प्रक्षेपण आव्यूह: Difference between revisions

From Vigyanwiki
No edit summary
No edit summary
 
(4 intermediate revisions by 4 users not shown)
Line 2: Line 2:
{{For|रैखिक परिवर्तन|प्रक्षेपण (रैखिक बीजगणित)}}
{{For|रैखिक परिवर्तन|प्रक्षेपण (रैखिक बीजगणित)}}


आधारभूत सांख्यिकी में, प्रक्षेपण मैट्रिक्स <math>(\mathbf{P})</math>,<ref>{{cite book |first=Alexander |last=Basilevsky |title=सांख्यिकीय विज्ञान में अनुप्रयुक्त मैट्रिक्स बीजगणित|publisher=Dover |year=2005 |isbn=0-486-44538-0 |pages=160–176 |url=https://books.google.com/books?id=ScssAwAAQBAJ&pg=PA160 }}</ref> कभी-कभी प्रभाव मैट्रिक्स<ref>{{cite web |title=Data Assimilation: Observation influence diagnostic of a data assimilation system |url=http://old.ecmwf.int/newsevents/training/lecture_notes/pdf_files/ASSIM/ObservationInfluence.pdf |archive-url=https://web.archive.org/web/20140903115021/http://old.ecmwf.int/newsevents/training/lecture_notes/pdf_files/ASSIM/ObservationInfluence.pdf |url-status=dead |archive-date=2014-09-03 }}</ref> या हैट मैट्रिक्स <math>(\mathbf{H})</math> विभिन्न प्रयोजनों में उपयोग की जाती है। यह प्रतिक्रिया चर (आश्रित चर मान) के वेक्टर को फिट किए गए मान (या अनुमानित मान) के वेक्टर में मैप करता है। यह प्रत्येक [[फिट मूल्य]] पर प्रत्येक प्रतिक्रिया मूल्य के प्रभाव फ़ंक्शन (सांख्यिकी) का वर्णन करता है।<ref name="Hoaglin1977" >{{Cite journal | title = The Hat Matrix in Regression and ANOVA
आधारभूत सांख्यिकी में, '''प्रक्षेपण आव्यूह''' <math>(\mathbf{P})</math>,<ref>{{cite book |first=Alexander |last=Basilevsky |title=सांख्यिकीय विज्ञान में अनुप्रयुक्त मैट्रिक्स बीजगणित|publisher=Dover |year=2005 |isbn=0-486-44538-0 |pages=160–176 |url=https://books.google.com/books?id=ScssAwAAQBAJ&pg=PA160 }}</ref> कभी-कभी प्रभाव आव्यूह<ref>{{cite web |title=Data Assimilation: Observation influence diagnostic of a data assimilation system |url=http://old.ecmwf.int/newsevents/training/lecture_notes/pdf_files/ASSIM/ObservationInfluence.pdf |archive-url=https://web.archive.org/web/20140903115021/http://old.ecmwf.int/newsevents/training/lecture_notes/pdf_files/ASSIM/ObservationInfluence.pdf |url-status=dead |archive-date=2014-09-03 }}</ref> या हैट आव्यूह <math>(\mathbf{H})</math> विभिन्न प्रयोजनों में उपयोग की जाती है। यह प्रतिक्रिया चर (आश्रित चर मान) के सदिश को फिट किए गए मान (या अनुमानित मान) के सदिश में मानचित्र करता है। यह प्रत्येक [[फिट मूल्य]] पर प्रत्येक प्रतिक्रिया मूल्य के प्रभाव फलन (सांख्यिकी) का वर्णन करता है।<ref name="Hoaglin1977" >{{Cite journal | title = The Hat Matrix in Regression and ANOVA
| first1= David C. | last1= Hoaglin |first2= Roy E. | last2=Welsch |journal= [[The American Statistician]] | volume=32 |date=February 1978| pages=17–22 | doi = 10.2307/2683469 |issue=1| jstor = 2683469 |url=http://dspace.mit.edu/bitstream/1721.1/1920/1/SWP-0901-02752210.pdf | hdl= 1721.1/1920 | hdl-access= free }}</ref><ref name = "Freedman09">{{cite book |author=David A. Freedman |author-link=David A. Freedman |year=2009|title=Statistical Models: Theory and Practice |publisher=[[Cambridge University Press]]}}</ref> प्रक्षेपण मैट्रिक्स के विकर्ण तत्व [[उत्तोलन (सांख्यिकी)]] हैं, जो उसी अवलोकन के लिए फिट किए गए मूल्य पर प्रत्येक प्रतिक्रिया मूल्य के प्रभाव का वर्णन करते हैं।
| first1= David C. | last1= Hoaglin |first2= Roy E. | last2=Welsch |journal= [[The American Statistician]] | volume=32 |date=February 1978| pages=17–22 | doi = 10.2307/2683469 |issue=1| jstor = 2683469 |url=http://dspace.mit.edu/bitstream/1721.1/1920/1/SWP-0901-02752210.pdf | hdl= 1721.1/1920 | hdl-access= free }}</ref><ref name = "Freedman09">{{cite book |author=David A. Freedman |author-link=David A. Freedman |year=2009|title=Statistical Models: Theory and Practice |publisher=[[Cambridge University Press]]}}</ref> प्रक्षेपण आव्यूह के विकर्ण तत्व [[उत्तोलन (सांख्यिकी)|उत्तबलन (सांख्यिकी)]] हैं, जो उसी अवलोकन के लिए फिट किए गए मूल्य पर प्रत्येक प्रतिक्रिया मूल्य के प्रभाव का वर्णन करते हैं।


==परिभाषा==
==परिभाषा==
यदि प्रतिक्रिया मूल्यों का वेक्टर द्वारा निरूपित किया जाता है <math>\mathbf{y}</math> और पूर्वानुमानित मूल्यों का वेक्टर <math>\mathbf{\hat{y}}</math> है, तो
यदि प्रतिक्रिया मूल्यों का सदिश द्वारा निरूपित किया जाता है <math>\mathbf{y}</math> और पूर्वानुमानित मूल्यों का सदिश <math>\mathbf{\hat{y}}</math> है, तब
:<math>\mathbf{\hat{y}} = \mathbf{P} \mathbf{y}.</math>
:<math>\mathbf{\hat{y}} = \mathbf{P} \mathbf{y}.</math>
जैसा कि <math>\mathbf{\hat{y}}</math> को आमतौर पर "वाई-हैट" के रूप में उच्चारित किया जाता है, प्रक्षेपण मैट्रिक्स <math>\mathbf{P}</math> भी "हैट मैट्रिक्स" के नाम से जानी जाती है, क्योंकि यह <math>\mathbf{y}</math> पर "हैट" लगाती है।
जैसा कि <math>\mathbf{\hat{y}}</math> को सामान्यतः "वाई-हैट" के रूप में उच्चारित किया जाता है, प्रक्षेपण आव्यूह <math>\mathbf{P}</math> भी "हैट आव्यूह" के नाम से जानी जाती है, क्योंकि यह <math>\mathbf{y}</math> पर "हैट" लगाती है।


