ट्रंकेशन त्रुटि (संख्यात्मक एकीकरण): Difference between revisions

From Vigyanwiki
No edit summary
 
(One intermediate revision by one other user not shown)
Line 80: Line 80:
* [http://livetoad.org/Courses/Documents/03e0/Notes/truncation_error.pdf Notes on truncation errors and Runge-Kutta methods]{{dead link|date=March 2022}}
* [http://livetoad.org/Courses/Documents/03e0/Notes/truncation_error.pdf Notes on truncation errors and Runge-Kutta methods]{{dead link|date=March 2022}}
* [http://www.math.unl.edu/~gledder1/Math447/EulerError Truncation error of Euler's method]{{dead link|date=March 2022}}
* [http://www.math.unl.edu/~gledder1/Math447/EulerError Truncation error of Euler's method]{{dead link|date=March 2022}}
[[Category: संख्यात्मक एकीकरण (चतुर्भुज)]]


 
[[Category:All articles with dead external links]]
 
[[Category:Articles with dead external links from March 2022]]
[[Category: Machine Translated Page]]
[[Category:Created On 25/07/2023]]
[[Category:Created On 25/07/2023]]
[[Category:Vigyan Ready]]
[[Category:Lua-based templates]]
[[Category:Machine Translated Page]]
[[Category:Pages with script errors]]
[[Category:Short description with empty Wikidata description]]
[[Category:Templates Vigyan Ready]]
[[Category:Templates that add a tracking category]]
[[Category:Templates that generate short descriptions]]
[[Category:Templates using TemplateData]]
[[Category:संख्यात्मक एकीकरण (चतुर्भुज)]]

Latest revision as of 14:35, 11 August 2023

संख्यात्मक एकीकरण में ट्रंकेशन त्रुटियाँ दो प्रकार की होती हैं:

  • स्थानीय खंडन त्रुटियाँ - एक पुनरावृत्ति के कारण होने वाली त्रुटि, और
  • ग्लोबल ट्रंकेशन त्रुटियां - कई पुनरावृत्तियों के कारण होने वाली संचयी त्रुटि।

परिभाषाएँ

मान लीजिए हमारे पास एक सतत अवकल समीकरण है

और हम अलग-अलग समय चरणों पर वास्तविक समाधान के एक अनुमान की गणना करना चाहते हैं। सरलता के लिए, मान लें कि समय चरण समान दूरी पर हैं:

मान लीजिए कि हम प्रपत्र की एक-चरणीय विधि से अनुक्रम की गणना करते हैं

फलन को इंक्रीमेंट फलन कहा जाता है, और इसकी व्याख्या स्लोप के अनुमान के रूप में की जा सकती है।

स्थानीय ट्रंकेशन त्रुटि

स्थानीय ट्रंकेशन त्रुटि यह त्रुटि है कि हमारा वेतन वृद्धि फलन , , एक ही पुनरावृत्ति के समय कारण, पिछले पुनरावृत्ति में सही समाधान का सही ज्ञान मानता है।

अधिक औपचारिक रूप से, चरण पर स्थानीय ट्रंकेशन त्रुटि , की गणना वेतन वृद्धि के लिए समीकरण के बाएँ और दाएँ पक्ष के बीच के अंतर से की जाती है।

[1][2]

यदि स्थानीय ट्रंकेशन त्रुटि है तो संख्यात्मक विधि सुसंगत है (इसका अर्थ है कि प्रत्येक के लिए एक उपस्थित है जैसे कि सभी के लिए; देखें लिटिल-ओ संकेतन)। यदि वृद्धि फलन निरंतर है, तो विधि सुसंगत है यदि, और केवल यदि है।[3]

इसके अतिरिक्त , हम कहते हैं कि संख्यात्मक विधि में ऑर्डर है यदि प्रारंभिक मूल्य समस्या के किसी भी पर्याप्त रूप से सुचारू समाधान के लिए, स्थानीय ट्रंकेशन त्रुटि है (जिसका अर्थ है कि स्थिरांक और उपस्थित हैं जैसे वह सभी के लिए है ।[4]

ग्लोबल ट्रंकेशन त्रुटि

ग्लोबल ट्रंकेशन त्रुटि सभी पुनरावृत्तियों पर स्थानीय ट्रंकेशन त्रुटि का संचय है, जो प्रारंभिक समय चरण में सही समाधान का सही ज्ञान मानती है।

अधिक औपचारिक रूप से, ग्लोबल ट्रंकेशन त्रुटि, समय पर परिभाषित की गई है:

[5]

यदि चरण आकार शून्य हो जाता है तो ग्लोबल ट्रंकेशन त्रुटि शून्य हो जाती है तो संख्यात्मक विधि अभिसरण होती है; दूसरे शब्दों में, संख्यात्मक समाधान स्पष्ट समाधान में परिवर्तित हो जाता है: .[6]


