स्टर्लिंग चक्र
थर्मोडायनामिक्स |
---|
![]() |
यह लेख रूद्धोष्म स्टर्लिंग चक्र के बारे में है। आदर्श स्टर्लिंग चक्र के लिए, स्टर्लिंग इंजन § सिद्धांत देखें।
स्टर्लिंग चक्र थर्मोडायनामिक चक्र है जो स्टर्लिंग उपकरणों के सामान्य वर्ग का वर्णन करता है। इसमें मूल स्टर्लिंग इंजन सम्मिलित है जिसका आविष्कार, विकास और पेटेंट 1816 में रॉबर्ट स्टर्लिंग ने अपने, इंजीनियर भाई की मदद से किया था।[1]
आदर्श ओटो चक्र और डीजल चक्र चक्र पूरी तरह से प्रतिवर्ती नहीं हैं क्योंकि वे अपरिवर्तनीय आइसोकोरिक प्रक्रिया / आइसोबैरिक प्रक्रिया गर्मी-जोड़ और गर्मी-अस्वीकृति प्रक्रियाओं के दौरान सीमित तापमान अंतर के माध्यम से गर्मी हस्तांतरण सम्मिलित करते हैं। अपरिवर्तनीयता इन चक्रों की ऊष्मीय दक्षता को तापमान की समान सीमा के अंदर चलने वाले कार्नाट ताप इंजन की तुलना में कम करती है। अन्य चक्र जिसमें इज़ोटेर्मल हीट-एडिशन और हीट-अस्वीकृति प्रक्रियाएँ होती हैं, स्टर्लिंग चक्र है, जो कार्नोट चक्र का परिवर्तित संस्करण है जिसमें कार्नोट चक्र में चित्रित दो आइसेंट्रोपिक प्रक्रियाओं को दो निरंतर-वॉल्यूम पुनर्जनन प्रक्रियाओं द्वारा प्रतिस्थापित किया जाता है।
चक्र प्रतिवर्ती है, जिसका अर्थ है कि यदि यांत्रिक शक्ति के साथ आपूर्ति की जाती है, तो यह ताप या प्रशीतन के लिए ऊष्मा पम्प के रूप में कार्य कर सकता है, और यहां तक कि क्रायोजेनिक शीतलन के लिए भी। चक्र को गैस कार्यशील द्रव के साथ बंद पुनर्योजी ताप विनिमायक चक्र के रूप में परिभाषित किया गया है। बंद चक्र का मतलब है कि कार्यशील द्रव स्थायी रूप से थर्मोडायनामिक प्रणाली के अंदर समाहित है। यह इंजन डिवाइस को बाहरी दहन इंजन के रूप में भी वर्गीकृत करता है। पुनर्योजी सुधारनेवाला नामक पुनर्योजी हीट एक्सचेंजर के उपयोग को संदर्भित करता है जो डिवाइस की थर्मल दक्षता को बढ़ाता है।
चक्र अधिकांश अन्य ऊष्मा चक्रों के समान है जिसमें चार मुख्य प्रक्रियाएँ हैं: संपीड़न, ऊष्मा जोड़ना, विस्तार और ऊष्मा हटाना। चुकी, ये प्रक्रियाएँ असतत नहीं हैं, बल्कि संक्रमण ओवरलैप हैं।
स्टर्लिंग चक्र अत्यधिक उन्नत विषय है जिसने 190 से अधिक वर्षों के लिए कई विशेषज्ञों द्वारा किए गए विश्लेषण को झुठलाया है। चक्र का वर्णन करने के लिए अत्यधिक उन्नत ऊष्मप्रवैगिकी की आवश्यकता होती है। प्रोफ़ेसर इज़राइल यूरीली लिखते हैं विभिन्न 'आदर्श' चक्र (जैसे कि श्मिट चक्र) न तो भौतिक रूप से प्राप्य हैं और न ही स्टर्लिंग चक्र के प्रतिनिधि हैं।[2]
पुनर्योजी ताप विनिमायक (स्टर्लिंग चक्र में केंद्रीय ताप विनिमायक) की विश्लेषणात्मक समस्या को जैकब द्वारा इंजीनियरिंग में सामना की जाने वाली सबसे कठिन और सम्मिलित समस्याओं में माना जाता है।[3][4]
आदर्श स्टर्लिंग चक्र ऊष्मप्रवैगिकी
आदर्श स्टर्लिंग[5] चक्र में काम कर रहे तरल पदार्थ पर काम करने वाली चार थर्मोडायनामिक प्रक्रियाएं होती हैं (आरेख को दाईं ओर देखें):
- 1→2 आइसोथर्मल हीट जोड़ (विस्तार)।
- 2→3 आइसोकोरिक हीट रिमूवल (निरंतर आयतन)।
- 3→4 आइसोथर्मल हीट रिमूवल (संपीड़न)।
