भौतिक समष्टि का बीजगणित: Difference between revisions

From Vigyanwiki
No edit summary
 
(3 intermediate revisions by 3 users not shown)
Line 1: Line 1:
 
भौतिकी में, '''भौतिक समष्टि का बीजगणित''' (एपीएस) त्रि-आयामी यूक्लिडियन समष्टि के क्लिफोर्ड या ज्यामितीय बीजगणित Cl<sub>3,0</sub>('''R''') का उपयोग (3+1)-आयामी स्पेसटाइम के लिए एक मॉडल के रूप में किया जाता है, एक पैरावेक्टर (3-आयामी वेक्टर प्लस 1-आयामी स्केलर) के माध्यम से स्पेसटाइम में जो एक बिंदु का प्रतिनिधित्व करता है।
भौतिकी में, '''भौतिक स्थान का बीजगणित''' (एपीएस) त्रि-आयामी यूक्लिडियन स्थान के क्लिफोर्ड या ज्यामितीय बीजगणित Cl<sub>3,0</sub>('''R''') का उपयोग (3+1)-आयामी स्पेसटाइम के लिए एक मॉडल के रूप में किया जाता है, एक पैरावेक्टर (3-आयामी वेक्टर प्लस 1-आयामी स्केलर) के माध्यम से स्पेसटाइम में जो एक बिंदु का प्रतिनिधित्व करता है।


क्लिफोर्ड बीजगणित Cl<sub>3,0</sub>('''R''') का एक विश्वसनीय प्रतिनिधित्व है, जो स्पिन प्रतिनिधित्व '''C'''<sup>2</sup> पर पाउली मैट्रिसेस द्वारा उत्पन्न होता है; इसके अतिरिक्त, Cl<sub>3,0</sub>('''R''') क्लिफोर्ड बीजगणित Cl[0]3,1('''R''') के सम उपबीजगणित Cl<sub>3,1</sub>('''R''') के समरूपी है।
क्लिफोर्ड बीजगणित Cl<sub>3,0</sub>('''R''') का एक विश्वसनीय प्रतिनिधित्व है, जो स्पिन प्रतिनिधित्व '''C'''<sup>2</sup> पर पाउली मैट्रिसेस द्वारा उत्पन्न होता है; इसके अतिरिक्त, Cl<sub>3,0</sub>('''R''') क्लिफोर्ड बीजगणित Cl[0]3,1('''R''') के सम उपबीजगणित Cl<sub>3,1</sub>('''R''') के समरूपी है।
Line 14: Line 13:
एपीएस में, स्पेसटाइम स्थिति को पैरावेक्टर के रूप में दर्शाया जाता है
एपीएस में, स्पेसटाइम स्थिति को पैरावेक्टर के रूप में दर्शाया जाता है
<math display="block">x = x^0 + x^1 \mathbf{e}_1 + x^2 \mathbf{e}_2 + x^3 \mathbf{e}_3,</math>
<math display="block">x = x^0 + x^1 \mathbf{e}_1 + x^2 \mathbf{e}_2 + x^3 \mathbf{e}_3,</math>
जहां समय अदिश भाग {{nowrap|1=''x''<sup>0</sup> = ''t''}} द्वारा दिया गया है, और '''e'''<sub>1</sub>, '''e'''<sub>2</sub>, '''e'''<sub>3</sub> स्थिति स्थान के लिए मानक आधार हैं। कुल मिलाकर, ऐसी इकाइयाँ जिनमें {{nowrap|1=''c'' = 1}} का उपयोग किया जाता है, प्राकृतिक इकाइयाँ कहलाती हैं। पाउली आव्यूह प्रतिनिधित्व में, इकाई आधार सदिश को पाउली आव्यूह द्वारा और अदिश भाग को पहचान आव्यूह द्वारा प्रतिस्थापित किया जाता है। इसका अर्थ यह है कि पाउली आव्यूह स्थान -समय की स्थिति का प्रतिनिधित्व करता है
जहां समय अदिश भाग {{nowrap|1=''x''<sup>0</sup> = ''t''}} द्वारा दिया गया है, और '''e'''<sub>1</sub>, '''e'''<sub>2</sub>, '''e'''<sub>3</sub> स्थिति समष्टि के लिए मानक आधार हैं। कुल मिलाकर, ऐसी इकाइयाँ जिनमें {{nowrap|1=''c'' = 1}} का उपयोग किया जाता है, प्राकृतिक इकाइयाँ कहलाती हैं। पाउली आव्यूह प्रतिनिधित्व में, इकाई आधार सदिश को पाउली आव्यूह द्वारा और अदिश भाग को पहचान आव्यूह द्वारा प्रतिस्थापित किया जाता है। इसका अर्थ यह है कि पाउली आव्यूह समष्टि -समय की स्थिति का प्रतिनिधित्व करता है
<math display="block">x \rightarrow  \begin{pmatrix} x^0 + x^3 && x^1 - ix^2 \\ x^1 + ix^2 && x^0-x^3\end{pmatrix}                                                       
<math display="block">x \rightarrow  \begin{pmatrix} x^0 + x^3 && x^1 - ix^2 \\ x^1 + ix^2 && x^0-x^3\end{pmatrix}                                                       
                                                                                                                                                                                                                             </math>
                                                                                                                                                                                                                             </math>
Line 129: Line 128:
जैसे कि उचित वेग की गणना विश्राम के समय उचित वेग के लोरेंत्ज़ परिवर्तन के रूप में की जाती है
जैसे कि उचित वेग की गणना विश्राम के समय उचित वेग के लोरेंत्ज़ परिवर्तन के रूप में की जाती है
<math display="block">u = \Lambda \Lambda^\dagger,</math>
<math display="block">u = \Lambda \Lambda^\dagger,</math>
जिसे अतिरिक्त उपयोग के साथ स्थान -समय प्रक्षेप पथ <math>x(\tau)</math> को खोजने के लिए एकीकृत किया जा सकता है
जिसे अतिरिक्त उपयोग के साथ समष्टि -समय प्रक्षेप पथ <math>x(\tau)</math> को खोजने के लिए एकीकृत किया जा सकता है
<math display="block">\frac{d x}{ d \tau} = u .</math>
<math display="block">\frac{d x}{ d \tau} = u .</math>


