योजक सफेद गाउसियन रव: Difference between revisions

From Vigyanwiki
(Created page with "{{Short description|Basic noise model used in information theory}} {{One source|date=February 2020}} एडिटिव व्हाइट गॉसियन शोर (AWGN)...")
 
No edit summary
 
(23 intermediate revisions by 4 users not shown)
Line 1: Line 1:
{{Short description|Basic noise model used in information theory}}
{{Short description|Basic noise model used in information theory}}
{{One source|date=February 2020}}
{{One source|date=February 2020}}
एडिटिव व्हाइट गॉसियन शोर (AWGN) एक बुनियादी शोर मॉडल है जिसका उपयोग प्रकृति में होने वाली कई यादृच्छिक प्रक्रियाओं के प्रभाव की नकल करने के लिए [[सूचना सिद्धांत]] में किया जाता है। संशोधक विशिष्ट विशेषताओं को दर्शाते हैं:
'''योजक सफेद गाउसियन रव''' ('''एडब्ल्यूजीएन''') एक मूल रव प्रारूप है जिसका उपयोग प्रकृति में होने वाली कई यादृच्छिक प्रक्रियाओं के प्रभाव की नकल करने के लिए [[सूचना सिद्धांत]] में किया जाता है। संशोधक विशिष्ट विशेषताओं को दर्शाते हैं:
* ''एडिटिव'' क्योंकि यह किसी भी शोर में जोड़ा जाता है जो सूचना प्रणाली में अंतर्निहित हो सकता है।
* '''''योजक''''' क्योंकि यह किसी भी रव में जोड़ा जाता है जो सूचना पद्धति में अंतर्निहित हो सकता है।
* ''व्हाइट'' इस विचार को संदर्भित करता है कि इसमें सूचना प्रणाली के लिए [[आवृत्ति]] बैंड में एक समान स्पेक्ट्रल घनत्व#पावर स्पेक्ट्रल घनत्व है। यह श्वेत#श्वेत प्रकाश का एक सादृश्य है जिसे दृश्य स्पेक्ट्रम में सभी आवृत्तियों पर समान उत्सर्जन द्वारा महसूस किया जा सकता है।
* '''''सफेद''''' इस विचार को संदर्भित करता है कि इसमें सूचना पद्धति के लिए आवृत्ति बैंड में एक समान [[शक्ति स्पेक्ट्रमी घनत्व]] है। यह [[सफेद रंग]] का एक सादृश्य है जिसे [[दृश्य स्पेक्ट्रम]] में सभी आवृत्तियों पर समान उत्सर्जनों द्वारा महसूस किया जा सकता है।
* ''गाऊशियन'' क्योंकि इसका समय क्षेत्र में औसत समय डोमेन मान शून्य ([[गाऊसी प्रक्रिया]]) के साथ एक [[सामान्य वितरण]] है।
* '''''गाउसियन''''' क्योंकि इसका काल प्रक्षेत्र में औसत काल प्रक्षेत्र मान शून्य ([[गाऊसी प्रक्रिया|गाउसियन प्रक्रिया]]) के साथ एक [[सामान्य वितरण]] है।


[[वाइडबैंड]] शोर कई प्राकृतिक शोर स्रोतों से आता है, जैसे कंडक्टरों में परमाणुओं के थर्मल कंपन (थर्मल शोर या जॉनसन-नाइक्विस्ट शोर के रूप में जाना जाता है), शॉट शोर, पृथ्वी और अन्य गर्म वस्तुओं से ब्लैक-बॉडी विकिरण, और सूर्य जैसे आकाशीय स्रोतों से। संभाव्यता सिद्धांत की [[केंद्रीय सीमा प्रमेय]] इंगित करती है कि कई यादृच्छिक प्रक्रियाओं के योग में गाऊसी या सामान्य नामक वितरण होगा।
विस्तृत बैंड रव कई प्राकृतिक रव स्रोतों से आता है, जैसे संवाहकों में परमाणुओं के ऊष्मीय कंपन (ऊष्मीय रव या [[जॉनसन-नाइक्विस्ट रव]] के रूप में जाना जाता है), [[शॉट रव]], पृथ्वी और अन्य गर्म वस्तुओं से [[कृष्णिका विकिरण]], और सूर्य जैसे खगोलीय स्रोतों से। [[प्रायिकता सिद्धांत]] की [[केंद्रीय सीमा प्रमेय]] निर्दिष्ट करती है कि कई यादृच्छिक प्रक्रियाओं के योग में गाऊसी या सामान्य नामक वितरण होगा।


AWGN को अक्सर एक संचार चैनल के रूप में उपयोग किया जाता है जिसमें संचार में एकमात्र बाधा निरंतर [[वर्णक्रमीय घनत्व]] ([[बैंडविड्थ (सिग्नल प्रोसेसिंग)]] के प्रति [[ हेटर्स ]] [[वाट]] के रूप में व्यक्त) और आयाम के [[गाऊसी वितरण]] के साथ वाइडबैंड या सफेद शोर का एक रैखिक जोड़ है। मॉडल [[लुप्त होती]], आवृत्ति चयनात्मकता, [[हस्तक्षेप (संचार)]], गैर-रैखिकता या [[फैलाव (प्रकाशिकी)]] को ध्यान में नहीं रखता है। हालाँकि, यह सरल और सुव्यवस्थित गणितीय मॉडल तैयार करता है जो इन अन्य घटनाओं पर विचार करने से पहले किसी प्रणाली के अंतर्निहित व्यवहार में अंतर्दृष्टि प्राप्त करने के लिए उपयोगी होते हैं।
एडब्ल्यूजीएन को अधिकतर एक [[चैनल मॉडल|प्रणाल प्रारूप]] के रूप में उपयोग किया जाता है जिसमें संचार में एकमात्र बाधा नियत [[वर्णक्रमीय घनत्व]] ([[बैंडविड्थ (सिग्नल प्रोसेसिंग)|बैंड विड्थ]] के प्रति [[हर्ट्ज़]] [[वाट]] के रूप में व्यक्त) और आयाम के [[गाऊसी वितरण]] के साथ [[वाइडबैंड]] या [[सफेद रव]] का एक रैखिक जोड़ है। प्रतिरूप [[लुप्त होती|म्लानन]] (फडिंग), [[आवृत्ति]] चयनात्मकता, [[हस्तक्षेप (संचार)|हस्तक्षेप]], [[गैर-रैखिकता|अरैखिकता]] या [[फैलाव (प्रकाशिकी)|परिक्षेपण]] को ध्यान में नहीं रखता है। हालाँकि, यह सरल और सुव्यवस्थित गणितीय प्रतिरूप तैयार करता है जो इन अन्य परिघटनाओं पर विचार करने से पहले किसी पद्धति के अंतर्निहित व्यवहार में अंतर्दृष्टि प्राप्त करने के लिए उपयोगी होते हैं।