<math>\mathbf{P}</math> के ith वर्ग और jth स्तंभ में तत्व जो इस समान अवलोकन के लिए पूर्वानुमानित मूल्यों और उत्तर में वे पूर्वानुमानित मूल्यों के बीच [[सहप्रसरण]] है, उसे खण्ड व्युत्क्रमण कहा जाता है:<ref>Wood, Simon N. Generalized additive models: an introduction with R. chapman and hall/CRC, 2006.</ref>
<math>\mathbf{P}</math> के ith वर्ग और jth स्तंभ में तत्व जो इस समान अवलोकन के लिए पूर्वानुमानित मूल्यों और उत्तर में वह पूर्वानुमानित मूल्यों के बीच [[सहप्रसरण]] है, उसे खण्ड व्युत्क्रमण कहा जाता है:<ref>Wood, Simon N. Generalized additive models: an introduction with R. chapman and hall/CRC, 2006.</ref>
:<math>p_{ij} = \frac{\operatorname{Cov}\left[ \hat{y}_i, y_j \right]}{\operatorname{Var}\left[y_j \right]}</math>
:<math>p_{ij} = \frac{\operatorname{Cov}\left[ \hat{y}_i, y_j \right]}{\operatorname{Var}\left[y_j \right]}</math>




==अवशेषों के लिए आवेदन==
==अवशेषों के लिए आवेदन==
आँकड़ों में त्रुटियों और अवशेषों के वेक्टर का सूत्र <math>\mathbf{r}</math> प्रक्षेपण मैट्रिक्स का उपयोग करके भी संक्षिप्त रूप से व्यक्त किया जा सकता है:
आँकड़ों में त्रुटियों और अवशेषों के सदिश का सूत्र <math>\mathbf{r}</math> प्रक्षेपण आव्यूह का उपयोग करके भी संक्षिप्त रूप से व्यक्त किया जा सकता है:
:<math>\mathbf{r} = \mathbf{y} - \mathbf{\hat{y}} = \mathbf{y} - \mathbf{P} \mathbf{y} = \left( \mathbf{I} - \mathbf{P} \right) \mathbf{y}.</math>
:<math>\mathbf{r} = \mathbf{y} - \mathbf{\hat{y}} = \mathbf{y} - \mathbf{P} \mathbf{y} = \left( \mathbf{I} - \mathbf{P} \right) \mathbf{y}.</math>
यहाँ <math>\mathbf{I}</math> आईडेंटिटी मैट्रिक्स है। मैट्रिक्स <math>\mathbf{M} \equiv \mathbf{I} - \mathbf{P}</math> इसे कभी-कभी अवशिष्ट निर्माता मैट्रिक्स या विनाशक मैट्रिक्स के रूप में जाना जाता है।
यहाँ <math>\mathbf{I}</math> आईडेंटिटी आव्यूह है। आव्यूह <math>\mathbf{M} \equiv \mathbf{I} - \mathbf{P}</math> इसे कभी-कभी अवशिष्ट निर्माता आव्यूह या विनाशक आव्यूह के रूप में जाना जाता है।


अवशेषों का सहप्रसरण मैट्रिक्स <math>\mathbf{r}</math> के लिए, [[त्रुटि प्रसार]] द्वारा, निम्नलिखित होता है:
अवशेषों का सहप्रसरण आव्यूह <math>\mathbf{r}</math> के लिए, [[त्रुटि प्रसार]] द्वारा, निम्नलिखित होता है:
:<math>\mathbf{\Sigma}_\mathbf{r} = \left( \mathbf{I} - \mathbf{P} \right)^\textsf{T} \mathbf{\Sigma} \left( \mathbf{I}-\mathbf{P} \right)</math>,
:<math>\mathbf{\Sigma}_\mathbf{r} = \left( \mathbf{I} - \mathbf{P} \right)^\textsf{T} \mathbf{\Sigma} \left( \mathbf{I}-\mathbf{P} \right)</math>,
यहाँ <math>\mathbf{\Sigma}</matH> त्रुटि वेक्टर के [[covariance matrix|सहप्रसरण आव्यूह]] है (और विस्तार से प्रतिक्रिया वेक्टर का भी)। [[independent and identically distributed|स्वतंत्र और समान रूप से वितरित]] त्रुटियों वाले रैखिक मॉडल के मामले में <math>\mathbf{\Sigma} = \sigma^{2} \mathbf{I}</math>, इसे यह घटाया जा सकता है:<ref name="Hoaglin1977"/>
यहाँ <math>\mathbf{\Sigma}</matH> त्रुटि सदिश के [[covariance matrix|सहप्रसरण आव्यूह]] है (और विस्तार से प्रतिक्रिया सदिश का भी)। [[independent and identically distributed|स्वतंत्र और समान रूप से वितरित]] त्रुटियों वाले रैखिक मॉडल के स्थितियों में <math>\mathbf{\Sigma} = \sigma^{2} \mathbf{I}</math>, इसे यह घटाया जा सकता है:<ref name="Hoaglin1977"/>


<math>\mathbf{\Sigma}_\mathbf{r} = \left( \mathbf{I} - \mathbf{P} \right) \sigma^{2}</math>.
<math>\mathbf{\Sigma}_\mathbf{r} = \left( \mathbf{I} - \mathbf{P} \right) \sigma^{2}</math>.


