ताप पंप और प्रशीतन चक्र: Difference between revisions

From Vigyanwiki
No edit summary
Line 1: Line 1:
{{For|details of practical heat pumps|Heat pump}}{{Short description|Mathematical models of heat pumps and refrigeration}}
{{For|व्यावहारिक ताप पंपों का विवरण|ताप पंप}}{{Short description|Mathematical models of heat pumps and refrigeration}}
{{Thermodynamics|cTopic=[[Thermodynamic system|Systems]]}}
{{Thermodynamics|cTopic=[[Thermodynamic system|Systems]]}}


Line 12: Line 12:


=== वाष्प-संपीड़न चक्र ===
=== वाष्प-संपीड़न चक्र ===
{{Main|Vapor-compression refrigeration}}
{{Main|वाष्प-संपीड़न प्रशीतन}}
[[File:Refrigeration.png|frame|right|वाष्प-संपीड़न प्रशीतन<ref>[http://web.me.unr.edu/me372/Spring2001/Vapor%20Compression%20Refrigeration%20Cycles.pdf The Ideal Vapor-Compression Cycle] {{webarchive|url=https://web.archive.org/web/20070226113352/http://web.me.unr.edu/me372/Spring2001/Vapor%20Compression%20Refrigeration%20Cycles.pdf |date=2007-02-26 }}</ref>]]
[[File:Refrigeration.png|frame|right|वाष्प-संपीड़न प्रशीतन<ref>[http://web.me.unr.edu/me372/Spring2001/Vapor%20Compression%20Refrigeration%20Cycles.pdf The Ideal Vapor-Compression Cycle] {{webarchive|url=https://web.archive.org/web/20070226113352/http://web.me.unr.edu/me372/Spring2001/Vapor%20Compression%20Refrigeration%20Cycles.pdf |date=2007-02-26 }}</ref>]]
[[File:Heatpump2.svg|thumb|300px|तुलना के लिए, ताप पंप के [[वाष्प-संपीड़न प्रशीतन]] चक्र का एक सरल शैलीबद्ध आरेख: 1) [[कंडेनसर (गर्मी हस्तांतरण)|संघनित्र (ऊष्मा हस्तांतरण)]], 2) [[थर्मल विस्तार वाल्व]], 3) बाष्पीकरणकर्ता, 4) [[कंप्रेसर|संपीडक]] (ध्यान दें कि यह आरेख तुलना में लंबवत और क्षैतिज रूप से फ़्लिप किया गया है) पिछला वाला)<ref>{{Cite web |url=http://iehmtu.edata-center.com/toc/chapt_r/ch18s82.html |title="मूल वाष्प संपीड़न चक्र और घटक" तक नीचे स्क्रॉल करें|access-date=2007-06-02 |archive-url=https://web.archive.org/web/20060630164309/http://iehmtu.edata-center.com/toc/chapt_r/ch18s82.html |archive-date=2006-06-30 |url-status=dead }}</ref>]]
[[File:Heatpump2.svg|thumb|300px|तुलना के लिए, ताप पंप के [[वाष्प-संपीड़न प्रशीतन]] चक्र का एक सरल शैलीबद्ध आरेख: 1) [[कंडेनसर (गर्मी हस्तांतरण)|संघनित्र (ऊष्मा हस्तांतरण)]], 2) [[थर्मल विस्तार वाल्व]], 3) बाष्पीकरणकर्ता, 4) [[कंप्रेसर|संपीडक]] (ध्यान दें कि यह आरेख तुलना में लंबवत और क्षैतिज रूप से फ़्लिप किया गया है) पिछला वाला)<ref>{{Cite web |url=http://iehmtu.edata-center.com/toc/chapt_r/ch18s82.html |title="मूल वाष्प संपीड़न चक्र और घटक" तक नीचे स्क्रॉल करें|access-date=2007-06-02 |archive-url=https://web.archive.org/web/20060630164309/http://iehmtu.edata-center.com/toc/chapt_r/ch18s82.html |archive-date=2006-06-30 |url-status=dead }}</ref>]]
Line 25: Line 25:
उपरोक्त चर्चा आदर्श वाष्प-संपीड़न प्रशीतन चक्र पर आधारित है और वास्तविक के आधार पर प्रणाली में फैक्ट्री दबाव में गिरावट, रेरिजरेंट वैश्वीकरण के ढांचे के समय सामान्य अस्थिरता, या अतिरिक्त-आदर्श गैस व्यवहार (यदि कोई हो) है।<ref name="ASHRAE" />
उपरोक्त चर्चा आदर्श वाष्प-संपीड़न प्रशीतन चक्र पर आधारित है और वास्तविक के आधार पर प्रणाली में फैक्ट्री दबाव में गिरावट, रेरिजरेंट वैश्वीकरण के ढांचे के समय सामान्य अस्थिरता, या अतिरिक्त-आदर्श गैस व्यवहार (यदि कोई हो) है।<ref name="ASHRAE" />
=== वाष्प अवशोषण चक्र ===
=== वाष्प अवशोषण चक्र ===
{{Main|Absorption refrigerator}}
{{Main|अवशोषण रेफ्रिजरेटर}}


