाया जाने वाला पैरामीटर है, और जहां | अनुमान की समस्या यही है <math>X=(X_1,\dots,X_n)</math> घनत्व है <math>f(x_1-\theta,\dots,x_n-\theta)</math>, जहां θ अनुमान लगाया जाने वाला पैरामीटर है, और जहां लॉस फलन <math>L(|a-\theta|)</math> है। यह समस्या निम्नलिखित (योगात्मक) परिवर्तन समूहों के साथ अपरिवर्तनीय है: | ||
:<math>G=\{g_c:g_c(x)=(x_1+c, \dots, x_n+c),c\in \mathbb{R}^1\},</math> | :<math>G=\{g_c:g_c(x)=(x_1+c, \dots, x_n+c),c\in \mathbb{R}^1\},</math> | ||
:<math>\bar{G}=\{g_c:g_c(\theta)=\theta + c,c\in \mathbb{R}^1\},</math> | :<math>\bar{G}=\{g_c:g_c(\theta)=\theta + c,c\in \mathbb{R}^1\},</math> | ||
Line 84: | Line 84: | ||
और यह पिटमैन का अनुमानक (1939) है। | और यह पिटमैन का अनुमानक (1939) है। | ||
चुकता त्रुटि | चुकता त्रुटि लॉस स्थितियों के लिए, परिणाम है | ||
:<math>\delta(x)=\frac{\int_{-\infty}^{\infty} \theta f(x_1-\theta,\dots,x_n-\theta)d\theta}{\int_{-\infty}^{\infty}f(x_1-\theta,\dots,x_n-\theta)d\theta}.</math> | :<math>\delta(x)=\frac{\int_{-\infty}^{\infty} \theta f(x_1-\theta,\dots,x_n-\theta)d\theta}{\int_{-\infty}^{\infty}f(x_1-\theta,\dots,x_n-\theta)d\theta}.</math> | ||
यदि <math>x \sim N(\theta 1_n,I)\,\!</math> (अर्थात् स्वतंत्र, इकाई-विचरण घटकों के साथ [[बहुभिन्नरूपी सामान्य वितरण]])। | यदि <math>x \sim N(\theta 1_n,I)\,\!</math> (अर्थात् स्वतंत्र, इकाई-विचरण घटकों के साथ [[बहुभिन्नरूपी सामान्य वितरण]])। | ||
:<math>\delta_{\text{Pitman}} = \delta_{ML}=\frac{\sum{x_i}}{n}.</math> | :<math>\delta_{\text{Pitman}} = \delta_{ML}=\frac{\sum{x_i}}{n}.</math> | ||
यदि <math>x \sim C(\theta 1_n,I \sigma^2)\,\!</math> (स्केल पैरामीटर σ के साथ [[कॉची वितरण]] वाले स्वतंत्र घटक) | यदि <math>x \sim C(\theta 1_n,I \sigma^2)\,\!</math> (स्केल पैरामीटर σ के साथ [[कॉची वितरण]] वाले स्वतंत्र घटक) फिर | ||
<math>\delta_{\text{Pitman}} \ne \delta_{ML}</math>,. | <math>\delta_{\text{Pitman}} \ne \delta_{ML}</math>,. |
Revision as of 10:37, 4 August 2023
आंकड़ों में, एक अपरिवर्तनीय अनुमानक होने की अवधारणा एक मानदंड है जिसका उपयोग एक ही मात्रा के लिए विभिन्न अनुमानकों के गुणों की तुलना करने के लिए किया जा सकता है। यह इस विचार को औपचारिक रूप देने का एक विधि है कि एक अनुमानकर्ता के पास कुछ सहज रूप से आकर्षक गुण होने चाहिए। कड़ाई से बोलते हुए, "अपरिवर्तनीय" का अर्थ यह होगा कि जब माप और पैरामीटर दोनों को संगत विधियों से बदल दिया जाता है तो अनुमान स्वयं अपरिवर्तित होते हैं, किन्तु ऐसे परिवर्तनों के साथ अनुमानों को उचित विधियों से बदलने की अनुमति देने के लिए अर्थ बढ़ाया गया है।[1] शब्द समतुल्य अनुमानक का उपयोग औपचारिक गणितीय संदर्भों में किया जाता है जिसमें डेटासेट और पैरामीटराइजेशन में परिवर्तन के जवाब में अनुमानक के परिवर्तन के विधियों के संबंध का त्रुटिहीन विवरण सम्मिलित होता है: यह अधिक सामान्य गणित में "समतुल्य" के उपयोग से मेल खाता है।