Line 138: Line 137:
* [[मल्टीवेक्टर]]
* [[मल्टीवेक्टर]]
* विकिबुक्स: ज्यामितीय [[बीजगणित]] का उपयोग करते हुए भौतिकी
* विकिबुक्स: ज्यामितीय [[बीजगणित]] का उपयोग करते हुए भौतिकी
*भौतिक स्थान के बीजगणित में डायराक समीकरण
*भौतिक समष्टि के बीजगणित में डायराक समीकरण
*बीजगणित
*बीजगणित


Line 161: Line 160:
*{{cite journal | last1=Baylis | first1=W. E. | last2=Yao | first2=Y. | title=विद्युतचुंबकीय क्षेत्रों में आवेशों की सापेक्षिक गतिशीलता: एक ईजेनस्पिनर दृष्टिकोण| journal=Physical Review A | volume=60 | issue=2 | date=1 July 1999 | doi=10.1103/physreva.60.785 | pages=785–795| bibcode=1999PhRvA..60..785B }}
*{{cite journal | last1=Baylis | first1=W. E. | last2=Yao | first2=Y. | title=विद्युतचुंबकीय क्षेत्रों में आवेशों की सापेक्षिक गतिशीलता: एक ईजेनस्पिनर दृष्टिकोण| journal=Physical Review A | volume=60 | issue=2 | date=1 July 1999 | doi=10.1103/physreva.60.785 | pages=785–795| bibcode=1999PhRvA..60..785B }}


{{Algebra of Physical Space}}
[[Category:Articles with hatnote templates targeting a nonexistent page]]
{{Number systems}}
{{Industrial and applied mathematics}}
 
श्रेणी:गणितीय भौतिकी
श्रेणी:ज्यामितीय बीजगणित
श्रेणी:क्लिफ़ोर्ड बीजगणित
श्रेणी:विशेष सापेक्षता
श्रेणी:विद्युतचुम्बकत्व
 
 
[[Category: Machine Translated Page]]
[[Category:Created On 26/07/2023]]
[[Category:Created On 26/07/2023]]
[[Category:Machine Translated Page]]
[[Category:Templates Vigyan Ready]]

Latest revision as of 11:06, 14 August 2023

भौतिकी में, भौतिक समष्टि का बीजगणित (एपीएस) त्रि-आयामी यूक्लिडियन समष्टि के क्लिफोर्ड या ज्यामितीय बीजगणित Cl3,0(R) का उपयोग (3+1)-आयामी स्पेसटाइम के लिए एक मॉडल के रूप में किया जाता है, एक पैरावेक्टर (3-आयामी वेक्टर प्लस 1-आयामी स्केलर) के माध्यम से स्पेसटाइम में जो एक बिंदु का प्रतिनिधित्व करता है।