AWGN चैनल कई [[उपग्रह]] और गहरे अंतरिक्ष संचार लिंक के लिए एक अच्छा मॉडल है। मल्टीपाथ, भूभाग अवरोधन, हस्तक्षेप आदि के कारण अधिकांश स्थलीय लिंक के लिए यह एक अच्छा मॉडल नहीं है। हालाँकि, स्थलीय पथ मॉडलिंग के लिए, AWGN का उपयोग आमतौर पर मल्टीपाथ, भूभाग अवरोधन, हस्तक्षेप, जमीनी अव्यवस्था और स्वयं हस्तक्षेप के अलावा अध्ययन के तहत चैनल के पृष्ठभूमि शोर का अनुकरण करने के लिए किया जाता है, जिसका सामना आधुनिक रेडियो सिस्टम स्थलीय संचालन में करते हैं।
एडब्ल्यूजीएन प्रणाल कई [[उपग्रह|उपग्रहों]] और गहन अंतरिक्ष संचार कड़ियों के लिए एक अच्छा प्रतिरूप है। बहुपथ, भूभाग अवरोधन, हस्तक्षेप आदि के कारण अधिकांश स्थलीय कड़ियों के लिए यह एक अच्छा प्रतिरूप नहीं है। हालाँकि, स्थलीय पथ प्रतिरूपण के लिए, एडब्ल्यूजीएन का उपयोग आमतौर पर अध्ययन के अंतर्गत प्रणाल के पृष्ठभूमि रव का अनुकरण करने के लिए किया जाता है, इसके अतिरिक्त बहुपथ, भू भाग अवरोधन, हस्तक्षेप, भू अपचित्र और स्वयं हस्तक्षेप का उपयोग आधुनिक रेडियो प्रणाली स्थलीय संचालन में करते हैं।


==चैनल क्षमता==
==प्रणाल क्षमता==
AWGN चैनल को आउटपुट की एक श्रृंखला द्वारा दर्शाया गया है <math>Y_i</math> असतत-समय घटना सूचकांक पर <math>i</math>. <math>Y_i</math> इनपुट का योग है <math>X_i</math> और शोर, <math>Z_i</math>, कहाँ <math>Z_i</math> [[स्वतंत्र और समान रूप से वितरित यादृच्छिक चर]] है और भिन्नता के साथ शून्य-माध्य सामान्य वितरण से लिया गया है <math>N</math> (ये शोर)। <math>Z_i</math> h> को आगे इसके साथ सहसंबद्ध नहीं माना जाता है <math>X_i</math>.
एडब्ल्यूजीएन प्रणाल को असतत समय घटना सूचकांक <math>i</math> पर आउटपुट <math>Y_i</math> की एक श्रृंखला द्वारा दर्शाया गया है। <math>Y_i</math> इनपुट <math>X_i</math> और रव, <math>Z_i</math> का योग है, जहां <math>Z_i</math> [[स्वतंत्र और समान रूप से वितरित यादृच्छिक चर|स्वतंत्र है]] और [[विचरण|प्रसरण]] ''N'' (रव) के साथ शून्य-माध्य [[सामान्य वितरण]] से [[समान रूप से वितरित]] और खींचा गया है। यह भी माना जाता है कि <math>Z_i</math> का <math>X_i</math> के साथ कोई संबंध नहीं है।
:<math>
:<math>
Z_i \sim \mathcal{N}(0, N)
Z_i \sim \mathcal{N}(0, N)
Line 20: Line 20:
Y_i = X_i + Z_i.
Y_i = X_i + Z_i.
\,\!</math>
\,\!</math>
जब तक शोर न हो, चैनल की क्षमता अनंत है <math>N</math> शून्येतर है, और <math>X_i</math> पर्याप्त रूप से प्रतिबंधित हैं. इनपुट पर सबसे आम बाधा तथाकथित पावर बाधा है, जिसके लिए कोडवर्ड की आवश्यकता होती है <math>(x_1, x_2, \dots , x_k)</math> चैनल के माध्यम से प्रसारित, हमारे पास है:
प्रणाल की क्षमता अनंत है जब तक कि रव <math>N</math> शून्येतर है, और <math>X_i</math> पर्याप्त रूप से प्रतिबंधित हैं| इनपुट पर सबसे साधारण व्यवरोध तथाकथित "शक्ति" व्यवरोध है, प्रणाल के माध्यम से प्रसारित संकेत शब्दों <math>(x_1, x_2, \dots , x_k)</math> के लिए इसकी आवश्यकता होती है, हमारे पास,


:<math>
:<math>
\frac{1}{k}\sum_{i=1}^k x_i^2 \leq P,
\frac{1}{k}\sum_{i=1}^k x_i^2 \leq P
</math>
</math> है
कहाँ <math>P</math> अधिकतम चैनल शक्ति का प्रतिनिधित्व करता है।
जहां <math>P</math> अधिकतम प्रणाल शक्ति का निरुपण करता है। इसलिए, शक्ति-प्रतिबंधित प्रणाल के लिए [[चैनल क्षमता|प्रणाल क्षमता]] इस प्रकार दी गई है:
इसलिए, बिजली-बाधित चैनल के लिए [[चैनल क्षमता]] इस प्रकार दी गई है:


:<math>
:<math>
C = \max \left\{ I(X;Y) : f \text{ s.t. } E \left( X^2 \right) \leq P \right\}
C = \max \left\{ I(X;Y) : f \text{ s.t. } E \left( X^2 \right) \leq P \right\}
\,\!</math>
\,\!</math>
कहाँ <math>f</math> का वितरण है <math>X</math>. बढ़ाना <math>I(X;Y)</math>, इसे [[विभेदक एन्ट्रापी]] के संदर्भ में लिखना:
जहां <math>f</math><math>X</math> का वितरण है | <math>I(X;Y)</math> का विस्तार करें, इसे [[विभेदक एन्ट्रापी]] के पदों में लिखें:
:<math>
:<math>
\begin{align}
\begin{align}
Line 43: Line 42:
I(X;Y) = h(Y) - h(Z)
I(X;Y) = h(Y) - h(Z)
\,\!</math>
\,\!</math>
गाऊसी की विभेदक एन्ट्रापी का मूल्यांकन करने पर यह मिलता है:
गाऊसी की [[विभेदक एन्ट्रापी]] का मूल्यांकन करने पर यह मिलता है:
:<math>
:<math>
h(Z) = \frac{1}{2} \log(2 \pi e N)
h(Z) = \frac{1}{2} \log(2 \pi e N)
\,\!</math>
\,\!</math>
क्योंकि <math>X</math> और <math>Z</math> स्वतंत्र हैं और उनका योग देता है <math>Y</math>:
क्योंकि <math>X</math> और <math>Z</math> स्वतंत्र हैं और उनका योग <math>Y</math> देता है:


:<math>
:<math>
E(Y^2) = E((X+Z)^2) = E(X^2) + 2E(X)E(Z)+E(Z^2) \leq  P + N
E(Y^2) = E((X+Z)^2) = E(X^2) + 2E(X)E(Z)+E(Z^2) \leq  P + N
\,\!</math>
\,\!</math>
इस सीमा से, हम अंतर एन्ट्रापी की एक संपत्ति से अनुमान लगाते हैं
इस सीमा से, हम विभेदक एन्ट्रापी के एक गुण से अनुमान लगाते हैं


:<math>
:<math>
h(Y) \leq \frac{1}{2} \log(2 \pi e(P+N))
h(Y) \leq \frac{1}{2} \log(2 \pi e(P+N))
\,\!</math>
\,\!</math>
इसलिए, चैनल क्षमता पारस्परिक जानकारी पर उच्चतम प्राप्य सीमा द्वारा दी गई है:
इसलिए, प्रणाल क्षमता पारस्परिक जानकारी पर उच्चतम प्राप्य सीमा द्वारा दी गई है:
:<math>
:<math>
I(X;Y) \leq \frac{1}{2}\log(2 \pi e (P+N)) - \frac {1}{2}\log(2 \pi e N)
I(X;Y) \leq \frac{1}{2}\log(2 \pi e (P+N)) - \frac {1}{2}\log(2 \pi e N)
\,\!</math>
\,\!</math>
कहाँ <math>I(X;Y)</math> अधिकतम तब होता है जब:
जहां <math>I(X;Y)</math> अधिकतम तब होता है जब:


:<math>
:<math>
X \sim \mathcal{N}(0, P)
X \sim \mathcal{N}(0, P)
\,\!</math>
\,\!</math>
इस प्रकार चैनल क्षमता <math>C</math> AWGN चैनल के लिए यह दिया गया है:
इस प्रकार एडब्ल्यूजीएन प्रणाल के लिए प्रणाल क्षमता C इस प्रकार दी गई है:
:<math>
:<math>
C = \frac {1}{2} \log\left(1+\frac{P}{N}\right)
C = \frac {1}{2} \log\left(1+\frac{P}{N}\right)
\,\!</math>
\,\!</math>
 
=== प्रणाल क्षमता और गोला संकुलन ===
 
मान लीजिए कि हम <math>1</math> से <math>M</math> तक के सूचकांक वाले प्रणाल के माध्यम से संदेश भेज रहे हैं, जो कि सुस्पष्ट संभावित संदेशों की संख्या है। यदि हम <math>M</math> संदेशों को <math>n</math> बिट्स में कोडन करते हैं, तो हम दर <math>R</math> को इस प्रकार परिभाषित करते हैं:
=== चैनल क्षमता और क्षेत्र पैकिंग ===
मान लीजिए कि हम सूचकांक वाले चैनल के माध्यम से संदेश भेज रहे हैं <math>1</math> को <math>M</math>, अलग-अलग संभावित संदेशों की संख्या। यदि हम एन्कोड करते हैं <math>M</math> को संदेश <math>n</math> बिट्स, फिर हम दर को परिभाषित करते हैं <math>R</math> जैसा:


:<math>
:<math>
R = \frac {\log M}{n}
R = \frac {\log M}{n}
\,\!</math>
\,\!</math>
एक दर को प्राप्त करने योग्य कहा जाता है यदि कोड का अनुक्रम हो ताकि त्रुटि की अधिकतम संभावना शून्य हो जाए <math>n</math> अनंत तक पहुंचता है. क्षमता <math>C</math> उच्चतम प्राप्य दर है.
एक दर को प्राप्त करने योग्य कहा जाता है यदि कोड का एक अनुक्रम होता है ताकि त्रुटि की अधिकतम संभावना शून्य हो जाए क्योंकि ''n'' अनंत तक पहुंचता है। क्षमता <math>C</math> उच्चतम प्राप्य दर है।


लंबाई के एक कोडवर्ड पर विचार करें <math>n</math> शोर स्तर के साथ AWGN चैनल के माध्यम से भेजा गया <math>N</math>. प्राप्त होने पर, कोडवर्ड वेक्टर विचरण अब है <math>N</math>, और इसका माध्य भेजा गया कोडवर्ड है। वेक्टर के त्रिज्या के एक गोले में समाहित होने की बहुत संभावना है <math display=inline>\sqrt{n(N+\varepsilon)}</math> चारों ओर कोडवर्ड भेजा गया। यदि हम प्राप्त प्रत्येक संदेश को इस क्षेत्र के केंद्र में कोडवर्ड पर मैप करके डिकोड करते हैं, तो त्रुटि तभी होती है जब प्राप्त वेक्टर इस क्षेत्र के बाहर होता है, जो बहुत ही असंभव है।
रव स्तर <math>N</math> के साथ एडब्ल्यूजीएन प्रणाल के माध्यम से भेजे गए लंबाई <math>n</math> के कोड शब्द पर विचार करें। प्राप्त होने पर, कोड शब्द सदिश प्रसरण अब <math>N</math> है, और इसका माध्य भेजा गया कोड शब्द है। भेजे गए कोड शब्द के चारों ओर त्रिज्या <math display=inline>\sqrt{n(N+\varepsilon)}</math> के एक गोले में सदिश के समाहित होने की बहुत संभावना है। यदि हम इस गोले के केंद्र में कोड शब्द पर प्राप्त प्रत्येक संदेश को प्रतिचित्रिण करके विकोडन करते हैं, तो त्रुटि तभी होती है जब प्राप्त सदिश इस गोले के बाहर होता है, जो बहुत ही असंभव है।


प्रत्येक कोडवर्ड वेक्टर में प्राप्त कोडवर्ड वैक्टर का एक संबद्ध क्षेत्र होता है जिसे इसमें डिकोड किया जाता है और ऐसे प्रत्येक क्षेत्र को एक कोडवर्ड पर विशिष्ट रूप से मैप किया जाना चाहिए। चूँकि इन गोले को एक दूसरे को नहीं काटना चाहिए, इसलिए हमें [[गोला पैकिंग]] की समस्या का सामना करना पड़ता है। हम अपने में कितने अलग-अलग कोडवर्ड पैक कर सकते हैं <math>n</math>-बिट कोडवर्ड वेक्टर? प्राप्त वैक्टर में अधिकतम ऊर्जा होती है <math>n(P+N)</math> और इसलिए उसे त्रिज्या का एक क्षेत्र घेरना चाहिए <math display=inline>\sqrt{n(P+N)}</math>. प्रत्येक कोडवर्ड गोले की त्रिज्या होती है <math>\sqrt{nN}</math>. एक n-आयामी गोले का आयतन सीधे आनुपातिक होता है <math>r^n</math>, इसलिए ट्रांसमिशन पावर पी के साथ हमारे क्षेत्र में पैक किए जा सकने वाले विशिष्ट डिकोडेबल क्षेत्रों की अधिकतम संख्या है:
प्रत्येक कोड शब्द सदिश में प्राप्त कोड शब्द सदिश का एक संबद्ध गोला होता है जिसे इसमें विकोडन किया जाता है और ऐसे प्रत्येक गोले को एक कोड शब्द पर विशिष्ट रूप से प्रतिचित्रित किया जाना चाहिए। चूँकि ये गोले एक दूसरे को नहीं काटने चाहिए, इसलिए हमें [[गोला पैकिंग|गोला संकुलन]] की समस्या का सामना करना पड़ता है। हम अपने <math>n</math>-बिट कोड शब्द सदिश में कितने सुस्पष्ट कोड शब्द पैक कर सकते हैं? प्राप्त सदिश में <math>n(P+N)</math> की अधिकतम ऊर्जा होती है और इसलिए उसे त्रिज्या <math display=inline>\sqrt{n(P+N)}</math> का एक गोला घेरना चाहिए। प्रत्येक कोड शब्द गोले की त्रिज्या <math>\sqrt{nN}</math> है। एक n-विमीय गोले का आयतन सीधे <math>r^n</math> के समानुपाती होता है, इसलिए संचरण क्षमता ''P'' के साथ हमारे गोले में संकुलित किए जा सकने वाले विशिष्ट डिकोडेबल गोलों की अधिकतम संख्या है:
:<math>
:<math>
\frac{(n(P+N))^{n/2}}{(nN)^{n/2}} = 2^{(n/2) \log\left(1+P/N \right)}
\frac{(n(P+N))^{n/2}}{(nN)^{n/2}} = 2^{(n/2) \log\left(1+P/N \right)}
\,\!</math>
\,\!</math>
इस तर्क से, दर R से अधिक नहीं हो सकती <math>\frac{1}{2} \log \left( 1+\frac P N \right)</math>.
इस तर्क के अनुसार, दर R, <math>\frac{1}{2} \log \left( 1+\frac P N \right)</math> से अधिक नहीं हो सकती है।


===साध्यता===
===साध्यता===
इस खंड में, हम अंतिम खंड से दर पर ऊपरी सीमा की प्राप्ति दर्शाते हैं।
इस भाग में, हम अंतिम भाग से दर पर ऊपरी सीमा की प्राप्ति दर्शाते हैं।