सामान्य सेटिंग
पृष्ठभूमि
सांख्यिकीय अनुमान में, अनुमान सिद्धांत के कई दृष्टिकोण हैं जिनका उपयोग तुरंत यह तय करने के लिए किया जा सकता है कि उन दृष्टिकोणों के अनुसार कौन से अनुमानकों का उपयोग किया जाना चाहिए। उदाहरण के लिए, बायेसियन अनुमान के विचार सीधे बायेसियन अनुमानकों तक ले जाएंगे। इसी प्रकार, पारंपरिक सांख्यिकीय अनुमान का सिद्धांत कभी-कभी इस बारे में शक्तिशाली निष्कर्ष निकाल सकता है कि किस अनुमानक का उपयोग किया जाना चाहिए। चूँकि, इन सिद्धांतों की उपयोगिता पूरी तरह से निर्धारित सांख्यिकीय मॉडल पर निर्भर करती है और अनुमानक को निर्धारित करने के लिए प्रासंगिक लॉस फलन पर भी निर्भर हो सकती है। इस प्रकार एक बायेसियन विश्लेषण किया जा सकता है, जिससे प्रासंगिक मापदंडों के लिए एक पश्च वितरण हो सकता है, किन्तु एक विशिष्ट उपयोगिता या लॉस फलन का उपयोग अस्पष्ट हो सकता है। अपरिवर्तनीयता के विचारों को पश्च वितरण को सारांशित करने के फलन पर प्रायुक्त किया जा सकता है। अन्य स्थितियों में, सांख्यिकीय विश्लेषण पूरी तरह से परिभाषित सांख्यिकीय मॉडल के बिना किए जाते हैं या सांख्यिकीय अनुमान के पारंपरिक सिद्धांत को आसानी से प्रायुक्त नहीं किया जा सकता है क्योंकि जिन मॉडलों के परिवार पर विचार किया जा रहा है वे इस प्रकार के उपचार के लिए उत्तरदायी नहीं हैं। इन स्थितियों के अतिरिक्त जहां सामान्य सिद्धांत एक अनुमानक को निर्धारित नहीं करता है, एक अनुमानक के अपरिवर्तनीयता की अवधारणा को वैकल्पिक रूपों के अनुमानकों की खोज करते समय प्रायुक्त किया जा सकता है, या तो अनुमानक के आवेदन की सादगी के लिए या जिससे अनुमानक शक्तिशाली आँकड़े हो।
अपरिवर्तनीयता की अवधारणा का उपयोग कभी-कभी अनुमानकर्ताओं के मध्य चयन करने के विधियों के रूप में किया जाता है, किन्तु यह आवश्यक रूप से निश्चित नहीं है। उदाहरण के लिए, अपरिवर्तनीयता की आवश्यकता इस आवश्यकता के साथ असंगत हो सकती है कि अनुमानक का पूर्वाग्रह माध्य-निष्पक्ष हो; दूसरी ओर, मध्य-निष्पक्षता की जाँच को अनुमानक के नमूना वितरण के संदर्भ में परिभाषित किया गया है और इसलिए यह कई परिवर्तनों के अनुसार अपरिवर्तनीय है।
अपरिवर्तनशीलता की अवधारणा का उपयोग वह है जहां आकलनकर्ताओं का वर्ग या परिवार प्रस्तावित किया जाता है और इनमें से विशेष सूत्रीकरण का चयन किया जाना चाहिए। प्रक्रिया प्रासंगिक अपरिवर्तनीय गुणों को प्रायुक्त करना है और फिर इस वर्ग के अन्दर उस फॉर्मूलेशन को ढूंढना है जिसमें सर्वोत्तम गुण हैं, जिससे इष्टतम अपरिवर्तनीय अनुमानक कहा जाता है।