==अंतर्ज्ञान==
==अंतर्ज्ञान==
[[File:Projection of a vector onto the column space of a matrix.svg|thumb|मैट्रिक्स, <math>\mathbf{A}</math> इसके स्तंभ स्थान को हरी रेखा के रूप में दर्शाया गया है। कुछ वेक्टर का प्रक्षेपण <math>\mathbf{b}</math> के कॉलम स्थान पर <math>\mathbf{A}</math> वेक्टर है <math>\mathbf{x}</math>]]चित्र से यह स्पष्ट है कि वेक्टर <math>\mathbf{b}</math> के लिए <math>\mathbf{A}</math> के स्तंभ स्थान का सबसे निकटतम बिंदु <math>\mathbf{Ax}</math> है, और यह एक बिंदु है जहां हम <math>\mathbf{A}</math> के स्तंभ स्थान के लिए एक लाइन लंबकोण खींच सकते हैं। एक मैट्रिक्स के स्तंभ स्थान के लिए लंबकोण खींचा गया वेक्टर उस मैट्रिक्स के प्रतिरोध स्थान में होता है, इसलिए
[[File:Projection of a vector onto the column space of a matrix.svg|thumb|आव्यूह, <math>\mathbf{A}</math> इसके स्तंभ स्थान को हरी रेखा के रूप में दर्शाया गया है। कुछ सदिश का प्रक्षेपण <math>\mathbf{b}</math> के कॉलम स्थान पर <math>\mathbf{A}</math> सदिश है <math>\mathbf{x}</math>]]चित्र से यह स्पष्ट है कि सदिश <math>\mathbf{b}</math> के लिए <math>\mathbf{A}</math> के स्तंभ स्थान का सबसे निकटतम बिंदु <math>\mathbf{Ax}</math> है, और यह बिंदु है जहां हम <math>\mathbf{A}</math> के स्तंभ स्थान के लिए लाइन लंबकोण खींच सकते हैं। आव्यूह के स्तंभ स्थान के लिए लंबकोण खींचा गया सदिश उस आव्यूह के प्रतिरोध स्थान में होता है, इसलिए
:<math>\mathbf{A}^\textsf{T}(\mathbf{b}-\mathbf{Ax}) = 0</math>
:<math>\mathbf{A}^\textsf{T}(\mathbf{b}-\mathbf{Ax}) = 0</math>
होता है। इसके बाद, हम इसे पुनर्व्यवस्थित करते हैं, इससे
होता है। इसके पश्चात्, हम इसे पुनर्व्यवस्थित करते हैं, इससे
:<math>\begin{align}
:<math>\begin{align}
               && \mathbf{A}^\textsf{T}\mathbf{b} &- \mathbf{A}^\textsf{T}\mathbf{Ax} = 0 \\
               && \mathbf{A}^\textsf{T}\mathbf{b} &- \mathbf{A}^\textsf{T}\mathbf{Ax} = 0 \\
Line 34: Line 34:
   \Rightarrow && \mathbf{x} &= \left(\mathbf{A}^\textsf{T}\mathbf{A}\right)^{-1}\mathbf{A}^\textsf{T}\mathbf{b}
   \Rightarrow && \mathbf{x} &= \left(\mathbf{A}^\textsf{T}\mathbf{A}\right)^{-1}\mathbf{A}^\textsf{T}\mathbf{b}
\end{align}</math>
\end{align}</math>
इसलिए, जब से <math>\mathbf{x}</math> के कॉलम स्पेस <math>\mathbf{A}</math> पर है, प्रक्षेपण मैट्रिक्स, जो मानचित्रण करता है <math>\mathbf{b}</math> को <math>\mathbf{x}</math> के स्तंभ स्थान पर मान निर्धारित करता है, बस <math>\mathbf{A}</math> है, या <math>\mathbf{A}\left(\mathbf{A}^\textsf{T}\mathbf{A}\right)^{-1}\mathbf{A}^\textsf{T}</math>होता है।
इसलिए, जब से <math>\mathbf{x}</math> के कॉलम स्पेस <math>\mathbf{A}</math> पर है, प्रक्षेपण आव्यूह, जो मानचित्रण करता है <math>\mathbf{b}</math> को <math>\mathbf{x}</math> के स्तंभ स्थान पर मान निर्धारित करता है, बस <math>\mathbf{A}</math> है, या <math>\mathbf{A}\left(\mathbf{A}^\textsf{T}\mathbf{A}\right)^{-1}\mathbf{A}^\textsf{T}</math>होता है।
 


==रेखीय मॉडल ==
==रेखीय मॉडल ==
मान लीजिए कि हम रैखिक न्यूनतम वर्गों का उपयोग करके रैखिक मॉडल का अनुमान लगाना चाहते हैं।मॉडल को निम्नलिखित रूप में लिखा जा सकता है:
मान लीजिए कि हम रैखिक न्यूनतम वर्गों का उपयोग करके रैखिक मॉडल का अनुमान लगाना चाहते हैं। मॉडल को निम्नलिखित रूप में लिखा जा सकता है:
:<math>\mathbf{y} = \mathbf{X} \boldsymbol\beta + \boldsymbol\varepsilon,</math>
:<math>\mathbf{y} = \mathbf{X} \boldsymbol\beta + \boldsymbol\varepsilon,</math>
जहाँ <math>\mathbf{X}</math> व्याख्यात्मक चर ([[डिजाइन मैट्रिक्स]]) का मैट्रिक्स है, ''β'' अज्ञात पैरामीटर का एक वेक्टर है जिसे अनुमानित किया जाना है, और ε त्रुटि वेक्टर है।
जहाँ <math>\mathbf{X}</math> व्याख्यात्मक चर ([[डिजाइन मैट्रिक्स|डिजाइन आव्यूह]]) का आव्यूह है, ''β'' अज्ञात पैरामीटर का सदिश है जिसे अनुमानित किया जाना है, और ε त्रुटि सदिश है।


इस प्रपत्रणा के अधीन अनेक प्रकार के मॉडल और तकनीक हो सकते हैं। कुछ उदाहरण [[रैखिक न्यूनतम वर्ग (गणित)]], [[स्प्लिन को चौरसाई करना]], [[प्रतिगमन विभाजन]], स्थानीय रिग्रेशन, [[स्थानीय प्रतिगमन]] और [[रैखिक फ़िल्टर|रैखिक फिल्टर]] हैं।
इस प्रपत्रणा के अधीन अनेक प्रकार के मॉडल और विधि हो सकते हैं। कुछ उदाहरण [[रैखिक न्यूनतम वर्ग (गणित)]], [[स्प्लिन को चौरसाई करना]], [[प्रतिगमन विभाजन]], स्थानीय रिग्रेशन, [[स्थानीय प्रतिगमन]] और [[रैखिक फ़िल्टर|रैखिक फिल्टर]] हैं।


=== सामान्य न्यूनतम वर्ग ===
=== सामान्य न्यूनतम वर्ग ===
{{further|सामान्य कम चौकोर}}
{{further|सामान्य कम चौकोर}}