बीसवीं सदी के प्रारम्भी वर्षों में, जल-[[अमोनिया]] प्रणालियों का उपयोग करके वाष्प अवशोषण चक्र लोकप्रिय था और व्यापक रूप से उपयोग किया जाता था, लेकिन वाष्प संपीड़न चक्र के विकास के बाद, प्रदर्शन के कम गुणांक (लगभग एक) के कारण इसका महत्व बहुत कम हो गया। वाष्प संपीड़न चक्र का पांचवां भाग)। आजकल, वाष्प अवशोषण चक्र का उपयोग केवल वहीं किया जाता है जहां बिजली की तुलना में ऊष्मा अधिक आसानी से उपलब्ध होती है, जैसे औद्योगिक अपशिष्ट ऊष्मा, सौर कलेक्टरों द्वारा [[सौर तापीय ऊर्जा]], या मनोरंजक वाहनों में जाल के बाहर प्रशीतन।
बीसवीं सदी के प्रारम्भी वर्षों में, जल-[[अमोनिया]] प्रणालियों का उपयोग करके वाष्प अवशोषण चक्र लोकप्रिय था और व्यापक रूप से उपयोग किया जाता था, लेकिन वाष्प संपीड़न चक्र के विकास के बाद, प्रदर्शन के कम गुणांक (लगभग एक) के कारण इसका महत्व बहुत कम हो गया। वाष्प संपीड़न चक्र का पांचवां भाग)। आजकल, वाष्प अवशोषण चक्र का उपयोग केवल वहीं किया जाता है जहां बिजली की तुलना में ऊष्मा अधिक आसानी से उपलब्ध होती है, जैसे औद्योगिक अपशिष्ट ऊष्मा, सौर कलेक्टरों द्वारा [[सौर तापीय ऊर्जा]], या मनोरंजक वाहनों में जाल के बाहर प्रशीतन।
Line 41: Line 41:


=== स्टर्लिंग इंजन ===
=== स्टर्लिंग इंजन ===
{{Main|Stirling engine}}
{{Main|स्टर्लिंग इंजन}}