अपरिवर्तनीय अनुमानकों के कुछ वर्ग
ऐसे कई प्रकार के परिवर्तन हैं जिन पर अपरिवर्तनीय अनुमानकों के साथ व्यवहार करते समय उपयोगी रूप से विचार किया जाता है। प्रत्येक आकलनकर्ताओं के वर्ग को जन्म देता है जो उन विशेष प्रकार के परिवर्तनों के लिए अपरिवर्तनीय हैं।
- शिफ्ट इनवेरिएंस: सैद्धांतिक रूप से, किसी स्थान पैरामीटर का अनुमान डेटा मानों के सरल बदलावों के लिए अपरिवर्तनीय होना चाहिए। यदि सभी डेटा मान निश्चित राशि से बढ़ जाते हैं, तो अनुमान उसी राशि से बदलना चाहिए। भारित औसत का उपयोग करके अनुमान पर विचार करते समय, इस अपरिवर्तनीय आवश्यकता का तुरंत तात्पर्य यह है कि भार का योग होना चाहिए। जबकि समान परिणाम अधिकांश निष्पक्षता की आवश्यकता से प्राप्त होता है, अपरिवर्तनीयता के उपयोग के लिए यह आवश्यक नहीं है कि कोई औसत मान उपस्थित हो और किसी भी संभाव्यता वितरण का कोई उपयोग नहीं होता है।
- स्केल अपरिवर्तनीयता: ध्यान दें कि अनुमानक स्केल पैरामीटर के इनवेरिएंस के बारे में इस विषय को समग्र गुणों (भौतिकी में) के अनुसार सिस्टम के व्यवहार के बारे में अधिक सामान्य पैमाने के इनवेरिएंस के साथ भ्रमित नहीं किया जाना चाहिए।
- पैरामीटर-परिवर्तन अपरिवर्तनीयता: यहां, परिवर्तन अकेले पैरामीटर पर प्रायुक्त होता है। यहां अवधारणा यह है कि अनिवार्य रूप से डेटा और पैरामीटर θ वाले मॉडल से ही अनुमान लगाया जाना चाहिए, जैसा कि उसी डेटा से बनाया जाएगा यदि मॉडल पैरामीटर φ का उपयोग करता है, जहां φ, θ, φ=h(θ) का एक-से-परिवर्तन है। इस प्रकार के अपरिवर्तनीयता के अनुसार, परिवर्तन-अपरिवर्तनीय अनुमानकों के परिणाम भी φ=h(θ) से संबंधित होने चाहिए। जब परिवर्तन मोनोटोनिक फलन होता है तो अधिकतम संभावना अनुमानकों के पास यह गुण होती है। यद्यपि अनुमानक के स्पर्शोन्मुख गुण अपरिवर्तनीय हो सकते हैं, छोटे नमूना गुण भिन्न हो सकते हैं, और विशिष्ट वितरण प्राप्त करने की आवश्यकता होती है।[2]
- क्रमपरिवर्तन अपरिवर्तनीयता: जहां डेटा मानों के सेट को सांख्यिकीय मॉडल द्वारा दर्शाया जा सकता है कि वे स्वतंत्र और समान रूप से वितरित यादृच्छिक चर के परिणाम हैं, यह आवश्यकता प्रायुक्त करना उचित है कि सामान्य वितरण की किसी भी गुण का कोई भी अनुमानक क्रमपरिवर्तन-अपरिवर्तनीय होना चाहिए: विशेष रूप से अनुमानक, डेटा-मानों के सेट के फलन के रूप में माना जाता है, यदि डेटा की वस्तुओं को डेटासेट के अन्दर स्वैप किया जाता है तो उसे बदलना नहीं चाहिए।