जब प्रत्येक अवलोकन के लिए वजन समान होते हैं और त्रुटियां असंबद्ध होती हैं, तो अनुमानित पैरामीटर दिए गए होते हैं:
जब प्रत्येक अवलोकन के लिए वजन समान होते हैं और त्रुटियां असंबद्ध होती हैं, तब अनुमानित पैरामीटर दिए गए होते हैं:


:<math>\hat{\boldsymbol\beta} = \left( \mathbf{X}^\textsf{T} \mathbf{X} \right)^{-1} \mathbf{X}^\textsf{T} \mathbf{y},</math>
:<math>\hat{\boldsymbol\beta} = \left( \mathbf{X}^\textsf{T} \mathbf{X} \right)^{-1} \mathbf{X}^\textsf{T} \mathbf{y},</math>
Line 53: Line 52:


:<math>\hat{\mathbf{y}} = \mathbf{X} \hat{\boldsymbol \beta} = \mathbf{X} \left( \mathbf{X}^\textsf{T} \mathbf{X} \right)^{-1} \mathbf{X}^\textsf{T} \mathbf{y}.</math>
:<math>\hat{\mathbf{y}} = \mathbf{X} \hat{\boldsymbol \beta} = \mathbf{X} \left( \mathbf{X}^\textsf{T} \mathbf{X} \right)^{-1} \mathbf{X}^\textsf{T} \mathbf{y}.</math>
इसलिए, प्रक्षेपण मैट्रिक्स (और हैट मैट्रिक्स) निम्नलिखित द्वारा दी जाती है:
इसलिए, प्रक्षेपण आव्यूह (और हैट आव्यूह) निम्नलिखित द्वारा दी जाती है:


:<math>\mathbf{P} \equiv \mathbf{X} \left(\mathbf{X}^\textsf{T} \mathbf{X} \right)^{-1} \mathbf{X}^\textsf{T}.</math>
:<math>\mathbf{P} \equiv \mathbf{X} \left(\mathbf{X}^\textsf{T} \mathbf{X} \right)^{-1} \mathbf{X}^\textsf{T}.</math>
Line 61: Line 60:
{{further|भारित न्यूनतम वर्ग|सामान्यीकृत न्यूनतम वर्ग}}
{{further|भारित न्यूनतम वर्ग|सामान्यीकृत न्यूनतम वर्ग}}


उपरोक्त को उन मामलों के लिए सामान्यीकृत किया जा सकता है जहां वजन समान नहीं हैं और/या त्रुटियां सहसंबद्ध हैं। मान लीजिए कि त्रुटियों का सहप्रसरण मैट्रिक्स Σ है। तो क्योंकि
उपरोक्त को उन स्थितियों के लिए सामान्यीकृत किया जा सकता है जहां वजन समान नहीं हैं और/या त्रुटियां सहसंबद्ध हैं। मान लीजिए कि त्रुटियों का सहप्रसरण आव्यूह Σ है। तब क्योंकि


: <math>
: <math>
Line 67: Line 66:
   </math>.
   </math>.


है, इसलिए प्रक्षेपण मैट्रिक्स इस प्रकार होती है:
है, इसलिए प्रक्षेपण आव्यूह इस प्रकार होती है:


: <math>
: <math>
   \mathbf{H} = \mathbf{X}\left( \mathbf{X}^\textsf{T} \mathbf{\Sigma}^{-1} \mathbf{X} \right)^{-1} \mathbf{X}^\textsf{T} \mathbf{\Sigma}^{-1}
   \mathbf{H} = \mathbf{X}\left( \mathbf{X}^\textsf{T} \mathbf{\Sigma}^{-1} \mathbf{X} \right)^{-1} \mathbf{X}^\textsf{T} \mathbf{\Sigma}^{-1}
   </math>
   </math>
और फिर फिर यह देखा जा सकता है कि <math>H^2 = H\cdot H = H</math>, हालाँकि अब यह सममित नहीं रह गया है।
और फिर यह देखा जा सकता है कि <math>H^2 = H\cdot H = H</math>, चूंकि अब यह सममित नहीं रह गया है।