क्लिफोर्ड बीजगणित Cl3,0(R) का एक विश्वसनीय प्रतिनिधित्व है, जो स्पिन प्रतिनिधित्व C2 पर पाउली मैट्रिसेस द्वारा उत्पन्न होता है; इसके अतिरिक्त, Cl3,0(R) क्लिफोर्ड बीजगणित Cl[0]3,1(R) के सम उपबीजगणित Cl3,1(R) के समरूपी है।

एपीएस का उपयोग मौलिक और क्वांटम यांत्रिकी दोनों के लिए एक कॉम्पैक्ट, एकीकृत और ज्यामितीय औपचारिकता के निर्माण के लिए किया जा सकता है।

एपीएस को स्पेसटाइम बीजगणित (एसटीए) के साथ अस्पष्ट नहीं किया जाना चाहिए, जो चार-आयामी मिन्कोव्स्की स्पेसटाइम के क्लिफोर्ड बीजगणित Cl1,3(R) से संबंधित है।

विशेष सापेक्षता

स्पेसटाइम स्थिति पैरावेक्टर

एपीएस में, स्पेसटाइम स्थिति को पैरावेक्टर के रूप में दर्शाया जाता है

जहां समय अदिश भाग x0 = t द्वारा दिया गया है, और e1, e2, e3 स्थिति समष्टि के लिए मानक आधार हैं। कुल मिलाकर, ऐसी इकाइयाँ जिनमें c = 1 का उपयोग किया जाता है, प्राकृतिक इकाइयाँ कहलाती हैं। पाउली आव्यूह प्रतिनिधित्व में, इकाई आधार सदिश को पाउली आव्यूह द्वारा और अदिश भाग को पहचान आव्यूह द्वारा प्रतिस्थापित किया जाता है। इसका अर्थ यह है कि पाउली आव्यूह समष्टि -समय की स्थिति का प्रतिनिधित्व करता है


लोरेंत्ज़ परिवर्तन और रोटर्स


प्रतिबंधित लोरेंत्ज़ परिवर्तन जो समय की दिशा को संरक्षित करते हैं और इसमें घूर्णन और बूस्ट सम्मिलित होते हैं, उन्हें स्पेसटाइम घूर्णन बाइपरवेक्टर डब्ल्यू के घातांक द्वारा निष्पादित किया जा सकता है।

आव्यूह प्रतिनिधित्व में, लोरेंत्ज़ रोटर को SL(2,C) समूह (सम्मिश्र संख्याओं पर डिग्री 2 का विशेष रैखिक समूह) का एक उदाहरण बनाते देखा जाता है, जो लोरेंत्ज़ समूह का दोहरा आवरण है। लोरेंत्ज़ रोटर की एकरूपता को इसके क्लिफ़ोर्ड संयुग्मन के साथ लोरेंत्ज़ रोटर के उत्पाद के संदर्भ में निम्नलिखित स्थिति में अनुवादित किया गया है
इस लोरेंत्ज़ रोटर को सदैव दो कारकों में विघटित किया जा सकता है, एक हर्मिटियन ऑपरेटर B = B, और दूसरा एकात्मक संचालिका R = R−1, ऐसा है कि
एकात्मक तत्व आर को रोटर (गणित) कहा जाता है क्योंकि यह घूर्णन को एन्कोड करता है, और हर्मिटियन तत्व बी बूस्ट को एन्कोड करता है।

चार-वेग पैरावेक्टर

चार-वेग, जिसे उचित वेग भी कहा जाता है, को उचित समय τ के संबंध में स्पेसटाइम स्थिति पैरावेक्टर के व्युत्पन्न के रूप में परिभाषित किया गया है:

साधारण वेग को इस प्रकार परिभाषित करके इस अभिव्यक्ति को अधिक संक्षिप्त रूप में लाया जा सकता है
और लोरेंत्ज़ कारक की परिभाषा को याद करते हुए:
जिससे उचित वेग अधिक सघन हो:
उचित वेग एक धनात्मक यूनिमॉड्यूलर आव्यूह पैरावेक्टर है, जो पैरावेक्टर या क्लिफ़ोर्ड संयुग्मन के संदर्भ में निम्नलिखित स्थिति को दर्शाता है
लोरेंत्ज़ रोटर L की क्रिया के अनुसार ` उचित वेग बदल जाता है


चार-संवेग पैरावेक्टर

एपीएस में चार-संवेग को द्रव्यमान के साथ उचित वेग को गुणा करके प्राप्त किया जा सकता है