[[स्टर्लिंग चक्र]] ऊष्मा इंजन को उल्टी दिशा में चलाया जा सकता है, ऊष्मा स्थानांतरण को उल्टी दिशा में चलाने के लिए यांत्रिक ऊर्जा निविष्ट (अर्थात् ऊष्मा पंप, या प्रशीतक) का उपयोग किया जाता है। ऐसे उपकरणों के लिए कई बनावट विन्यास हैं जिन्हें बनाया जा सकता है। ऐसे कई व्यवस्था के लिए घूर्णी या अस्थिर सील की आवश्यकता होती है, जो घर्षण हानि और शीतल रिसाव के बीच कठिन समझौता प्रस्तुत कर सकते हैं।
[[स्टर्लिंग चक्र]] ऊष्मा इंजन को उल्टी दिशा में चलाया जा सकता है, ऊष्मा स्थानांतरण को उल्टी दिशा में चलाने के लिए यांत्रिक ऊर्जा निविष्ट (अर्थात् ऊष्मा पंप, या प्रशीतक) का उपयोग किया जाता है। ऐसे उपकरणों के लिए कई बनावट विन्यास हैं जिन्हें बनाया जा सकता है। ऐसे कई व्यवस्था के लिए घूर्णी या अस्थिर सील की आवश्यकता होती है, जो घर्षण हानि और शीतल रिसाव के बीच कठिन समझौता प्रस्तुत कर सकते हैं।
Line 48: Line 48:
कार्नोट चक्र एक प्रतिवर्ती चक्र है इसलिए इसमें सम्मिलित चार प्रक्रियाएं, दो समतापी और दो इज़ेंट्रोपिक, को उत्क्रम भी किया जा सकता है। जब कार्नोट चक्र विपरीत दिशा में चलता है, तो इसे उल्टा कार्नोट चक्र कहा जाता है। एक प्रशीतक या ताप पंप जो उलटे कार्नोट चक्र के अनुसार कार्य करता है, उसे क्रमशः कार्नोट प्रशीतक या कार्नोट ताप पंप कहा जाता है। इस चक्र के पहले चरण में, शीतल Q<sub>L</sub> की मात्रा में कम तापमान वाले स्रोत, T<sub>L</sub> से समतापी ऊष्मा को अवशोषित करता है। इसके बाद, शीतल को समउष्णकटिबंधीय रूप से (रूद्धोष्म रूप से, ऊष्मा हस्तांतरण के बिना) संपीड़ित किया जाता है और इसका तापमान उच्च तापमान स्रोत, T<sub>H</sub> तक बढ़ जाता है। फिर इस उच्च तापमान पर, शीतल समतापीय रूप से QH <0 (प्रणाली द्वारा खोई गई ऊष्मा के लिए साइन कन्वेंशन के अनुसार नकारात्मक) की मात्रा में ऊष्मा को अस्वीकार कर देता है। साथ ही इस चरण के समय, शीतल संघनित्र में संतृप्त वाष्प से संतृप्त तरल में बदल जाता है। अंत में, शीतल सम-उष्णकटिबंधीय रूप से तब तक फैलता है जब तक कि उसका तापमान निम्न-तापमान स्रोत, T<sub>L</sub> के बराबर न हो जाए।<ref name="Cengel2008" />
कार्नोट चक्र एक प्रतिवर्ती चक्र है इसलिए इसमें सम्मिलित चार प्रक्रियाएं, दो समतापी और दो इज़ेंट्रोपिक, को उत्क्रम भी किया जा सकता है। जब कार्नोट चक्र विपरीत दिशा में चलता है, तो इसे उल्टा कार्नोट चक्र कहा जाता है। एक प्रशीतक या ताप पंप जो उलटे कार्नोट चक्र के अनुसार कार्य करता है, उसे क्रमशः कार्नोट प्रशीतक या कार्नोट ताप पंप कहा जाता है। इस चक्र के पहले चरण में, शीतल Q<sub>L</sub> की मात्रा में कम तापमान वाले स्रोत, T<sub>L</sub> से समतापी ऊष्मा को अवशोषित करता है। इसके बाद, शीतल को समउष्णकटिबंधीय रूप से (रूद्धोष्म रूप से, ऊष्मा हस्तांतरण के बिना) संपीड़ित किया जाता है और इसका तापमान उच्च तापमान स्रोत, T<sub>H</sub> तक बढ़ जाता है। फिर इस उच्च तापमान पर, शीतल समतापीय रूप से QH <0 (प्रणाली द्वारा खोई गई ऊष्मा के लिए साइन कन्वेंशन के अनुसार नकारात्मक) की मात्रा में ऊष्मा को अस्वीकार कर देता है। साथ ही इस चरण के समय, शीतल संघनित्र में संतृप्त वाष्प से संतृप्त तरल में बदल जाता है। अंत में, शीतल सम-उष्णकटिबंधीय रूप से तब तक फैलता है जब तक कि उसका तापमान निम्न-तापमान स्रोत, T<sub>L</sub> के बराबर न हो जाए।<ref name="Cengel2008" />
==प्रदर्शन का गुणांक==
==प्रदर्शन का गुणांक==
{{main|Coefficient of performance}}
{{main|प्रदर्शन का गुणांक(सीओपी)}}
प्रशीतक या ताप पंप की योग्यता प्रदर्शन के गुणांक (सीओपी) नामक पैरामीटर द्वारा दी जाती है। समीकरण है:
 