== गुण ==
== गुण ==
प्रक्षेपण मैट्रिक्स में कई उपयोगी बीजगणितीय गुणधर्म हैं।<ref>{{cite book |last=Gans |first=P. |year=1992 |title=रासायनिक विज्ञान में डेटा फिटिंग|url=https://archive.org/details/datafittinginche0000gans |url-access=registration |publisher=Wiley |isbn=0-471-93412-7 }}</ref><ref>{{cite book |last=Draper |first=N. R. |last2=Smith |first2=H. |year=1998 |title=अनुप्रयुक्त प्रतिगमन विश्लेषण|publisher=Wiley |isbn=0-471-17082-8 }}</ref> रैखिक बीजगणित की भाषा में, प्रक्षेपण मैट्रिक्स डिज़ाइन मैट्रिक्स <math>\mathbf{X}</math> के [[स्तंभ स्थान]] पर [[ऑर्थोगोनल प्रक्षेपण]] है।<ref name = "Freedman09" />(ध्यान दें कि <math>\left( \mathbf{X}^\textsf{T} \mathbf{X} \right)^{-1} \mathbf{X}^\textsf{T}</math> डीडूर्वारा यह पसुचित जोरदार मैट्रिक्स है।) इस संस्करण में प्रोजेक्शन मैट्रिक्स के कुछ तथ्य संक्षेप में निम्नलिखित हैं:<ref name = "Freedman09" />* <math>\mathbf{u} = (\mathbf{I} - \mathbf{P})\mathbf{y},</math> और <math>\mathbf{u} = \mathbf{y} - \mathbf{P} \mathbf{y} \perp \mathbf{X}.</math>
प्रक्षेपण आव्यूह में अनेक उपयोगी बीजगणितीय गुणधर्म हैं।<ref>{{cite book |last=Gans |first=P. |year=1992 |title=रासायनिक विज्ञान में डेटा फिटिंग|url=https://archive.org/details/datafittinginche0000gans |url-access=registration |publisher=Wiley |isbn=0-471-93412-7 }}</ref><ref>{{cite book |last=Draper |first=N. R. |last2=Smith |first2=H. |year=1998 |title=अनुप्रयुक्त प्रतिगमन विश्लेषण|publisher=Wiley |isbn=0-471-17082-8 }}</ref> रैखिक बीजगणित की भाषा में, प्रक्षेपण आव्यूह डिज़ाइन आव्यूह <math>\mathbf{X}</math> के [[स्तंभ स्थान]] पर [[ऑर्थोगोनल प्रक्षेपण]] है।<ref name = "Freedman09" />(ध्यान दें कि <math>\left( \mathbf{X}^\textsf{T} \mathbf{X} \right)^{-1} \mathbf{X}^\textsf{T}</math> डीडूर्वारा यह पसुचित जोरदार आव्यूह है।) इस संस्करण में प्रोजेक्शन आव्यूह के कुछ तथ्य संक्षेप में निम्नलिखित हैं:<ref name = "Freedman09" />* <math>\mathbf{u} = (\mathbf{I} - \mathbf{P})\mathbf{y},</math> और <math>\mathbf{u} = \mathbf{y} - \mathbf{P} \mathbf{y} \perp \mathbf{X}.</math>
* <math>\mathbf{P}</math> सममित है, और ऐसा ही है <math>\mathbf{M} \equiv \mathbf{I} - \mathbf{P}</math>।
* <math>\mathbf{P}</math> सममित है, और ऐसा ही है <math>\mathbf{M} \equiv \mathbf{I} - \mathbf{P}</math>।
* <math>\mathbf{P}</math> निष्क्रिय है: <math>\mathbf{P}^2 = \mathbf{P}</math>, और ऐसे ही <math>\mathbf{M}</math>।
* <math>\mathbf{P}</math> निष्क्रिय है: <math>\mathbf{P}^2 = \mathbf{P}</math>, और ऐसे ही <math>\mathbf{M}</math>।
* अगर <math>\mathbf{X}</math> {{nowrap|''n'' × ''r''}} मैट्रिक्स है, जिसमें <math>\operatorname{rank}(\mathbf{X}) = r</math>, तो <math>\operatorname{rank}(\mathbf{P}) = r</math> होता है।
* यदि <math>\mathbf{X}</math> {{nowrap|''n'' × ''r''}} आव्यूह है, जिसमें <math>\operatorname{rank}(\mathbf{X}) = r</math>, तब <math>\operatorname{rank}(\mathbf{P}) = r</math> होता है।
*<math>\mathbf{P}</math> के [[eigenvalue|इजनवैल्यूज]] एकाधिकता में r और {{nowrap|''n'' − ''r''}} शून्य, होते हैं, जबकि <math>\mathbf{M}</math> के इजनवैल्यूज में {{nowrap|''n'' − ''r''}} शून्य होते हैं।<ref>{{cite book |first=Takeshi |last=Amemiya |title=उन्नत अर्थमिति|location=Cambridge |publisher=Harvard University Press |year=1985 |isbn=0-674-00560-0 |pages=[https://archive.org/details/advancedeconomet00amem/page/460 460]–461 |url=https://archive.org/details/advancedeconomet00amem |url-access=registration }}</ref>
*<math>\mathbf{P}</math> के [[eigenvalue|इजनवैल्यूज]] एकाधिकता में r और {{nowrap|''n'' − ''r''}} शून्य, होते हैं, जबकि <math>\mathbf{M}</math> के इजनवैल्यूज में {{nowrap|''n'' − ''r''}} शून्य होते हैं।<ref>{{cite book |first=Takeshi |last=Amemiya |title=उन्नत अर्थमिति|location=Cambridge |publisher=Harvard University Press |year=1985 |isbn=0-674-00560-0 |pages=[https://archive.org/details/advancedeconomet00amem/page/460 460]–461 |url=https://archive.org/details/advancedeconomet00amem |url-access=registration }}</ref>
* <math>\mathbf{X}</math> के अंतर्गत <math>\mathbf{P}</math> अपरिवर्तनीय है: <math>\mathbf{P X} = \mathbf{X},</math> इसलिए <math>\left( \mathbf{I} - \mathbf{P} \right) \mathbf{X} = \mathbf{0}</math>।
* <math>\mathbf{X}</math> के अंतर्गत <math>\mathbf{P}</math> अपरिवर्तनीय है: <math>\mathbf{P X} = \mathbf{X},</math> इसलिए <math>\left( \mathbf{I} - \mathbf{P} \right) \mathbf{X} = \mathbf{0}</math>।
* <math>\left( \mathbf{I} - \mathbf{P} \right) \mathbf{P} = \mathbf{P} \left( \mathbf{I} - \mathbf{P} \right) = \mathbf{0}.</math>
* <math>\left( \mathbf{I} - \mathbf{P} \right) \mathbf{P} = \mathbf{P} \left( \mathbf{I} - \mathbf{P} \right) = \mathbf{0}.</math>
* <math>\mathbf{P}</math> कुछ विशेष स्थानों के लिए अद्वितीय होती है।
* <math>\mathbf{P}</math> कुछ विशेष स्थानों के लिए अद्वितीय होती है।
[[रैखिक मॉडल]] के अनुरूप प्रक्षेपण मैट्रिक्स [[सममित मैट्रिक्स]] और [[निष्क्रिय मैट्रिक्स]] होती है, अर्थात, <math>\mathbf{P}^2 = \mathbf{P}</math> कहा जाता है। हालांकि, यह मामला हमेशा नहीं होता है; उदाहरण के लिए, स्थानीय वज्रछाया प्लॉट स्मूदिंग (LOESS) में, सामान्य रूप से न तो प्रोजेक्शन मैट्रिक्स संवेगीय होती है और न ही आईडेम्पोटेंट होती है।
[[रैखिक मॉडल]] के अनुरूप प्रक्षेपण आव्यूह [[सममित मैट्रिक्स|सममित आव्यूह]] और [[निष्क्रिय मैट्रिक्स|निष्क्रिय आव्यूह]] होती है, अर्थात, <math>\mathbf{P}^2 = \mathbf{P}</math> कहा जाता है। चूंकि, यह स्थितियों सदैव नहीं होता है; उदाहरण के लिए, स्थानीय वज्रछाया प्लॉट स्मूदिंग (LOESS) में, सामान्य रूप से न तब प्रोजेक्शन आव्यूह संवेगीय होती है और न ही आईडेम्पोटेंट होती है।