भारित औसत का उपयोग करके स्वतंत्र और समान रूप से वितरित डेटासेट से स्थान पैरामीटर का अनुमान लगाने के लिए क्रमपरिवर्तन अपरिवर्तनीयता और स्थान अपरिवर्तनीयता का संयोजन यह दर्शाता है कि वजन समान होना चाहिए और के बराबर होना चाहिए। किन्तु, भारित औसत के अतिरिक्त अन्य अनुमानक उत्तम हो सकते हैं।
इष्टतम अपरिवर्तनीय अनुमानक
इस सेटिंग के अनुसार, हमें माप का एक सेट दिया जाता है जिसमें एक अज्ञात पैरामीटर के बारे में जानकारी होती है। माप को एक वेक्टर यादृच्छिक वेक्टर के रूप में तैयार किया गया है जिसमें संभाव्यता घनत्व फलन है जो एक पैरामीटर वेक्टर पर निर्भर करता है।
समस्या दिए गए का अनुमान लगाना है। द्वारा दर्शाया गया अनुमान, माप का एक फलन है और एक सेट से संबंधित है। परिणाम की गुणवत्ता एक लॉस फलन द्वारा परिभाषित की जाती है जो एक रिस्क फलन निर्धारित करती है। , , और के संभावित मानों के सेट को क्रमशः , , और द्वारा दर्शाया जाता है।
वर्गीकरण में
सांख्यिकीय वर्गीकरण में, वह नियम जो एक नए डेटा-आइटम को एक वर्ग निर्दिष्ट करता है, उसे एक विशेष प्रकार का अनुमानक माना जा सकता है। पैटर्न पहचान के लिए पूर्व ज्ञान तैयार करने में कई अपरिवर्तन-प्रकार के विचारों को ध्यान में रखा जा सकता है।
गणितीय सेटिंग
परिभाषा
अपरिवर्तनीय अनुमानक अनुमानक है जो निम्नलिखित दो नियमों का पालन करता है:[citation needed]
- तर्कसंगत अपरिवर्तनशीलता का सिद्धांत: किसी निर्णय समस्या में की गई कार्रवाई उपयोग किए गए माप पर परिवर्तन पर निर्भर नहीं होनी चाहिए
- अपरिवर्तनशील सिद्धांत: यदि दो निर्णय समस्याओं की औपचारिक संरचना (, , और के संदर्भ में) समान है, तो प्रत्येक समस्या में समान निर्णय नियम का उपयोग किया जाना चाहिए।
एक अपरिवर्तनीय या समतुल्य अनुमानक को औपचारिक रूप से परिभाषित करने के लिए, पहले परिवर्तनों के समूहों से संबंधित कुछ परिभाषाओं की आवश्यकता होती है। मान लीजिए कि संभावित डेटा-नमूनों के सेट को दर्शाता है। के परिवर्तनों का एक समूह, जिसे , (मापने योग्य) द्वारा निरूपित किया जाता है, 1:1 का एक सेट है और स्वयं के परिवर्तनों पर आधारित है, जो निम्नलिखित शर्तों को पूरा करता है:
- यदि और तब
- यदि तब , कहाँ (अर्थात, प्रत्येक परिवर्तन का समूह के अन्दर व्युत्क्रम होता है।)
- (अर्थात पहचान परिवर्तन है)
यदि के लिए है तो X में डेटासेट और समतुल्य हैं। सभी समतुल्य बिंदु समतुल्य वर्ग बनाते हैं।
ऐसे तुल्यता वर्ग को वर्ग (समूह सिद्धांत) ( में) कहा जाता है। ) वर्ग समुच्चय है।
यदि में एक ही वर्ग है तो को संक्रमणीय कहा जाता है।
घनत्व के एक परिवार को समूह के अंतर्गत अपरिवर्तनीय कहा जाता है यदि, प्रत्येक और के लिए एक अद्वितीय उपस्थित हो जैसे कि का घनत्व है। को दर्शाया जाएगा।
यदि समूह के अंतर्गत अपरिवर्तनीय है फिर लॉस फलन को के अंतर्गत अपरिवर्तनीय कहा गया है यदि प्रत्येक और के लिए उपस्थित होता है वह सभी के लिए है। परिवर्तित मूल्य को द्वारा निरूपित किया जाता है।