प्रशीतक या ताप पंप की योग्यता प्रदर्शन के गुणांक (सीओपी ) नामक पैरामीटर द्वारा दी जाती है। समीकरण है:
:<math>{\rm COP} = \frac{|Q|}{ W_{net,in}}</math>
:<math>{\rm COP} = \frac{|Q|}{ W_{net,in}}</math>
जहाँ
जहाँ
Line 55: Line 56:
* <math>W_{net,in} </math> एक चक्र में विचारित प्रणाली पर किया गया शुद्ध यांत्रिक कार्य है।
* <math>W_{net,in} </math> एक चक्र में विचारित प्रणाली पर किया गया शुद्ध यांत्रिक कार्य है।


प्रशीतक का विस्तृत सीओपी निम्नलिखित समीकरण द्वारा दिया गया है:
प्रशीतक का विस्तृत प्रदर्शन के गुणांक निम्नलिखित समीकरण द्वारा दिया गया है:
:<math>{\rm COP_R} = \frac{ \text{Desired Output}}{ \text{Required Input}} = \frac{ \text{Cooling Effect}}{ \text{Work Input}} = \frac{ Q_L}{ W_\text{net,in} }</math>
:<math>{\rm COP_R} = \frac{ \text{Desired Output}}{ \text{Required Input}} = \frac{ \text{Cooling Effect}}{ \text{Work Input}} = \frac{ Q_L}{ W_\text{net,in} }</math>
ताप पंप का सीओपी (कभी-कभी प्रवर्धन सीओए के गुणांक के रूप में जाना जाता है) निम्नलिखित समीकरणों द्वारा दिया जाता है, जहां ऊष्मप्रवैगिकी्स का पहला नियम है: <math>W_{net,in}+Q_{L}+Q_{H} = \Delta_{cycle}U = 0 </math> और <math>|Q_{H}|= -Q_{H} </math> अंतिम चरणों में से एक में उपयोग किया गया था:
ताप पंप का सीओपी (कभी-कभी प्रवर्धन सीओए के गुणांक के रूप में जाना जाता है) निम्नलिखित समीकरणों द्वारा दिया जाता है, जहां ऊष्मप्रवैगिकी्स का पहला नियम है: <math>W_{net,in}+Q_{L}+Q_{H} = \Delta_{cycle}U = 0 </math> और <math>|Q_{H}|= -Q_{H} </math> अंतिम चरणों में से एक में उपयोग किया गया था:

Revision as of 15:03, 10 August 2023

ऊष्मप्रवैगिकी ताप पंप चक्र या प्रशीतन चक्र, वातानुकूलन और प्रशीतन प्रणालियों के लिए वैचारिक और गणितीय प्रतिरूप हैं। ताप पंप एक यांत्रिक प्रणाली है जो कम तापमान पर एक स्थान ("स्रोत") से उच्च तापमान पर दूसरे स्थान ("सिंक" या "ताप सिंक") तक ऊष्मा के संचरण की अनुमति देता है।[1] इस प्रकार ताप पंप को "उष्मक" के रूप में माना जा सकता है यदि उद्देश्य ताप सिंक को गर्म करना है (जैसे कि ठंड के दिन घर के अंदर को गर्म करना), या यदि उद्देश्य है तो "प्रशीतक"("प्रशीतक") या "शीतक"("शीतक") के रूप में सोचा जा सकता है। ताप स्रोत को ठंडा करने के लिए (जैसा कि फ्रीजर के सामान्य संचालन में होता है)। किसी भी सन्दर्भ में, संचालन सिद्धांत समान हैं।[2] ऊष्मा को ठंडे स्थान से गर्म स्थान की ओर ले जाया जाता है।

ऊष्मप्रवैगिकी चक्र

ऊष्मागतिकी के दूसरे नियम के अनुसार, ऊष्मा स्वत: ठंडे स्थान से गर्म क्षेत्र की ओर प्रवाहित नहीं हो सकती; इसे प्राप्त करने के लिए कार्य करना आवश्यक है। वातानुकूलक को रहने की जगह को ठंडा करने के लिए कार्य की आवश्यकता होती है, जो अंदर से ऊष्मा को ठंडा करने (ऊष्मा स्रोत) से बाहर (ताप सिंक) तक ले जाता है। इसी तरह, एक प्रशीतक ठंडे आइसबॉक्स (हिमीकर) (ऊष्मा स्रोत) के अंदर से ऊष्मा को रसोई के गर्म कमरे के तापमान वाली हवा (ताप सिंक) में ले जाता है। आदर्श ताप इंजन के संचालन सिद्धांत को 1824 में साडी कार्नोट द्वारा कार्नोट चक्र का उपयोग करके गणितीय रूप से वर्णित किया गया था। आदर्श प्रशीतक या ताप पंप को एक आदर्श ताप इंजन के रूप में माना जा सकता है जो उत्क्रम कार्नोट चक्र में कार्य कर रहा है।