[[रैखिक मॉडल]] के लिए, प्रक्षेपण मैट्रिक्स का [[ट्रेस (रैखिक बीजगणित)]] [[रैंक (रैखिक बीजगणित)]] के बराबर है <math>\mathbf{X}</math>, जो रैखिक मॉडल के स्वतंत्र मापदंडों की संख्या है।<ref>{{cite web |title=प्रमाण है कि रैखिक प्रतिगमन में 'हैट' मैट्रिक्स का निशान एक्स की रैंक है|work=Stack Exchange |date=April 13, 2017 |url=https://math.stackexchange.com/q/1582567 }}</ref> LOESS जैसे अन्य मॉडलों के लिए जो अभी भी <math>\mathbf{y}</math> अवलोकनों में रैखिक हैं, प्रक्षेपण मैट्रिक्स का प्रयोग मॉडल की प्रभावशीलता के परिभाषित करने के लिए किया जा सकता है।
[[रैखिक मॉडल]] के लिए, प्रक्षेपण आव्यूह का [[ट्रेस (रैखिक बीजगणित)]] [[रैंक (रैखिक बीजगणित)]] के सामान्तर है <math>\mathbf{X}</math>, जो रैखिक मॉडल के स्वतंत्र मापदंडों की संख्या है।<ref>{{cite web |title=प्रमाण है कि रैखिक प्रतिगमन में 'हैट' मैट्रिक्स का निशान एक्स की रैंक है|work=Stack Exchange |date=April 13, 2017 |url=https://math.stackexchange.com/q/1582567 }}</ref> LOESS जैसे अन्य मॉडलों के लिए जो अभी भी <math>\mathbf{y}</math> अवलोकनों में रैखिक हैं, प्रक्षेपण आव्यूह का प्रयोग मॉडल की प्रभावशीलता के परिभाषित करने के लिए किया जा सकता है।


प्रतिगमन विश्लेषण में प्रक्षेपण मैट्रिक्स के व्यावहारिक अनुप्रयोगों में लीवरेज (सांख्यिकी) और कुक की दूरी शामिल है, जो [[प्रभावशाली अवलोकन]] की पहचान करने से संबंधित हैं, यानी अवलोकन जो प्रतिगमन के परिणामों पर बड़ा प्रभाव डालते हैं।
प्रतिगमन विश्लेषण में प्रक्षेपण आव्यूह के व्यावहारिक अनुप्रयोगों में लीवरेज (सांख्यिकी) और कुक की दूरी सम्मिलित है, जो [[प्रभावशाली अवलोकन]] की पहचान करने से संबंधित हैं, अर्थात अवलोकन जो प्रतिगमन के परिणामों पर बड़ा प्रभाव डालते हैं।


== ब्लॉकवार सूत्र ==
== ब्लॉकवार सूत्र ==


मान लीजिए डिज़ाइन मैट्रिक्स <math>X</math> को स्तंभों के रूप में इस तरह विभाजित किया जा सकता है: <math>X = \begin{bmatrix} A & B \end{bmatrix}</math> हैट या प्रक्षेपण ऑपरेटर को इस प्रकार निर्धारित किया जा सकता है:<math>P\{X\} = X \left(X^\textsf{T} X \right)^{-1} X^\textsf{T}</math>उसी तरह, रेजिड्यूअल ऑपरेटर को इस प्रकार निर्धारित किया जा सकता है: <math>M\{X\} = I - P\{X\}</math>.
मान लीजिए डिज़ाइन आव्यूह <math>X</math> को स्तंभों के रूप में इस प्रकार विभाजित किया जा सकता है: <math>X = \begin{bmatrix} A & B \end{bmatrix}</math> हैट या प्रक्षेपण ऑपरेटर को इस प्रकार निर्धारित किया जा सकता है:<math>P\{X\} = X \left(X^\textsf{T} X \right)^{-1} X^\textsf{T}</math>उसी प्रकार, रेजिड्यूअल ऑपरेटर को इस प्रकार निर्धारित किया जा सकता है: <math>M\{X\} = I - P\{X\}</math>.


तो प्रक्षेपण मैट्रिक्स इस प्रकार विभाजित की जा सकती है:<ref>{{cite book|last1=Rao|first1=C. Radhakrishna|last2=Toutenburg|first2=Helge|author3=Shalabh|first4=Christian|last4=Heumann|title=रैखिक मॉडल और सामान्यीकरण|url=https://archive.org/details/linearmodelsgene00raop|url-access=limited|year=2008|publisher=Springer|location=Berlin|isbn=978-3-540-74226-5|pages=[https://archive.org/details/linearmodelsgene00raop/page/n335 323]|edition=3rd}}</ref>
तब प्रक्षेपण आव्यूह इस प्रकार विभाजित की जा सकती है:<ref>{{cite book|last1=Rao|first1=C. Radhakrishna|last2=Toutenburg|first2=Helge|author3=Shalabh|first4=Christian|last4=Heumann|title=रैखिक मॉडल और सामान्यीकरण|url=https://archive.org/details/linearmodelsgene00raop|url-access=limited|year=2008|publisher=Springer|location=Berlin|isbn=978-3-540-74226-5|pages=[https://archive.org/details/linearmodelsgene00raop/page/n335 323]|edition=3rd}}</ref>
:<math> P\{X\} = P\{A\} + P\{M\{A\} B\}, </math>
:<math> P\{X\} = P\{A\} + P\{M\{A\} B\}, </math>
जहाँ, जैसे कि, <math>P\{A\} = A \left(A^\textsf{T} A \right)^{-1} A^\textsf{T}</math> और <math>M\{A\} = I - P\{A\}</math>.
जहाँ, जैसे कि, <math>P\{A\} = A \left(A^\textsf{T} A \right)^{-1} A^\textsf{T}</math> और <math>M\{A\} = I - P\{A\}</math>.