एनकोडर और डिकोडर दोनों के लिए ज्ञात एक कोडबुक, लंबाई n, i.i.d. के कोडवर्ड का चयन करके तैयार की जाती है। विचरण के साथ गाऊसी <math>P-\varepsilon</math> और मतलब शून्य. बड़े n के लिए, कोडबुक का अनुभवजन्य विचरण इसके वितरण के विचरण के बहुत करीब होगा, जिससे संभावित रूप से शक्ति बाधा के उल्लंघन से बचा जा सकेगा।
कोडक और विकोडक दोनों के लिए ज्ञात एक कोड पुस्तक, लंबाई n, i.i.d. के कोड शब्दों को चयन करके तैयार की जाती है। प्रसरण <math>P-\varepsilon</math> और माध्य शून्य के साथ गाऊसी। बड़े n के लिए, कोड पुस्तक का अनुभवजन्य प्रसरण इसके वितरण के विचरण के बहुत सटीक होगा, जिससे संभावित रूप से शक्ति व्यवरोध के उल्लंघन से बचा जा सकेगा।


प्राप्त संदेशों को कोडबुक में एक संदेश में डिकोड किया जाता है जो विशिष्ट रूप से संयुक्त रूप से विशिष्ट है। यदि ऐसा कोई संदेश नहीं है या यदि बिजली की कमी का उल्लंघन किया गया है, तो डिकोडिंग त्रुटि घोषित की जाती है।
प्राप्त संदेशों को कोड पुस्तक में एक संदेश में डिकोड किया जाता है जो विशिष्ट रूप से संयुक्त रूप से विशिष्ट है। यदि ऐसा कोई संदेश नहीं है या यदि शक्ति की कमी का उल्लंघन किया गया है, तो विकोडन त्रुटि घोषित की जाती है।


होने देना <math>X^n(i)</math> संदेश के लिए कोडवर्ड बताएं <math>i</math>, जबकि <math>Y^n</math> प्राप्त वेक्टर से पहले की तरह है। निम्नलिखित तीन घटनाओं को परिभाषित करें:
मान लें कि <math>X^n(i)</math> संदेश <math>i</math> के लिए कोड शब्द को दर्शाता है, जबकि <math>Y^n</math>, प्राप्त सदिश से पहले की तरह है। निम्नलिखित तीन घटनाओं को परिभाषित करें:


# आयोजन <math>U</math>:प्राप्त संदेश की शक्ति इससे बड़ी है <math>P</math>.
# घटना <math>U</math>: प्राप्त संदेश की शक्ति <math>P</math> से बड़ी है।
# आयोजन <math>V</math>: प्रेषित और प्राप्त कोडवर्ड संयुक्त रूप से विशिष्ट नहीं हैं।
# घटना <math>V</math>: प्रेषित और प्राप्त कोड शब्द संयुक्त रूप से विशिष्ट नहीं हैं।
# आयोजन <math>E_j</math>: <math>(X^n(j), Y^n)</math> में है <math>A_\varepsilon^{(n)}</math>, [[विशिष्ट सेट]] जहां <math>i \neq j</math>, जिसका अर्थ यह है कि गलत कोडवर्ड प्राप्त वेक्टर के साथ संयुक्त रूप से विशिष्ट है।
# घटना <math>E_j</math>: <math>(X^n(j), Y^n)</math>, <math>A_\varepsilon^{(n)}</math> में है, [[विशिष्ट सेट|विशिष्ट समुच्चय]] जहां <math>i \neq j</math>, जिसका अर्थ है कि गलत कोड शब्द प्राप्त सदिश के साथ संयुक्त रूप से विशिष्ट है।


इसलिए एक त्रुटि उत्पन्न होती है यदि <math>U</math>, <math>V</math> या इनमें से कोई भी <math>E_i</math> घटित होना। बड़ी संख्या के नियम से, <math>P(U)</math> जैसे-जैसे n अनंत के करीब पहुंचता है, शून्य हो जाता है और संयुक्त [[स्पर्शोन्मुख समविभाजन संपत्ति]] द्वारा भी यही बात लागू होती है <math>P(V)</math>. इसलिए, पर्याप्त रूप से बड़े के लिए <math>n</math>, दोनों <math>P(U)</math> और <math>P(V)</math> प्रत्येक से कम हैं <math>\varepsilon</math>. तब से <math>X^n(i)</math> और <math>X^n(j)</math> के लिए स्वतंत्र हैं <math>i \neq j</math>, हमारे पास वह है <math>X^n(i)</math> और <math>Y^n</math> स्वतंत्र भी हैं. इसलिए, संयुक्त एईपी द्वारा, <math>P(E_j) = 2^{-n(I(X;Y)-3\varepsilon)}</math>. यह हमें गणना करने की अनुमति देता है <math>P^{(n)}_e</math>, त्रुटि की संभावना इस प्रकार है:
इसलिए त्रुटि तब होती है जब <math>U</math>, <math>V</math> या कोई <math>E_i</math> घटित होता है। बड़ी संख्या के नियम के अनुसार, जैसे-जैसे ''n'' अनंतधा के सटीक पहुंचता है, <math>P(U)</math> शून्य पर चला जाता है, और संयुक्त [[स्पर्शोन्मुख समविभाजन संपत्ति|अनंतस्पर्शी समविभाजन गुण]] द्वारा <math>P(V)</math> पर भी यही लागू होता है। इसलिए, पर्याप्त रूप से बड़े <math>n</math> के लिए, <math>P(V)</math> और <math>P(U)</math> दोनों <math>\varepsilon</math> से कम हैं। चूँकि <math>i \neq j</math> के लिए <math>X^n(i)</math> और <math>X^n(j)</math> स्वतंत्र हैं, हमारे पास यह है कि <math>X^n(i)</math> और <math>Y^n</math> भी स्वतंत्र हैं। इसलिए, संयुक्त AEP द्वारा, <math>P(E_j) = 2^{-n(I(X;Y)-3\varepsilon)}</math>| यह हमें <math>P^{(n)}_e</math>, त्रुटि की संभावना की गणना करने की अनुमति देता है:


: <math>
: <math>
Line 112: Line 109:
\end{align}
\end{align}
</math>
</math>
इसलिए, जैसे-जैसे n अनंत की ओर बढ़ता है, <math>P^{(n)}_e</math> शून्य पर चला जाता है और <math>R < I(X;Y) - 3\varepsilon</math>. इसलिए, दर आर का एक कोड मनमाने ढंग से पहले प्राप्त क्षमता के करीब है।
इसलिए, जैसे-जैसे n अनंतधा की ओर बढ़ता है, <math>P^{(n)}_e</math> शून्य और <math>R < I(X;Y) - 3\varepsilon</math> पर जाता है। इसलिए, दर R का एक कोड स्वेच्छया से पहले प्राप्त क्षमता के सटीक है।


=== कोडिंग प्रमेय का व्युत्क्रम ===
=== कोडिंग प्रमेय का व्युत्क्रम ===
यहां हम दिखाते हैं कि दरें क्षमता से अधिक हैं <math>C = \frac {1}{2} \log\left( 1+\frac P N \right)</math> प्राप्य नहीं हैं.
यहां हम दिखाते हैं कि क्षमता <math>C = \frac {1}{2} \log\left( 1+\frac P N \right)</math> से ऊपर की दरें प्राप्त नहीं की जा सकतीं हैं।