ऊष्मागतिकी के दूसरे नियम के अनुसार, ऊष्मा स्वत: ठंडे स्थान से गर्म क्षेत्र की ओर प्रवाहित नहीं हो सकती; इसे प्राप्त करने के लिए कार्य करना आवश्यकता है।[3] एक वातानुकूलक को रहने की जगह को ठंडा करने के लिए कार्य की आवश्यकता होती है, जो अंदर से ऊष्मा को ठंडा करने (ऊष्मा स्रोत) से बाहर (ताप सिंक) तक ले जाता है। इसी तरह, एक प्रशीतक ठंडे आइसबॉक्स (ऊष्मा स्रोत) के अंदर से ऊष्मा को रसोई के गर्म कमरे के तापमान वाली हवा (ताप सिंक) में ले जाता है। एक आदर्श ताप इंजन के परिचालन सिद्धांत को 1824 में निकोलस लियोनार्ड साडी कार्नोट द्वारा कार्नोट चक्र का उपयोग करके गणितीय रूप से वर्णित किया गया था। एक आदर्श प्रशीतक या ताप पंप को एक आदर्श ताप इंजन के रूप में माना जा सकता है जो उत्क्रम कार्नोट चक्र में कार्य कर रहा है।[4]

ताप पंप चक्र और प्रशीतन चक्र को वाष्प संपीड़न, वाष्प अवशोषण, गैस चक्र या स्टर्लिंग चक्र प्रकार के रूप में वर्गीकृत किया जा सकता है।

वाष्प-संपीड़न चक्र

वाष्प-संपीड़न प्रशीतन[5]
तुलना के लिए, ताप पंप के वाष्प-संपीड़न प्रशीतन चक्र का एक सरल शैलीबद्ध आरेख: 1) संघनित्र (ऊष्मा हस्तांतरण), 2) थर्मल विस्तार वाल्व, 3) बाष्पीकरणकर्ता, 4) संपीडक (ध्यान दें कि यह आरेख तुलना में लंबवत और क्षैतिज रूप से फ़्लिप किया गया है) पिछला वाला)[6]
वाष्प-संपीड़न चक्र का तापमान-एन्ट्रापी आरेख।

वाष्प-संपीड़न चक्र का उपयोग कई प्रशीतन, वातानुकूलन और अन्य शीतलन अनुप्रयोगों और तापक अनुप्रयोगों के लिए ताप पंप के अंदर भी किया जाता है। दो ताप विनिमयकर्ता हैं, एक संघनित्र है, जो अधिक गर्म है और ऊष्मा छोड़ता है, और दूसरा बाष्पीकरणकर्ता है, जो ठंडा है और ऊष्मा स्वीकार करता है। उन अनुप्रयोगों के लिए जिन्हें तापक और शीतलन दोनों ढंग में कार्य करने की आवश्यकता होती है, इन दो ताप विनिमयकर्ता् की भूमिकाओं को बदलने के लिए एक उत्क्रम वाल्व का उपयोग किया जाता है।[citation needed]

ऊष्मप्रवैगिकी चक्र की प्रारम्भ में शीतल कम दबाव और कम तापमान वाले वाष्प के रूप में संपीडक में प्रवेश करता है। फिर दबाव बढ़ा दिया जाता है और शीतल उच्च तापमान और उच्च दबाव वाली अत्यधिक गर्म गैस के रूप में निकलता है। यह गर्म दबाव वाली गैस फिर संघनित्र से गुजरती है जहां यह ठंडा होने पर आसपास के वातावरण में ऊष्मा छोड़ती है और पूरी तरह से संघनित हो जाती है। ठंडा उच्च दबाव वाला तरल आगे विस्तार वाल्व (थ्रॉटल वाल्व) से होकर गुजरता है जो दबाव को अचानक कम कर देता है जिससे तापमान में नाटकीय रूप से गिरावट आती है।[7] तरल और वाष्प का ठंडा कम दबाव वाला मिश्रण बाष्पीकरणकर्ता के माध्यम से गुजरता है जहां यह पूरी तरह से वाष्पीकृत हो जाता है क्योंकि यह चक्र को फिर से प्रारम्भ करने के लिए कम दबाव वाले कम तापमान वाली गैस के रूप में संपीडक में लौटने से पहले परिवेश से ऊष्मा स्वीकार करता है।[8]