इस तरह के अपघटन के कई अनुप्रयोग हैं। शास्त्रीय अनुप्रयोग में <math>A</math> सभी का स्तंभ है, जो किसी को प्रतिगमन में अवरोधन शब्द जोड़ने के प्रभावों का विश्लेषण करने की अनुमति देता है। अन्य उपयोग [[निश्चित प्रभाव मॉडल]] में है, जहां <math>A</math> निश्चित प्रभाव शर्तों के लिए डमी चर का बड़ा [[विरल मैट्रिक्स]] है। हैट मैट्रिक्स की गणना करने के लिए कोई इस विभाजन का उपयोग कर सकता है <math>X </math> स्पष्ट रूप से मैट्रिक्स बनाए बिना <math>X</math>, जो कंप्यूटर मेमोरी में फिट होने के लिए बहुत बड़ा हो सकता है।
इस प्रकार के अपघटन के अनेक अनुप्रयोग हैं। शास्त्रीय अनुप्रयोग में <math>A</math> सभी का स्तंभ होता है, जिससे विश्लेषण करने की अनुमति मिलती है कि प्रशासनिक शब्द को प्रतिस्थापित शब्द में जोड़ने के प्रभावों का विश्लेषण किया जा सकता है। अन्य उपयोग [[निश्चित प्रभाव मॉडल]] में होता है, जहां <math>A</math> निश्चित प्रभाव शर्तबं के लिए डमी चर का बड़ा [[विरल मैट्रिक्स|विरल आव्यूह]] होता है। इस पार्टिशन का उपयोग करके आप संगठित कर सकते हैं बिना <math>X </math> के प्रोजेक्शन आव्यूह को गणना किये, जो संभवतः कंप्यूटर मेमोरी में फिट नहीं हो सकती है।


== यह भी देखें ==
== यह भी देखें ==
Line 107: Line 106:
== संदर्भ ==
== संदर्भ ==
{{Reflist}}
{{Reflist}}
[[Category: प्रतिगमन विश्लेषण]] [[Category: मैट्रिसेस]]


[[Category: Machine Translated Page]]
[[Category:Articles with hatnote templates targeting a nonexistent page]]
[[Category:Created On 26/07/2023]]
[[Category:Created On 26/07/2023]]
[[Category:Lua-based templates]]
[[Category:Machine Translated Page]]
[[Category:Pages with script errors]]
[[Category:Short description with empty Wikidata description]]
[[Category:Templates Vigyan Ready]]
[[Category:Templates that add a tracking category]]
[[Category:Templates that generate short descriptions]]
[[Category:Templates using TemplateData]]
[[Category:प्रतिगमन विश्लेषण]]
[[Category:मैट्रिसेस]]

Latest revision as of 11:37, 14 August 2023

आधारभूत सांख्यिकी में, प्रक्षेपण आव्यूह ,[1] कभी-कभी प्रभाव आव्यूह[2] या हैट आव्यूह विभिन्न प्रयोजनों में उपयोग की जाती है। यह प्रतिक्रिया चर (आश्रित चर मान) के सदिश को फिट किए गए मान (या अनुमानित मान) के सदिश में मानचित्र करता है। यह प्रत्येक फिट मूल्य पर प्रत्येक प्रतिक्रिया मूल्य के प्रभाव फलन (सांख्यिकी) का वर्णन करता है।[3][4] प्रक्षेपण आव्यूह के विकर्ण तत्व उत्तबलन (सांख्यिकी) हैं, जो उसी अवलोकन के लिए फिट किए गए मूल्य पर प्रत्येक प्रतिक्रिया मूल्य के प्रभाव का वर्णन करते हैं।

परिभाषा

यदि प्रतिक्रिया मूल्यों का सदिश द्वारा निरूपित किया जाता है और पूर्वानुमानित मूल्यों का सदिश है, तब

जैसा कि को सामान्यतः "वाई-हैट" के रूप में उच्चारित किया जाता है, प्रक्षेपण आव्यूह भी "हैट आव्यूह" के नाम से जानी जाती है, क्योंकि यह पर "हैट" लगाती है।

के ith वर्ग और jth स्तंभ में तत्व जो इस समान अवलोकन के लिए पूर्वानुमानित मूल्यों और उत्तर में वह पूर्वानुमानित मूल्यों के बीच सहप्रसरण है, उसे खण्ड व्युत्क्रमण कहा जाता है:[5]


अवशेषों के लिए आवेदन

आँकड़ों में त्रुटियों और अवशेषों के सदिश का सूत्र प्रक्षेपण आव्यूह का उपयोग करके भी संक्षिप्त रूप से व्यक्त किया जा सकता है:

यहाँ आईडेंटिटी आव्यूह है। आव्यूह इसे कभी-कभी अवशिष्ट निर्माता आव्यूह या विनाशक आव्यूह के रूप में जाना जाता है।

अवशेषों का सहप्रसरण आव्यूह के लिए, त्रुटि प्रसार द्वारा, निम्नलिखित होता है:

,

यहाँ त्रुटि सदिश के सहप्रसरण आव्यूह है (और विस्तार से प्रतिक्रिया सदिश का भी)। स्वतंत्र और समान रूप से वितरित त्रुटियों वाले रैखिक मॉडल के स्थितियों में , इसे यह घटाया जा सकता है:[3]

.

अंतर्ज्ञान

आव्यूह, इसके स्तंभ स्थान को हरी रेखा के रूप में दर्शाया गया है। कुछ सदिश का प्रक्षेपण के कॉलम स्थान पर सदिश है

चित्र से यह स्पष्ट है कि सदिश के लिए के स्तंभ स्थान का सबसे निकटतम बिंदु है, और यह बिंदु है जहां हम के स्तंभ स्थान के लिए लाइन लंबकोण खींच सकते हैं। आव्यूह के स्तंभ स्थान के लिए लंबकोण खींचा गया सदिश उस आव्यूह के प्रतिरोध स्थान में होता है, इसलिए

होता है। इसके पश्चात्, हम इसे पुनर्व्यवस्थित करते हैं, इससे

इसलिए, जब से के कॉलम स्पेस पर है, प्रक्षेपण आव्यूह, जो मानचित्रण करता है को के स्तंभ स्थान पर मान निर्धारित करता है, बस है, या होता है।

रेखीय मॉडल

मान लीजिए कि हम रैखिक न्यूनतम वर्गों का उपयोग करके रैखिक मॉडल का अनुमान लगाना चाहते हैं। मॉडल को निम्नलिखित रूप में लिखा जा सकता है:

जहाँ व्याख्यात्मक चर (डिजाइन आव्यूह) का आव्यूह है, β अज्ञात पैरामीटर का सदिश है जिसे अनुमानित किया जाना है, और ε त्रुटि सदिश है।

इस प्रपत्रणा के अधीन अनेक प्रकार के मॉडल और विधि हो सकते हैं। कुछ उदाहरण रैखिक न्यूनतम वर्ग (गणित), स्प्लिन को चौरसाई करना, प्रतिगमन विभाजन, स्थानीय रिग्रेशन, स्थानीय प्रतिगमन और रैखिक फिल्टर हैं।

सामान्य न्यूनतम वर्ग

जब प्रत्येक अवलोकन के लिए वजन समान होते हैं और त्रुटियां असंबद्ध होती हैं, तब अनुमानित पैरामीटर दिए गए होते हैं:

इसलिए फिटेड मान होते हैं:

इसलिए, प्रक्षेपण आव्यूह (और हैट आव्यूह) निम्नलिखित द्वारा दी जाती है:


भारित और सामान्यीकृत न्यूनतम वर्ग

उपरोक्त को उन स्थितियों के लिए सामान्यीकृत किया जा सकता है जहां वजन समान नहीं हैं और/या त्रुटियां सहसंबद्ध हैं। मान लीजिए कि त्रुटियों का सहप्रसरण आव्यूह Σ है। तब क्योंकि

.