स्थानीय और ग्लोबल ट्रंकेशन त्रुटियों के बीच संबंध

कभी-कभी ग्लोबल ट्रंकेशन त्रुटि पर ऊपरी सीमा की गणना करना संभव है, यदि हम पहले से ही स्थानीय ट्रंकेशन त्रुटि जानते हैं। इसके लिए आवश्यक है कि हमारा वेतन वृद्धि कार्य पर्याप्त रूप से अच्छा हो।

ग्लोबल ट्रंकेशन त्रुटि पुनरावृत्ति संबंध को संतुष्ट करती है:

यह परिभाषाओं से तुरंत अनुसरण करता है। अब मान लें कि वेतन वृद्धि फलन दूसरे तर्क में लिप्सचिट्ज़ निरंतर है, अर्थात, एक स्थिरांक उपस्थित है जैसे कि सभी और और के लिए, हमारे पास है:

तब ग्लोबल त्रुटि बाध्यता को संतुष्ट करती है

[7]

ग्लोबल त्रुटि के लिए उपरोक्त सीमा से यह पता चलता है कि यदि अंतर समीकरण में फलन पहले तर्क में निरंतर है और लिप्सचिट्ज़ दूसरे तर्क में निरंतर है (पिकार्ड-लिंडेलोफ प्रमेय से स्थिति), और वृद्धि फलन निरंतर है सभी तर्कों में और दूसरे तर्क में लिप्सचिट्ज़ निरंतर, तो ग्लोबल त्रुटि शून्य हो जाती है क्योंकि चरण आकार शून्य के समीप पहुंचता है (दूसरे शब्दों में, संख्यात्मक विधि स्पष्ट समाधान में परिवर्तित हो जाती है)।[8]

रैखिक मल्टीस्टेप विधियों का विस्तार

अब सूत्र द्वारा दी गई एक रैखिक मल्टीस्टेप विधि पर विचार करें

इस प्रकार, संख्यात्मक समाधान के लिए अगले मान की गणना इसके अनुसार की जाती है

एक रैखिक मल्टीस्टेप विधि का अगला पुनरावृत्त पिछले चरण पर निर्भर करता है। इस प्रकार, स्थानीय ट्रंकेशन त्रुटि की परिभाषा में, अब यह माना जाता है कि पिछले सभी पुनरावृत्त स्पष्ट समाधान के अनुरूप हैं:

[9]

पुनः, यदि तो विधि सुसंगत है और यदि है तो इसका क्रम p है। ग्लोबल ट्रंकेशन त्रुटि की परिभाषा भी अपरिवर्तित है।

स्थानीय और ग्लोबल ट्रंकेशन त्रुटियों के बीच का संबंध एक-चरणीय विधियों की सरल सेटिंग से थोड़ा अलग है। रैखिक मल्टीस्टेप विधियों के लिए, स्थानीय और ग्लोबल ट्रंकेशन त्रुटियों के बीच संबंध को समझाने के लिए शून्य-स्थिरता नामक एक अतिरिक्त अवधारणा की आवश्यकता होती है। शून्य-स्थिरता की स्थिति को पूरा करने वाली रैखिक मल्टीस्टेप विधियाँ स्थानीय और ग्लोबल त्रुटियों के बीच एक-चरणीय विधियों के समान संबंध रखती हैं। दूसरे शब्दों में, यदि एक रैखिक मल्टीस्टेप विधि शून्य-स्थिर और सुसंगत है, तो यह अभिसरण करती है। और यदि एक रैखिक मल्टीस्टेप विधि शून्य-स्थिर है और इसमें स्थानीय त्रुटि है, तो इसकी ग्लोबल त्रुटि को संतुष्ट करती है।[10]

यह भी देखें

टिप्पणियाँ

  1. Gupta, G. K.; Sacks-Davis, R.; Tischer, P. E. (March 1985). "ODE को हल करने में हाल के विकास की समीक्षा". Computing Surveys. 17 (1): 5–47. CiteSeerX 10.1.1.85.783. doi:10.1145/4078.4079.
  2. Süli & Mayers 2003, p. 317, calls the truncation error.
  3. Süli & Mayers 2003, pp. 321 & 322
  4. Iserles 1996, p. 8; Süli & Mayers 2003, p. 323
  5. Süli & Mayers 2003, p. 317
  6. Iserles 1996, p. 5
  7. Süli & Mayers 2003, p. 318
  8. Süli & Mayers 2003, p. 322
  9. Süli & Mayers 2003, p. 337, uses a different definition, dividing this by essentially by h
  10. Süli & Mayers 2003, p. 340

संदर्भ

बाहरी संबंध