मान लीजिए कि कोडबुक के लिए बिजली की कमी पूरी हो गई है, और आगे यह भी मान लें कि संदेश एक समान वितरण का पालन करते हैं। होने देना <math>W</math> इनपुट संदेश हो और <math>\hat{W}</math> आउटपुट संदेश. इस प्रकार जानकारी इस प्रकार प्रवाहित होती है:
मान लीजिए कि एक कोड पुस्तक के लिए शक्ति व्यवरोध पूर्ण हो गया है, और आगे यह भी मान लें कि संदेश एक समान वितरण का पालन करते हैं। मान लीजिए कि <math>W</math> इनपुट संदेश हैं और <math>\hat{W}</math> आउटपुट संदेश हैं। इस प्रकार से सूचना का प्रवाह होता है:


<math>W \longrightarrow X^{(n)}(W) \longrightarrow Y^{(n)} \longrightarrow \hat{W}</math>
<math>W \longrightarrow X^{(n)}(W) \longrightarrow Y^{(n)} \longrightarrow \hat{W}</math>
फ़ानो की असमानता का उपयोग करने से मिलता है:
फ़ानो की असमानता का उपयोग करने से मिलता है:


<math>H(W\mid\hat{W}) \leq 1+nRP^{(n)}_e = n \varepsilon_n</math> कहाँ <math>\varepsilon_n \rightarrow 0</math> जैसा <math>P^{(n)}_e \rightarrow 0</math>
<math>H(W\mid\hat{W}) \leq 1+nRP^{(n)}_e = n \varepsilon_n</math> जहां <math>\varepsilon_n \rightarrow 0</math> जैसा <math>P^{(n)}_e \rightarrow 0</math>
होने देना <math>X_i</math> कोडवर्ड इंडेक्स i का एन्कोडेड संदेश हो। तब:
 
मान लीजिए कि <math>X_i</math> कोड शब्द सूचकांक ''i'' का विकोडित संदेश है। तब:


: <math>
: <math>
Line 137: Line 136:
\end{align}
\end{align}
</math>
</math>
होने देना <math>P_i</math> सूचकांक i के कोडवर्ड की औसत शक्ति हो:
मान लीजिए <math>P_i</math> सूचकांक ''i'' के कोड शब्द की औसत शक्ति है:


:<math>
:<math>
P_i = \frac{1}{2^{nR}}\sum_{w}x^2_i(w)
P_i = \frac{1}{2^{nR}}\sum_{w}x^2_i(w)
\,\!</math>
\,\!</math>
जहां योग सभी इनपुट संदेशों से अधिक है <math>w</math>. <math>X_i</math> और <math>Z_i</math> स्वतंत्र हैं, अत: की शक्ति की अपेक्षा रखते हैं <math>Y_i</math> शोर के स्तर के लिए है <math>N</math>:
जहां योग सभी इनपुट संदेशों <math>w</math> से अधिक है। <math>X_i</math> और <math>Z_i</math> स्वतंत्र हैं, इस प्रकार रव स्तर <math>N</math> के लिए <math>Y_i</math> की शक्ति की अपेक्षा है:


:<math>
:<math>
E(Y_i^2) = P_i+N
E(Y_i^2) = P_i+N
\,\!</math>
\,\!</math>
और अगर <math>Y_i</math> सामान्य रूप से वितरित किया जाता है, हमारे पास वह है
और, यदि <math>Y_i</math> सामान्य रूप से वितरित है, हमारे पास वह है
:<math>
:<math>
h(Y_i) \leq \frac{1}{2}\log{2 \pi e} (P_i +N)
h(Y_i) \leq \frac{1}{2}\log{2 \pi e} (P_i +N)
Line 160: Line 159:
\end{align}
\end{align}
</math>
</math>
हम जेन्सेन की समानता को लागू कर सकते हैं <math>\log(1+x)</math>, x का एक अवतल (नीचे की ओर) फ़ंक्शन, प्राप्त करने के लिए:
हम जेन्सेन की समानता को <math>\log(1+x)</math> पर लागू कर सकते हैं, जो ''x'' का एक उन्मुख (नीचे की ओर) फलन है, प्राप्त करने के लिए:
:<math>
:<math>
\frac{1}{n} \sum_{i=1}^n \frac{1}{2}\log\left(1+\frac{P_i}{N}\right) \leq
\frac{1}{n} \sum_{i=1}^n \frac{1}{2}\log\left(1+\frac{P_i}{N}\right) \leq
\frac{1}{2}\log\left(1+\frac{1}{n}\sum_{i=1}^n \frac{P_i}{N}\right)
\frac{1}{2}\log\left(1+\frac{1}{n}\sum_{i=1}^n \frac{P_i}{N}\right)
\,\!</math>
\,\!</math>
चूँकि प्रत्येक कोडवर्ड व्यक्तिगत रूप से शक्ति बाधा को संतुष्ट करता है, औसत भी शक्ति बाधा को संतुष्ट करता है। इसलिए,
चूँकि प्रत्येक कोड शब्द व्यक्तिगत रूप से शक्ति व्यवरोध को संतुष्ट करता है, औसत भी शक्ति व्यवरोध को संतुष्ट करता है। इसलिए,


:<math>
:<math>
Line 175: Line 174:
\frac{1}{2}\log\left(1+\frac{P}{N}\right).
\frac{1}{2}\log\left(1+\frac{P}{N}\right).
\,\!</math>
\,\!</math>
इसलिए, ऐसा होना ही चाहिए <math>R \leq \frac{1}{2}\log \left(1+ \frac{P}{N}\right) + \varepsilon_n</math>. इसलिए, आर को मनमाने ढंग से पहले प्राप्त क्षमता के करीब एक मूल्य से कम होना चाहिए <math>\varepsilon_n \rightarrow 0</math>.
इसलिए, यह वह <math>R \leq \frac{1}{2}\log \left(1+ \frac{P}{N}\right) + \varepsilon_n</math> चाहिए। इसलिए, R को स्वेच्छतः से पहले व्युत्पन्न क्षमता के सटीक एक मान से कम होना चाहिए, जैसे कि <math>\varepsilon_n \rightarrow 0</math> |


==समय क्षेत्र में प्रभाव==
==काल प्रक्षेत्र में प्रभाव==
[[File:Zero crossing.jpg|thumb|300px|शोरगुल वाले कोसाइन का शून्य क्रॉसिंग]]सीरियल डेटा संचार में, AWGN गणितीय मॉडल का उपयोग यादृच्छिक [[ घबराना ]] (आरजे) के कारण होने वाली समय त्रुटि को मॉडल करने के लिए किया जाता है।
[[File:Zero crossing.jpg|thumb|300px|रवयुक्त वाले कोज्या का शून्य पारण ]]क्रमिक डेटा संचार में, एडब्ल्यूजीएन गणितीय प्रतिरूप का उपयोग यादृच्छिक [[ घबराना |कँपन]] (आरजे) के कारण होने वाली कालन त्रुटि को प्रतिरूपित करने के लिए किया जाता है।


दाईं ओर का ग्राफ़ AWGN से जुड़ी समय संबंधी त्रुटियों का एक उदाहरण दिखाता है। चर Δt शून्य क्रॉसिंग में अनिश्चितता का प्रतिनिधित्व करता है। जैसे-जैसे AWGN का आयाम बढ़ता है, सिग्नल-टू-शोर अनुपात कम हो जाता है। इसके परिणामस्वरूप अनिश्चितता बढ़ जाती है Δt।<ref name="rrd"/>
दाईं ओर का ग्राफ़ एडब्ल्यूजीएन से जुड़ी कालन संबंधी त्रुटियों का एक उदाहरण दिखाता है। चर Δt शून्य पारण में अनिश्चितता का निरुपण करता है। जैसे-जैसे एडब्ल्यूजीएन का आयाम बढ़ता है, [[संकेत रव अनुपात]] कम हो जाता है। इसके परिणामस्वरूप अनिश्चितता ''Δt'' बढ़ जाती है।<ref name="rrd"/>