द्रव्यमान शैल स्थिति के साथ अनुवादित


मौलिक इलेक्ट्रोडायनामिक्स

विद्युत चुम्बकीय क्षेत्र, क्षमता, और धारा

विद्युत चुम्बकीय क्षेत्र को द्वि-पैरावेक्टर एफ के रूप में दर्शाया गया है:

हर्मिटियन भाग विद्युत क्षेत्र E का प्रतिनिधित्व करता है और एंटी-हर्मिटियन भाग चुंबकीय क्षेत्र B का प्रतिनिधित्व करता है। मानक पाउली आव्यूह प्रतिनिधित्व में, विद्युत चुम्बकीय क्षेत्र है:

क्षेत्र F का स्रोत विद्युत चुम्बकीय चार-धारा है:
जहां अदिश भाग विद्युत आवेश घनत्व ρ के समान होता है, और सदिश भाग विद्युत धारा घनत्व 'j' के समान होता है। विद्युत चुम्बकीय संभावित पैरावेक्टर का परिचय इस प्रकार परिभाषित किया गया है:
जिसमें अदिश भाग विद्युत क्षमता ϕ के समान होता है, और वेक्टर भाग चुंबकीय वेक्टर क्षमता 'A' के ​​समान होता है। तब विद्युत चुम्बकीय क्षेत्र भी है:
क्षेत्र को विद्युत में विभाजित किया जा सकता है
और चुंबकीय

अवयव।

जहाँ

और फॉर्म के गेज परिवर्तन के अनुसार ` एफ अपरिवर्तनीय है
जहाँ एक अदिश क्षेत्र है.

नियम के अनुसार लोरेंत्ज़ परिवर्तनों के अनुसार` विद्युत चुम्बकीय क्षेत्र लोरेंत्ज़ सहप्रसरण है


मैक्सवेल के समीकरण और लोरेंत्ज़ बल

मैक्सवेल समीकरण को एक समीकरण में व्यक्त किया जा सकता है:

जहां ओवरबार पैरावेक्टर या क्लिफ़ोर्ड संयुग्मन का प्रतिनिधित्व करता है।

लोरेंत्ज़ बल समीकरण का रूप लेता है


इलेक्ट्रोमैग्नेटिक लैग्रेंजियन

विद्युतचुंबकीय लैग्रेंजियन (क्षेत्र सिद्धांत) है

जो एक वास्तविक अदिश अपरिवर्तनीय है।

सापेक्ष क्वांटम यांत्रिकी

द्रव्यमान m और आवेश e के विद्युत आवेशित कण के लिए डिराक समीकरण इस प्रकार है:

जहाँ e3 एक इच्छित एकात्मक वेक्टर है, और A उपरोक्त के अनुसार विद्युत चुम्बकीय पैरावेक्टर क्षमता है। संभावित A के संदर्भ में न्यूनतम युग्मन के माध्यम से विद्युत चुम्बकीय संपर्क को सम्मिलित किया गया है।

मौलिक स्पिनर

लोरेंत्ज़ रोटर का अंतर समीकरण जो लोरेंत्ज़ बल के अनुरूप है

जैसे कि उचित वेग की गणना विश्राम के समय उचित वेग के लोरेंत्ज़ परिवर्तन के रूप में की जाती है
जिसे अतिरिक्त उपयोग के साथ समष्टि -समय प्रक्षेप पथ को खोजने के लिए एकीकृत किया जा सकता है


यह भी देखें

  • पैरावेक्टर
  • मल्टीवेक्टर
  • विकिबुक्स: ज्यामितीय बीजगणित का उपयोग करते हुए भौतिकी
  • भौतिक समष्टि के बीजगणित में डायराक समीकरण
  • बीजगणित

संदर्भ

पाठ्यपुस्तकें

  • Baylis, William (2002). Electrodynamics: A Modern Geometric Approach (2nd ed.). ISBN 0-8176-4025-8.
  • Baylis, William, ed. (1999) [1996]. Clifford (Geometric) Algebras: with applications to physics, mathematics, and engineering. Springer. ISBN 978-0-8176-3868-9.
  • Doran, Chris; Lasenby, Anthony (2007) [2003]. Geometric Algebra for Physicists. Cambridge University Press. ISBN 978-1-139-64314-6.
  • Hestenes, David (1999). New Foundations for Classical Mechanics (2nd ed.). Kluwer. ISBN 0-7923-5514-8.


लेख