ऊपरोक्त में, से परिवर्तनों का समूह है अपने आप को और से स्वयं में परिवर्तनों का एक समूह है।
के अनुसार एक अनुमान समस्या अपरिवर्तनीय (समतुल्य) है यदि ऊपर परिभाषित अनुसार तीन समूह उपस्थित हैं।
एक अनुमान समस्या के लिए जो के अंतर्गत अपरिवर्तनीय है, अनुमानक के अंतर्गत एक अपरिवर्तनीय अनुमानक है यदि, सभी और के लिए,
गुण
- अपरिवर्तनीय अनुमानक का रिस्क फलन, , की कक्षाओं पर स्थिर है। इसके तुल्य सभी के लिए और है।
- संक्रमणीय के साथ अपरिवर्तनीय अनुमानक का रिस्क फलन स्थिर है।
किसी दी गई समस्या के लिए, सबसे कम रिस्क वाले अपरिवर्तनीय अनुमानक को सर्वोत्तम अपरिवर्तनीय अनुमानक कहा जाता है। सर्वोत्तम अपरिवर्तनीय अनुमानक सदैव प्राप्त नहीं किया जा सकता। विशेष मामला जिसके लिए इसे प्राप्त किया जा सकता है वह है जब सकर्मक है।
उदाहरण: स्थान पैरामीटर
कल्पना करना यदि घनत्व स्थान पैरामीटर है स्वरूप का है . के लिए और , के अंतर्गत समस्या अपरिवर्तनीय है . इस स्थितियों में अपरिवर्तनीय अनुमानक को संतुष्ट होना चाहिए
इस प्रकार यह डेल्टा () के रूप का है। पर सकर्मक है इसलिए रिस्क के साथ भिन्न नहीं होता है: अर्थात, है। सबसे अच्छा अपरिवर्तनीय अनुमानक वह है जो रिस्क को न्यूनतम पर लाता है।
उस स्थिति में जब L वर्ग त्रुटि है।
पिटमैन अनुमानक
अनुमान की समस्या यही है घनत्व है , जहां θ अनुमान लगाया जाने वाला पैरामीटर है, और जहां लॉस फलन है। यह समस्या निम्नलिखित (योगात्मक) परिवर्तन समूहों के साथ अपरिवर्तनीय है:
सर्वोत्तम अपरिवर्तनीय अनुमानक वह है जो न्यूनतम करता है
और यह पिटमैन का अनुमानक (1939) है।
चुकता त्रुटि लॉस स्थितियों के लिए, परिणाम है
यदि (अर्थात् स्वतंत्र, इकाई-विचरण घटकों के साथ बहुभिन्नरूपी सामान्य वितरण)।
यदि (स्केल पैरामीटर σ के साथ कॉची वितरण वाले स्वतंत्र घटक) फिर
,.
चूँकि परिणाम है
साथ
संदर्भ
- Berger, James O. (1985). Statistical decision theory and Bayesian Analysis (2nd ed.). New York: Springer-Verlag. ISBN 0-387-96098-8. MR 0804611.[page needed]
- Freue, Gabriela V. Cohen (2007). "The Pitman estimator of the Cauchy location parameter". Journal of Statistical Planning and Inference. 137 (6): 1900–1913. doi:10.1016/j.jspi.2006.05.002.
- Pitman, E.J.G. (1939). "The estimation of the location and scale parameters of a continuous population of any given form". Biometrika. 30 (3/4): 391–421. doi:10.1093/biomet/30.3-4.391. JSTOR 2332656.
- Pitman, E.J.G. (1939). "Tests of Hypotheses Concerning Location and Scale Parameters". Biometrika. 31 (1/2): 200–215. doi:10.1093/biomet/31.1-2.200. JSTOR 2334983.