- 4→1 आइसोकोरिक हीट जोड़ (निरंतर मात्रा)।
पिस्टन गति भिन्नता
अधिकांश ऊष्मप्रवैगिकी पाठ्यपुस्तकों में स्टर्लिंग चक्र के अत्यधिक सरल रूप का वर्णन किया गया है जिसमें चार प्रक्रियाएं सम्मिलित हैं। इसे आदर्श स्टर्लिंग चक्र के रूप में जाना जाता है, क्योंकि यह आदर्शीकृत मॉडल है, और आवश्यक रूप से अनुकूलित चक्र नहीं है। सैद्धांतिक रूप से, आदर्श चक्र में उच्च शुद्ध कार्य उत्पादन होता है, लेकिन व्यावहारिक अनुप्रयोगों में इसका उपयोग शायद ही कभी किया जाता है, क्योंकि अन्य चक्र सरल होते हैं या बीयरिंगों और अन्य घटकों पर चरम तनाव को कम करते हैं। सुविधा के लिए, डिज़ाइनर सिस्टम डायनेमिक्स, जैसे मैकेनिकल लिंकेज मैकेनिज्म द्वारा निर्धारित पिस्टन गतियों का उपयोग करने का चुनाव कर सकता है। किसी भी दर पर, दक्षता और चक्र शक्ति लगभग आदर्श मामले के वास्तविक कार्यान्वयन के रूप में अच्छी होती है। विशिष्ट पिस्टन क्रैंक या तथाकथित काइनेमैटिक डिज़ाइन में लिंकेज के परिणामस्वरूप सामान्यता लगभग-साइनसॉइडल पिस्टन गति होती है। कुछ डिजाइनों के कारण पिस्टन यात्रा के किसी भी चरम पर रुक जाएगा।
कई कीनेमेटिक लिंकेज, जैसे कि प्रसिद्ध रॉस योक ,निकट-साइनसोइडल गति प्रदर्शित करेंगे। चुकी, अन्य लिंकेज, जैसे कि रोम्बिक ड्राइव ,अधिक गैर-साइनसॉइडल गति प्रदर्शित करेगा। कुछ सीमा तक, आदर्श चक्र जटिलताओं का परिचय देता है, क्योंकि इसके लिए कुछ सीमा तक उच्च पिस्टन त्वरण और काम कर रहे तरल पदार्थ के उच्च चिपचिपा पंपिंग हानि की आवश्यकता होगी।अनुकूलित इंजन में सामग्री तनाव और पंपिंग हानि,आदर्श चक्र और या उच्च चक्र दरों पर पहुंचने पर ही असहनीय होगा। अन्य मुद्दों में गर्मी हस्तांतरण के लिए आवश्यक समय सम्मिलित है, विशेष रूप से इज़ोटेर्मल प्रक्रियाओं के लिए। आदर्श चक्र की ओर आने वाले चक्र वाले इंजन में, इन मुद्दों को हल करने के लिए चक्र दर को कम करना पड़ सकता है।
मुफ्त पिस्टन डिवाइस के सबसे बुनियादी मॉडल में, कीनेमेटीक्स का परिणाम सरल हार्मोनिक गति होगा।
वॉल्यूम विविधताएं
बीटा और गामा इंजनों में, सामान्यता पिस्टन गतियों के बीच चरण कोण का अंतर वॉल्यूम भिन्नताओं के चरण कोण के समान नहीं होता है। चुकी, अल्फा स्टर्लिंग में, वे समान हैं।[6] शेष लेख साइनसोइडल वॉल्यूम विविधताओं को मानता है, जैसे सह-रैखिक पिस्टन के साथ अल्फा स्टर्लिंग में, इसलिए विरोध पिस्टन अल्फा डिवाइस का नाम दिया गया।
चेतावनी: इस लेख में कई अशुद्धियों के बीच, एक सह-रैखिक अल्फा कॉन्फ़िगरेशन को ऊपर संदर्भित किया गया है। ऐसा कॉन्फ़िगरेशन बीटा होगा। वैकल्पिक रूप से, यह अल्फा होगा, जिसमें अस्वीकार्य रूप से अक्षम लिंकेज सिस्टम है।
दबाव-बनाम-मात्रा ग्राफ
इस प्रकार के प्लॉट का उपयोग लगभग सभी थर्मोडायनामिक चक्रों को दर्शाने के लिए किया जाता है। साइनसोइडल वॉल्यूम विविधताओं का परिणाम चित्र 1 में दिखाया गया अर्ध-अण्डाकार आकार का चक्र है। आदर्श चक्र की तुलना में, यह चक्र अधिकांश वास्तविक स्टर्लिंग इंजनों का अधिक यथार्थवादी प्रतिनिधित्व है। ग्राफ में चार बिंदु क्रैंक कोण को डिग्री (कोण) एस में इंगित करते हैं।[7]