निश्चित परिचालन तापमान वाले कुछ सरल अनुप्रयोग, जैसे घरेलू रेफ़्रिजरेटर, एक निश्चित गति संपीडक और निश्चित द्वारक विस्तार वाल्व का उपयोग कर सकते हैं। ऐसे अनुप्रयोग जिन्हें विभिन्न परिस्थितियों में प्रदर्शन के उच्च गुणांक पर कार्य करने की आवश्यकता होती है, जैसा कि ताप पंप के सन्दर्भ में होता है, जहां बाहरी तापमान और आंतरिक ताप की मांग ऋतु के अनुसार काफी भिन्न होती है, सामान्यतः इसे नियंत्रित करने के लिए एक चर गति इन्वर्टर संपीडक और एक समायोज्य विस्तार वाल्व का उपयोग चक्र का दबाव अधिक सटीकता से किया जाता है।[citation needed]

उपरोक्त चर्चा आदर्श वाष्प-संपीड़न प्रशीतन चक्र पर आधारित है और वास्तविक के आधार पर प्रणाली में फैक्ट्री दबाव में गिरावट, रेरिजरेंट वैश्वीकरण के ढांचे के समय सामान्य अस्थिरता, या अतिरिक्त-आदर्श गैस व्यवहार (यदि कोई हो) है।[4]

वाष्प अवशोषण चक्र

बीसवीं सदी के प्रारम्भी वर्षों में, जल-अमोनिया प्रणालियों का उपयोग करके वाष्प अवशोषण चक्र लोकप्रिय था और व्यापक रूप से उपयोग किया जाता था, लेकिन वाष्प संपीड़न चक्र के विकास के बाद, प्रदर्शन के कम गुणांक (लगभग एक) के कारण इसका महत्व बहुत कम हो गया। वाष्प संपीड़न चक्र का पांचवां भाग)। आजकल, वाष्प अवशोषण चक्र का उपयोग केवल वहीं किया जाता है जहां बिजली की तुलना में ऊष्मा अधिक आसानी से उपलब्ध होती है, जैसे औद्योगिक अपशिष्ट ऊष्मा, सौर कलेक्टरों द्वारा सौर तापीय ऊर्जा, या मनोरंजक वाहनों में जाल के बाहर प्रशीतन।

अवशोषण चक्र संपीड़न चक्र के समान है, लेकिन शीतल वाष्प के आंशिक दबाव पर निर्भर करता है। अवशोषण प्रणाली में, संपीडक को एक अवशोषक और एक उत्पादन-यन्त्र द्वारा प्रतिस्थापित किया जाता है। अवशोषक शीतल को एक उपयुक्त तरल (पतला घोल) में घोल देता है और इसलिए पतला घोल एक सशक्त घोल बन जाता है। उत्पादन-यन्त्र में ऊष्मा बढ़ने पर तापमान बढ़ जाता है और इसके साथ ही सशक्त घोल से शीतल वाष्प का आंशिक दबाव निकल जाता है। यद्यपि, उत्पादन-यन्त्र को एक ऊष्मा स्रोत की आवश्यकता होती है, जो तब तक ऊर्जा की खपत करेगा जब तक कि अपशिष्ट ऊष्मा का उपयोग न किया जाए। अवशोषण प्रशीतक में, शीतल और अवशोषक के उपयुक्त संयोजन का उपयोग किया जाता है। सबसे सामान्य संयोजन अमोनिया (शीतल) और पानी (शोषक), और पानी (शीतल) और लिथियम ब्रोमाइड (शोषक) हैं।