है, इसलिए प्रक्षेपण आव्यूह इस प्रकार होती है:

और फिर यह देखा जा सकता है कि , चूंकि अब यह सममित नहीं रह गया है।

गुण

प्रक्षेपण आव्यूह में अनेक उपयोगी बीजगणितीय गुणधर्म हैं।[6][7] रैखिक बीजगणित की भाषा में, प्रक्षेपण आव्यूह डिज़ाइन आव्यूह के स्तंभ स्थान पर ऑर्थोगोनल प्रक्षेपण है।[4](ध्यान दें कि डीडूर्वारा यह पसुचित जोरदार आव्यूह है।) इस संस्करण में प्रोजेक्शन आव्यूह के कुछ तथ्य संक्षेप में निम्नलिखित हैं:[4]* और

  • सममित है, और ऐसा ही है
  • निष्क्रिय है: , और ऐसे ही
  • यदि n × r आव्यूह है, जिसमें , तब होता है।
  • के इजनवैल्यूज एकाधिकता में r और nr शून्य, होते हैं, जबकि के इजनवैल्यूज में nr शून्य होते हैं।[8]
  • के अंतर्गत अपरिवर्तनीय है: इसलिए
  • कुछ विशेष स्थानों के लिए अद्वितीय होती है।

रैखिक मॉडल के अनुरूप प्रक्षेपण आव्यूह सममित आव्यूह और निष्क्रिय आव्यूह होती है, अर्थात, कहा जाता है। चूंकि, यह स्थितियों सदैव नहीं होता है; उदाहरण के लिए, स्थानीय वज्रछाया प्लॉट स्मूदिंग (LOESS) में, सामान्य रूप से न तब प्रोजेक्शन आव्यूह संवेगीय होती है और न ही आईडेम्पोटेंट होती है।

रैखिक मॉडल के लिए, प्रक्षेपण आव्यूह का ट्रेस (रैखिक बीजगणित) रैंक (रैखिक बीजगणित) के सामान्तर है , जो रैखिक मॉडल के स्वतंत्र मापदंडों की संख्या है।[9] LOESS जैसे अन्य मॉडलों के लिए जो अभी भी अवलोकनों में रैखिक हैं, प्रक्षेपण आव्यूह का प्रयोग मॉडल की प्रभावशीलता के परिभाषित करने के लिए किया जा सकता है।

प्रतिगमन विश्लेषण में प्रक्षेपण आव्यूह के व्यावहारिक अनुप्रयोगों में लीवरेज (सांख्यिकी) और कुक की दूरी सम्मिलित है, जो प्रभावशाली अवलोकन की पहचान करने से संबंधित हैं, अर्थात अवलोकन जो प्रतिगमन के परिणामों पर बड़ा प्रभाव डालते हैं।

ब्लॉकवार सूत्र

मान लीजिए डिज़ाइन आव्यूह को स्तंभों के रूप में इस प्रकार विभाजित किया जा सकता है: हैट या प्रक्षेपण ऑपरेटर को इस प्रकार निर्धारित किया जा सकता है:उसी प्रकार, रेजिड्यूअल ऑपरेटर को इस प्रकार निर्धारित किया जा सकता है: .

तब प्रक्षेपण आव्यूह इस प्रकार विभाजित की जा सकती है:[10]

जहाँ, जैसे कि, और .

इस प्रकार के अपघटन के अनेक अनुप्रयोग हैं। शास्त्रीय अनुप्रयोग में सभी का स्तंभ होता है, जिससे विश्लेषण करने की अनुमति मिलती है कि प्रशासनिक शब्द को प्रतिस्थापित शब्द में जोड़ने के प्रभावों का विश्लेषण किया जा सकता है। अन्य उपयोग निश्चित प्रभाव मॉडल में होता है, जहां निश्चित प्रभाव शर्तबं के लिए डमी चर का बड़ा विरल आव्यूह होता है। इस पार्टिशन का उपयोग करके आप संगठित कर सकते हैं बिना के प्रोजेक्शन आव्यूह को गणना किये, जो संभवतः कंप्यूटर मेमोरी में फिट नहीं हो सकती है।

यह भी देखें

संदर्भ

  1. Basilevsky, Alexander (2005). सांख्यिकीय विज्ञान में अनुप्रयुक्त मैट्रिक्स बीजगणित. Dover. pp. 160–176. ISBN 0-486-44538-0.
  2. "Data Assimilation: Observation influence diagnostic of a data assimilation system" (PDF). Archived from the original (PDF) on 2014-09-03.
  3. 3.0 3.1 Hoaglin, David C.; Welsch, Roy E. (February 1978). "The Hat Matrix in Regression and ANOVA" (PDF). The American Statistician. 32 (1): 17–22. doi:10.2307/2683469. hdl:1721.1/1920. JSTOR 2683469.
  4. 4.0 4.1 4.2 David A. Freedman (2009). Statistical Models: Theory and Practice. Cambridge University Press.
  5. Wood, Simon N. Generalized additive models: an introduction with R. chapman and hall/CRC, 2006.
  6. Gans, P. (1992). रासायनिक विज्ञान में डेटा फिटिंग. Wiley. ISBN 0-471-93412-7.
  7. Draper, N. R.; Smith, H. (1998). अनुप्रयुक्त प्रतिगमन विश्लेषण. Wiley. ISBN 0-471-17082-8.
  8. Amemiya, Takeshi (1985). उन्नत अर्थमिति. Cambridge: Harvard University Press. pp. 460–461. ISBN 0-674-00560-0.
  9. "प्रमाण है कि रैखिक प्रतिगमन में 'हैट' मैट्रिक्स का निशान एक्स की रैंक है". Stack Exchange. April 13, 2017.
  10. Rao, C. Radhakrishna; Toutenburg, Helge; Shalabh; Heumann, Christian (2008). रैखिक मॉडल और सामान्यीकरण (3rd ed.). Berlin: Springer. pp. 323. ISBN 978-3-540-74226-5.