जब AWGN से प्रभावित होता है, तो एक संकीर्ण बैंडपास फिल्टर के आउटपुट पर प्रति सेकंड सकारात्मक या नकारात्मक शून्य क्रॉसिंग की औसत संख्या होती है जब इनपुट साइन तरंग होता है
एडब्ल्यूजीएन के प्रभाव से, साइन (ज्या) तरंग को इनपुट के रूप में लेते हुए एक संकीर्ण बैंड पारक फिल्टर के आउटपुट पर प्रति सेकंड या तो धनात्मक या ऋणात्मक जाने वाले शून्य पारणों की औसत संख्या


: <math>
: <math>
Line 189: Line 188:
= {} & f_0 \sqrt{\frac{\text{SNR} + 1 + \frac{B^2}{12f_0^2}}{\text{SNR} + 1}},
= {} & f_0 \sqrt{\frac{\text{SNR} + 1 + \frac{B^2}{12f_0^2}}{\text{SNR} + 1}},
\end{align}
\end{align}
</math>
</math>होती है,
कहाँ
जहां
:<sub>0</sub> = फ़िल्टर की केंद्र आवृत्ति,
:''ƒ''<sub>0</sub> = फ़िल्टर की केंद्र आवृत्ति,
: बी = फिल्टर बैंडविड्थ,
: ''B'' = फिल्टर बैंडविड्थ,
: एसएनआर = रैखिक शब्दों में सिग्नल-टू-शोर शक्ति अनुपात।
: SNR = रैखिक पदों में संकेत रव शक्ति अनुपात।


==फ़ेसर डोमेन में प्रभाव==
==फ़ेसर प्रक्षेत्र में प्रभाव==
[[File:Noisy Phasor.jpg|thumb|300px|फेज़र डोमेन में AWGN का योगदान]]आधुनिक संचार प्रणालियों में, बैंडलिमिटेड AWGN को नजरअंदाज नहीं किया जा सकता है। जब फेज़र डोमेन में बैंडलिमिटेड AWGN की मॉडलिंग की जाती है, तो सांख्यिकीय विश्लेषण से पता चलता है कि वास्तविक और काल्पनिक योगदान के आयाम स्वतंत्र चर हैं जो गॉसियन वितरण मॉडल का पालन करते हैं। संयुक्त होने पर, परिणामी [[चरण]] का परिमाण एक [[रेले वितरण]] होता है | रेले-वितरित यादृच्छिक चर, जबकि चरण समान रूप से 0 से 2 तक वितरित होता है{{pi}}.
आधुनिक संचार प्रणालियों में, बैंड सीमित एडब्ल्यूजीएन को नजरअंदाज नहीं किया जा सकता है। जब [[फेज़र]] प्रक्षेत्र में बैंड सीमित एडब्ल्यूजीएन का प्रतिरूपण किया जाता है, तो सांख्यिकीय विश्लेषण से पता चलता है कि वास्तविक और काल्पनिक योगदान के आयाम स्वतंत्र चर हैं जो [[गाउसीय वितरण]] प्रतिरूप का पालन करते हैं। संयुक्त होने पर, परिणामी फ़ेजर का परिमाण एक [[रेले-वितरित|रैले-वितरित]] यादृच्छिक चर होता है, जबकि फेज समान रूप से ''0'' से ''2π'' तक वितरित होता है।


दाईं ओर का ग्राफ़ एक उदाहरण दिखाता है कि बैंडलिमिटेड AWGN एक सुसंगत वाहक सिग्नल को कैसे प्रभावित कर सकता है। शोर वेक्टर की तात्कालिक प्रतिक्रिया का सटीक अनुमान नहीं लगाया जा सकता है, हालांकि, इसकी समय-औसत प्रतिक्रिया का सांख्यिकीय रूप से अनुमान लगाया जा सकता है। जैसा कि ग्राफ में दिखाया गया है, हम विश्वासपूर्वक अनुमान लगाते हैं कि शोर चरण सर्कल के अंदर लगभग 38% समय, 2σ सर्कल के अंदर लगभग 86% समय और 3σ सर्कल के अंदर लगभग 98% समय रहेगा।<ref name="rrd">{{citation
दाईं ओर का ग्राफ़ एक उदाहरण दिखाता है कि बैंड सीमित एडब्ल्यूजीएन एक संसक्त वाहक संकेत को कैसे प्रभावित कर सकता है। रव सदिश की तात्क्षणिक अनुक्रिया का सटीक अनुमान नहीं लगाया जा सकता है, हालांकि, इसकी समय-औसत अनुक्रिया का सांख्यिकीय रूप से अनुमान लगाया जा सकता है। जैसा कि ग्राफ में दिखाया गया है, हम विश्वासपूर्वक अनुमान लगाते हैं कि रव फ़ेजर वृत्त के भीतर लगभग 38% समय, 2σ वृत्त के भीतर लगभग 86% समय और 3σ वृत्त के भीतर लगभग 98% समय रहता है।<ref name="rrd">{{citation
| title = Radio Receiver Design
| title = Radio Receiver Design
| first = Kevin  
| first = Kevin  
Line 204: Line 203:
| publisher = Noble Publishing Corporation }}
| publisher = Noble Publishing Corporation }}
</ref>
</ref>
== यह भी देखें ==
== यह भी देखें ==
* [[ज़मीन का उछाल]]
* [[ज़मीन का उछाल|भूतल में उछाल]]
* [[शोर-चैनल कोडिंग प्रमेय]]
* [[शोर-चैनल कोडिंग प्रमेय|रव-प्रणाल कोडिंग प्रमेय]]
* गाऊसी प्रक्रिया
* [[गाऊसी प्रक्रिया]]


==संदर्भ==
==संदर्भ==
Line 215: Line 212:


{{Noise}}
{{Noise}}
[[Category: शोर (इलेक्ट्रॉनिक्स)]] [[Category: समय श्रृंखला मॉडल]]


[[Category: Machine Translated Page]]
[[Category:Collapse templates]]
[[Category:Created On 25/07/2023]]
[[Category:Created On 25/07/2023]]
[[Category:Lua-based templates]]
[[Category:Machine Translated Page]]
[[Category:Navigational boxes| ]]
[[Category:Navigational boxes without horizontal lists]]
[[Category:Pages with script errors]]
[[Category:Short description with empty Wikidata description]]
[[Category:Sidebars with styles needing conversion]]
[[Category:Template documentation pages|Documentation/doc]]
[[Category:Templates Vigyan Ready]]
[[Category:Templates generating microformats]]
[[Category:Templates that add a tracking category]]
[[Category:Templates that are not mobile friendly]]
[[Category:Templates that generate short descriptions]]
[[Category:Templates using TemplateData]]
[[Category:Wikipedia metatemplates]]
[[Category:शोर (इलेक्ट्रॉनिक्स)]]
[[Category:समय श्रृंखला मॉडल]]

Latest revision as of 10:17, 12 August 2023

योजक सफेद गाउसियन रव (एडब्ल्यूजीएन) एक मूल रव प्रारूप है जिसका उपयोग प्रकृति में होने वाली कई यादृच्छिक प्रक्रियाओं के प्रभाव की नकल करने के लिए सूचना सिद्धांत में किया जाता है। संशोधक विशिष्ट विशेषताओं को दर्शाते हैं:

  • योजक क्योंकि यह किसी भी रव में जोड़ा जाता है जो सूचना पद्धति में अंतर्निहित हो सकता है।
  • सफेद इस विचार को संदर्भित करता है कि इसमें सूचना पद्धति के लिए आवृत्ति बैंड में एक समान शक्ति स्पेक्ट्रमी घनत्व है। यह सफेद रंग का एक सादृश्य है जिसे दृश्य स्पेक्ट्रम में सभी आवृत्तियों पर समान उत्सर्जनों द्वारा महसूस किया जा सकता है।
  • गाउसियन क्योंकि इसका काल प्रक्षेत्र में औसत काल प्रक्षेत्र मान शून्य (गाउसियन प्रक्रिया) के साथ एक सामान्य वितरण है।

विस्तृत बैंड रव कई प्राकृतिक रव स्रोतों से आता है, जैसे संवाहकों में परमाणुओं के ऊष्मीय कंपन (ऊष्मीय रव या जॉनसन-नाइक्विस्ट रव के रूप में जाना जाता है), शॉट रव, पृथ्वी और अन्य गर्म वस्तुओं से कृष्णिका विकिरण, और सूर्य जैसे खगोलीय स्रोतों से। प्रायिकता सिद्धांत की केंद्रीय सीमा प्रमेय निर्दिष्ट करती है कि कई यादृच्छिक प्रक्रियाओं के योग में गाऊसी या सामान्य नामक वितरण होगा।

एडब्ल्यूजीएन को अधिकतर एक प्रणाल प्रारूप के रूप में उपयोग किया जाता है जिसमें संचार में एकमात्र बाधा नियत वर्णक्रमीय घनत्व (बैंड विड्थ के प्रति हर्ट्ज़ वाट के रूप में व्यक्त) और आयाम के गाऊसी वितरण के साथ वाइडबैंड या सफेद रव का एक रैखिक जोड़ है। प्रतिरूप म्लानन (फडिंग), आवृत्ति चयनात्मकता, हस्तक्षेप, अरैखिकता या परिक्षेपण को ध्यान में नहीं रखता है। हालाँकि, यह सरल और सुव्यवस्थित गणितीय प्रतिरूप तैयार करता है जो इन अन्य परिघटनाओं पर विचार करने से पहले किसी पद्धति के अंतर्निहित व्यवहार में अंतर्दृष्टि प्राप्त करने के लिए उपयोगी होते हैं।

एडब्ल्यूजीएन प्रणाल कई उपग्रहों और गहन अंतरिक्ष संचार कड़ियों के लिए एक अच्छा प्रतिरूप है। बहुपथ, भूभाग अवरोधन, हस्तक्षेप आदि के कारण अधिकांश स्थलीय कड़ियों के लिए यह एक अच्छा प्रतिरूप नहीं है। हालाँकि, स्थलीय पथ प्रतिरूपण के लिए, एडब्ल्यूजीएन का उपयोग आमतौर पर अध्ययन के अंतर्गत प्रणाल के पृष्ठभूमि रव का अनुकरण करने के लिए किया जाता है, इसके अतिरिक्त बहुपथ, भू भाग अवरोधन, हस्तक्षेप, भू अपचित्र और स्वयं हस्तक्षेप का उपयोग आधुनिक रेडियो प्रणाली स्थलीय संचालन में करते हैं।

प्रणाल क्षमता

एडब्ल्यूजीएन प्रणाल को असतत समय घटना सूचकांक पर आउटपुट की एक श्रृंखला द्वारा दर्शाया गया है। इनपुट और रव, का योग है, जहां स्वतंत्र है और प्रसरण N (रव) के साथ शून्य-माध्य सामान्य वितरण से समान रूप से वितरित और खींचा गया है। यह भी माना जाता है कि का के साथ कोई संबंध नहीं है।

प्रणाल की क्षमता अनंत है जब तक कि रव शून्येतर है, और पर्याप्त रूप से प्रतिबंधित हैं| इनपुट पर सबसे साधारण व्यवरोध तथाकथित "शक्ति" व्यवरोध है, प्रणाल के माध्यम से प्रसारित संकेत शब्दों के लिए इसकी आवश्यकता होती है, हमारे पास,

है

जहां अधिकतम प्रणाल शक्ति का निरुपण करता है। इसलिए, शक्ति-प्रतिबंधित प्रणाल के लिए प्रणाल क्षमता इस प्रकार दी गई है:

जहां , का वितरण है | का विस्तार करें, इसे विभेदक एन्ट्रापी के पदों में लिखें:

लेकिन और स्वतंत्र हैं, इसलिए:

गाऊसी की विभेदक एन्ट्रापी का मूल्यांकन करने पर यह मिलता है:

क्योंकि और स्वतंत्र हैं और उनका योग देता है:

इस सीमा से, हम विभेदक एन्ट्रापी के एक गुण से अनुमान लगाते हैं

इसलिए, प्रणाल क्षमता पारस्परिक जानकारी पर उच्चतम प्राप्य सीमा द्वारा दी गई है:

जहां अधिकतम तब होता है जब:

इस प्रकार एडब्ल्यूजीएन प्रणाल के लिए प्रणाल क्षमता C इस प्रकार दी गई है:

प्रणाल क्षमता और गोला संकुलन

मान लीजिए कि हम से तक के सूचकांक वाले प्रणाल के माध्यम से संदेश भेज रहे हैं, जो कि सुस्पष्ट संभावित संदेशों की संख्या है। यदि हम संदेशों को बिट्स में कोडन करते हैं, तो हम दर को इस प्रकार परिभाषित करते हैं:

एक दर को प्राप्त करने योग्य कहा जाता है यदि कोड का एक अनुक्रम होता है ताकि त्रुटि की अधिकतम संभावना शून्य हो जाए क्योंकि n अनंत तक पहुंचता है। क्षमता उच्चतम प्राप्य दर है।

रव स्तर के साथ एडब्ल्यूजीएन प्रणाल के माध्यम से भेजे गए लंबाई के कोड शब्द पर विचार करें। प्राप्त होने पर, कोड शब्द सदिश प्रसरण अब है, और इसका माध्य भेजा गया कोड शब्द है। भेजे गए कोड शब्द के चारों ओर त्रिज्या के एक गोले में सदिश के समाहित होने की बहुत संभावना है। यदि हम इस गोले के केंद्र में कोड शब्द पर प्राप्त प्रत्येक संदेश को प्रतिचित्रिण करके विकोडन करते हैं, तो त्रुटि तभी होती है जब प्राप्त सदिश इस गोले के बाहर होता है, जो बहुत ही असंभव है।

प्रत्येक कोड शब्द सदिश में प्राप्त कोड शब्द सदिश का एक संबद्ध गोला होता है जिसे इसमें विकोडन किया जाता है और ऐसे प्रत्येक गोले को एक कोड शब्द पर विशिष्ट रूप से प्रतिचित्रित किया जाना चाहिए। चूँकि ये गोले एक दूसरे को नहीं काटने चाहिए, इसलिए हमें गोला संकुलन की समस्या का सामना करना पड़ता है। हम अपने -बिट कोड शब्द सदिश में कितने सुस्पष्ट कोड शब्द पैक कर सकते हैं? प्राप्त सदिश में की अधिकतम ऊर्जा होती है और इसलिए उसे त्रिज्या का एक गोला घेरना चाहिए। प्रत्येक कोड शब्द गोले की त्रिज्या है। एक n-विमीय गोले का आयतन सीधे के समानुपाती होता है, इसलिए संचरण क्षमता P के साथ हमारे गोले में संकुलित किए जा सकने वाले विशिष्ट डिकोडेबल गोलों की अधिकतम संख्या है:

इस तर्क के अनुसार, दर R, से अधिक नहीं हो सकती है।

साध्यता

इस भाग में, हम अंतिम भाग से दर पर ऊपरी सीमा की प्राप्ति दर्शाते हैं।

कोडक और विकोडक दोनों के लिए ज्ञात एक कोड पुस्तक, लंबाई n, i.i.d. के कोड शब्दों को चयन करके तैयार की जाती है। प्रसरण और माध्य शून्य के साथ गाऊसी। बड़े n के लिए, कोड पुस्तक का अनुभवजन्य प्रसरण इसके वितरण के विचरण के बहुत सटीक होगा, जिससे संभावित रूप से शक्ति व्यवरोध के उल्लंघन से बचा जा सकेगा।

प्राप्त संदेशों को कोड पुस्तक में एक संदेश में डिकोड किया जाता है जो विशिष्ट रूप से संयुक्त रूप से विशिष्ट है। यदि ऐसा कोई संदेश नहीं है या यदि शक्ति की कमी का उल्लंघन किया गया है, तो विकोडन त्रुटि घोषित की जाती है।

मान लें कि संदेश के लिए कोड शब्द को दर्शाता है, जबकि , प्राप्त सदिश से पहले की तरह है। निम्नलिखित तीन घटनाओं को परिभाषित करें:

  1. घटना : प्राप्त संदेश की शक्ति से बड़ी है।
  2. घटना : प्रेषित और प्राप्त कोड शब्द संयुक्त रूप से विशिष्ट नहीं हैं।
  3. घटना : , में है, विशिष्ट समुच्चय जहां , जिसका अर्थ है कि गलत कोड शब्द प्राप्त सदिश के साथ संयुक्त रूप से विशिष्ट है।

इसलिए त्रुटि तब होती है जब , या कोई घटित होता है। बड़ी संख्या के नियम के अनुसार, जैसे-जैसे n अनंतधा के सटीक पहुंचता है, शून्य पर चला जाता है, और संयुक्त अनंतस्पर्शी समविभाजन गुण द्वारा पर भी यही लागू होता है। इसलिए, पर्याप्त रूप से बड़े के लिए, और दोनों से कम हैं। चूँकि के लिए और स्वतंत्र हैं, हमारे पास यह है कि और भी स्वतंत्र हैं। इसलिए, संयुक्त AEP द्वारा, | यह हमें , त्रुटि की संभावना की गणना करने की अनुमति देता है:

इसलिए, जैसे-जैसे n अनंतधा की ओर बढ़ता है, शून्य और पर जाता है। इसलिए, दर R का एक कोड स्वेच्छया से पहले प्राप्त क्षमता के सटीक है।

कोडिंग प्रमेय का व्युत्क्रम

यहां हम दिखाते हैं कि क्षमता से ऊपर की दरें प्राप्त नहीं की जा सकतीं हैं।

मान लीजिए कि एक कोड पुस्तक के लिए शक्ति व्यवरोध पूर्ण हो गया है, और आगे यह भी मान लें कि संदेश एक समान वितरण का पालन करते हैं। मान लीजिए कि इनपुट संदेश हैं और आउटपुट संदेश हैं। इस प्रकार से सूचना का प्रवाह होता है:

फ़ानो की असमानता का उपयोग करने से मिलता है:

जहां जैसा

मान लीजिए कि कोड शब्द सूचकांक i का विकोडित संदेश है। तब:

मान लीजिए सूचकांक i के कोड शब्द की औसत शक्ति है:

जहां योग सभी इनपुट संदेशों से अधिक है। और स्वतंत्र हैं, इस प्रकार रव स्तर के लिए की शक्ति की अपेक्षा है:

और, यदि सामान्य रूप से वितरित है, हमारे पास वह है

इसलिए,

हम जेन्सेन की समानता को पर लागू कर सकते हैं, जो x का एक उन्मुख (नीचे की ओर) फलन है, प्राप्त करने के लिए:

चूँकि प्रत्येक कोड शब्द व्यक्तिगत रूप से शक्ति व्यवरोध को संतुष्ट करता है, औसत भी शक्ति व्यवरोध को संतुष्ट करता है। इसलिए,

जिसे हम उपरोक्त असमानता को सरल बनाने के लिए लागू कर सकते हैं और प्राप्त कर सकते हैं:

इसलिए, यह वह चाहिए। इसलिए, R को स्वेच्छतः से पहले व्युत्पन्न क्षमता के सटीक एक मान से कम होना चाहिए, जैसे कि |

काल प्रक्षेत्र में प्रभाव

रवयुक्त वाले कोज्या का शून्य पारण

क्रमिक डेटा संचार में, एडब्ल्यूजीएन गणितीय प्रतिरूप का उपयोग यादृच्छिक कँपन (आरजे) के कारण होने वाली कालन त्रुटि को प्रतिरूपित करने के लिए किया जाता है।

दाईं ओर का ग्राफ़ एडब्ल्यूजीएन से जुड़ी कालन संबंधी त्रुटियों का एक उदाहरण दिखाता है। चर Δt शून्य पारण में अनिश्चितता का निरुपण करता है। जैसे-जैसे एडब्ल्यूजीएन का आयाम बढ़ता है, संकेत रव अनुपात कम हो जाता है। इसके परिणामस्वरूप अनिश्चितता Δt बढ़ जाती है।[1]

एडब्ल्यूजीएन के प्रभाव से, साइन (ज्या) तरंग को इनपुट के रूप में लेते हुए एक संकीर्ण बैंड पारक फिल्टर के आउटपुट पर प्रति सेकंड या तो धनात्मक या ऋणात्मक जाने वाले शून्य पारणों की औसत संख्या

होती है,

जहां

ƒ0 = फ़िल्टर की केंद्र आवृत्ति,
B = फिल्टर बैंडविड्थ,
SNR = रैखिक पदों में संकेत रव शक्ति अनुपात।

फ़ेसर प्रक्षेत्र में प्रभाव

आधुनिक संचार प्रणालियों में, बैंड सीमित एडब्ल्यूजीएन को नजरअंदाज नहीं किया जा सकता है। जब फेज़र प्रक्षेत्र में बैंड सीमित एडब्ल्यूजीएन का प्रतिरूपण किया जाता है, तो सांख्यिकीय विश्लेषण से पता चलता है कि वास्तविक और काल्पनिक योगदान के आयाम स्वतंत्र चर हैं जो गाउसीय वितरण प्रतिरूप का पालन करते हैं। संयुक्त होने पर, परिणामी फ़ेजर का परिमाण एक रैले-वितरित यादृच्छिक चर होता है, जबकि फेज समान रूप से 0 से तक वितरित होता है।

दाईं ओर का ग्राफ़ एक उदाहरण दिखाता है कि बैंड सीमित एडब्ल्यूजीएन एक संसक्त वाहक संकेत को कैसे प्रभावित कर सकता है। रव सदिश की तात्क्षणिक अनुक्रिया का सटीक अनुमान नहीं लगाया जा सकता है, हालांकि, इसकी समय-औसत अनुक्रिया का सांख्यिकीय रूप से अनुमान लगाया जा सकता है। जैसा कि ग्राफ में दिखाया गया है, हम विश्वासपूर्वक अनुमान लगाते हैं कि रव फ़ेजर 1σ वृत्त के भीतर लगभग 38% समय, 2σ वृत्त के भीतर लगभग 86% समय और 3σ वृत्त के भीतर लगभग 98% समय रहता है।[1]

यह भी देखें

संदर्भ

  1. 1.0 1.1 McClaning, Kevin, Radio Receiver Design, Noble Publishing Corporation