अवशोषण प्रशीतन प्रणाली को जीवाश्म ईंधन (जैसे, कोयला, तेल, प्राकृतिक गैस, आदि) या नवीकरणीय ऊर्जा (जैसे, अपशिष्ट ऊष्मा | अपशिष्ट-ऊष्मा पुनर्प्राप्ति, बायोमास दहन, या सौर ऊर्जा) के दहन द्वारा संचालित किया जा सकता है।

गैस चक्र

जब कार्यशील द्रव एक गैस है जो संपीड़ित और विस्तारित होती है लेकिन चरण नहीं बदलती है, तो प्रशीतन चक्र को गैस चक्र कहा जाता है। वायु प्रायः कार्यशील तरल पदार्थ है। चूंकि गैस चक्र में कोई संक्षेपण और वाष्पीकरण नहीं होता है, वाष्प संपीड़न चक्र में संघनित्र और बाष्पीकरणकर्ता से संबंधित घटक गर्म और ठंडे गैस-से-गैस उष्मा का आदान प्रदान करने वाला होते हैं।

दिए गए अत्यधिक तापमान के लिए, गैस चक्र वाष्प संपीड़न चक्र की तुलना में कम कुशल हो सकता है क्योंकि गैस चक्र उत्क्रम रैंकिन चक्र के स्थान पर उत्क्रम ब्रेटन चक्र पर कार्य करता है। इस प्रकार, कार्यशील द्रव कभी भी स्थिर तापमान पर ऊष्मा प्राप्त या अस्वीकार नहीं करता है। गैस चक्र में, प्रशीतन प्रभाव गैस की विशिष्ट ऊष्मा और निम्न तापमान पक्ष में गैस के तापमान में वृद्धि के उत्पाद के बराबर होता है। इसलिए, समान शीतलन भार के लिए, गैस प्रशीतन चक्र मशीनों को बड़े द्रव्यमान प्रवाह दर की आवश्यकता होती है, जिसके परिणामस्वरूप उनका आकार बढ़ जाता है।

उनकी कम दक्षता और बड़ी मात्रा के कारण, वायु चक्र शीतक प्रायः स्थलीय प्रशीतन में लागू नहीं होते हैं। यद्यपि, गैस टरबाइन-संचालित जेट विमानों पर वायु चक्र मशीन बहुत सामान्य है क्योंकि संपीड़ित हवा इंजन के संपीडक अनुभागों से आसानी से उपलब्ध होती है। इन जेट विमानों की शीतलन और वायु-संचालन इकाइयाँ विमान के केबिन को गर्म करने और दबाव डालने के उद्देश्य से भी कार्य करती हैं।

स्टर्लिंग इंजन

स्टर्लिंग चक्र ऊष्मा इंजन को उल्टी दिशा में चलाया जा सकता है, ऊष्मा स्थानांतरण को उल्टी दिशा में चलाने के लिए यांत्रिक ऊर्जा निविष्ट (अर्थात् ऊष्मा पंप, या प्रशीतक) का उपयोग किया जाता है। ऐसे उपकरणों के लिए कई बनावट विन्यास हैं जिन्हें बनाया जा सकता है। ऐसे कई व्यवस्था के लिए घूर्णी या अस्थिर सील की आवश्यकता होती है, जो घर्षण हानि और शीतल रिसाव के बीच कठिन समझौता प्रस्तुत कर सकते हैं।

उत्क्रम कार्नोट चक्र

कार्नोट चक्र एक प्रतिवर्ती चक्र है इसलिए इसमें सम्मिलित चार प्रक्रियाएं, दो समतापी और दो इज़ेंट्रोपिक, को उत्क्रम भी किया जा सकता है। जब कार्नोट चक्र विपरीत दिशा में चलता है, तो इसे उल्टा कार्नोट चक्र कहा जाता है। एक प्रशीतक या ताप पंप जो उलटे कार्नोट चक्र के अनुसार कार्य करता है, उसे क्रमशः कार्नोट प्रशीतक या कार्नोट ताप पंप कहा जाता है। इस चक्र के पहले चरण में, शीतल QL की मात्रा में कम तापमान वाले स्रोत, TL से समतापी ऊष्मा को अवशोषित करता है। इसके बाद, शीतल को समउष्णकटिबंधीय रूप से (रूद्धोष्म रूप से, ऊष्मा हस्तांतरण के बिना) संपीड़ित किया जाता है और इसका तापमान उच्च तापमान स्रोत, TH तक बढ़ जाता है। फिर इस उच्च तापमान पर, शीतल समतापीय रूप से QH <0 (प्रणाली द्वारा खोई गई ऊष्मा के लिए साइन कन्वेंशन के अनुसार नकारात्मक) की मात्रा में ऊष्मा को अस्वीकार कर देता है। साथ ही इस चरण के समय, शीतल संघनित्र में संतृप्त वाष्प से संतृप्त तरल में बदल जाता है। अंत में, शीतल सम-उष्णकटिबंधीय रूप से तब तक फैलता है जब तक कि उसका तापमान निम्न-तापमान स्रोत, TL के बराबर न हो जाए।[2]

प्रदर्शन का गुणांक

प्रशीतक या ताप पंप की योग्यता प्रदर्शन के गुणांक (सीओपी ) नामक पैरामीटर द्वारा दी जाती है। समीकरण है:

जहाँ

  • विचाराधीन प्रणाली द्वारा छोड़ी गई या ग्रहण की गई उपयोगी ऊष्मा है।
  • एक चक्र में विचारित प्रणाली पर किया गया शुद्ध यांत्रिक कार्य है।

प्रशीतक का विस्तृत प्रदर्शन के गुणांक निम्नलिखित समीकरण द्वारा दिया गया है:

ताप पंप का सीओपी (कभी-कभी प्रवर्धन सीओए के गुणांक के रूप में जाना जाता है) निम्नलिखित समीकरणों द्वारा दिया जाता है, जहां ऊष्मप्रवैगिकी्स का पहला नियम है: और अंतिम चरणों में से एक में उपयोग किया गया था:

प्रशीतक और ताप पंप दोनों का सीओपी एक से अधिक हो सकता है। इन दोनों समीकरणों के संयोजन से परिणाम मिलता है:

के निश्चित मूल्यों के लिए QH और QL.

इसका अर्थ यह है कि COPHP एक से अधिक होगा क्योंकि COPR एक सकारात्मक मात्रा होगी. सबसे खराब स्थिति में, ताप पंप उतनी ही ऊर्जा की आपूर्ति करेगा जितनी वह खपत करता है, जिससे यह एक प्रतिरोध तापर के रूप में कार्य करता है। यद्यपि, वास्तव में, जैसे कि घर को गर्म करने में, कुछ QH पाइपिंग, इन्सुलेशन इत्यादि के माध्यम से बाहरी हवा में खो जाता है, इस प्रकार बनता है बाहरी हवा का तापमान बहुत कम होने पर COPHP एकता से गिर जाता है। इसलिए, घरों को गर्म करने के लिए उपयोग की जाने वाली प्रणाली ईंधन का उपयोग करती है।[2]

कार्नोट प्रशीतक और ताप पंपों के लिए, सीओपी को तापमान के संदर्भ में व्यक्त किया जा सकता है:

ये बीच में संचालित किसी भी प्रणाली के सीओपी के लिए ऊपरी सीमाएं हैं TL और TH.

संदर्भ

  1. The Systems and Equipment volume of the ASHRAE Handbook, ASHRAE, Inc., Atlanta, GA, 2004
  2. 2.0 2.1 2.2 Cengel, Yunus A. and Michael A. Boles (2008). Thermodynamics: An Engineering Approach (6th ed.). McGraw-Hill. ISBN 978-0-07-330537-0.
  3. Fundamentals of Engineering Thermodynamics, by Howell and Buckius, McGraw-Hill, New York.
  4. 4.0 4.1 "Description 2017 ASHRAE Handbook—Fundamentals". www.ashrae.org. Retrieved 2020-06-13.
  5. The Ideal Vapor-Compression Cycle Archived 2007-02-26 at the Wayback Machine
  6. ""मूल वाष्प संपीड़न चक्र और घटक" तक नीचे स्क्रॉल करें". Archived from the original on 2006-06-30. Retrieved 2007-06-02.
  7. "Thermostatic Expansion Values: A Guide to Understanding TXVs". AC & Heating Connect (in English). 2013-06-24. Retrieved 2020-06-15.
  8. Althouse, Andrew (2004). आधुनिक प्रशीतन और एयर कंडीशनिंग. The Goodheart-Wilcox Company, Inc. p. 109. ISBN 1-59070-280-8.
Notes


बाहरी संबंध