रूद्धोष्म स्टर्लिंग चक्र 'आदर्श' स्टर्लिंग चक्र के समान है; चुकी, चार थर्मोडायनामिक प्रक्रियाएँ थोड़ी भिन्न हैं (ऊपर ग्राफ देखें):
- 180° से 270°, स्यूडो-इज़ोथर्मल थर्मल विस्तार । विस्तार स्थान को बाहरी रूप से गर्म किया जाता है, और गैस निकट-इज़ोटेर्मल विस्तार से गुजरती है।
- 270° से 0°, निकट-निरंतर-आयतन (या निकट-सममितीय प्रक्रिया या आइसोकोरिक प्रक्रिया) ताप निष्कासन। गैस को पुनर्योजी ताप विनिमायक के माध्यम से पारित किया जाता है, इस प्रकार गैस को ठंडा किया जाता है, और अगले चक्र में उपयोग के लिए पुनर्योजी को गर्मी स्थानांतरित की जाती है।
- 0° से 90°, स्यूडो-इज़ोथर्मल गैस संपीड़न । संपीड़न स्थान इंटरकूलर है, इसलिए गैस निकट-इज़ोटेर्मल संपीड़न से गुजरती है।
- 90° से 180°, निकट-निरंतर-आयतन (निकट- आइसोमेट्रिक प्रक्रिया या आइसोकोरिक प्रक्रिया) ताप योग। संपीडित हवा पुनर्जनन के माध्यम से वापस बहती है और गर्म विस्तार स्थान के रास्ते में गर्मी उठाती है।
स्टर्लिंग थर्मोकॉस्टिक इंजन के अपवाद के साथ, कोई भी गैस कण वास्तव में पूर्ण चक्र के माध्यम से प्रवाहित नहीं होता है। इसलिए यह दृष्टिकोण चक्र के आगे के विश्लेषण के लिए उत्तरदायी नहीं है। चुकी, यह सिंहावलोकन प्रदान करता है और चक्र कार्य को इंगित करता है।
कण/द्रव्यमान गति
चित्र 2 उन लाइन को दिखाता है जो दर्शाती हैं कि वास्तविक स्टर्लिंग इंजन के माध्यम से गैस कैसे बहती है। लंबवत रंगीन रेखाएं इंजन के वॉल्यूम को चित्रित करती हैं। बाएँ से दाएँ, वे हैं: विस्तार (शक्ति) पिस्टन द्वारा बहने वाला आयतन, निकासी आयतन (जो पिस्टन को गर्म ताप विनिमायक से संपर्क करने से रोकता है), हीटर, रीजेनरेटर, कूलर, कूलर निकासी आयतन, और कम्प्रेशन पिस्टन द्वारा कम्प्रेशन वॉल्यूम बह गया।
![]() |
हीट-एक्सचेंजर प्रेशर ड्रॉप
पम्पिंग हानि के रूप में भी जाना जाता है, चित्र 3 में दिखाए गए दबाव की गिरावट हीट एक्सचेंजर्स के माध्यम से चिपचिपे प्रवाह के कारण होती है। लाल रेखा हीटर का प्रतिनिधित्व करती है, हरा रीजेनरेटर है, और नीला कूलर है। हीट एक्सचेंजर्स को उचित रूप से डिजाइन करने के लिए, स्वीकार्य प्रवाह हानियों के साथ पर्याप्त ताप हस्तांतरण प्राप्त करने के लिए बहुभिन्नरूपी अनुकूलन की आवश्यकता होती है।[6] यहां दिखाए गए प्रवाह हानि अपेक्षाकृत कम हैं, और वे निम्न छवि में मुश्किल से दिखाई दे रहे हैं, जो चक्र में समग्र दबाव भिन्नता दिखाएगा।
दबाव बनाम क्रैंक कोण
चित्र 4 गैर-आदर्श ताप विनिमायकों के साथ रुद्धोष्म अनुकरण के परिणाम दिखाता है। ध्यान दें कि चक्र में समग्र दबाव भिन्नता की तुलना में पुनर्योजी में दबाव ड्रॉप बहुत कम है।
तापमान बनाम क्रैंक कोण
चित्र 5 एक वास्तविक ताप विनिमायक के रुद्धोष्म गुणों को दिखाता है।
सीधी रेखाएँ हीट एक्सचेंजर के ठोस हिस्से के तापमान का प्रतिनिधित्व करती हैं, और वक्र संबंधित स्थानों के गैस तापमान हैं। गैस तापमान में उतार-चढ़ाव इंजन में संपीड़न और विस्तार के प्रभावों के कारण होता है, साथ में गैर-आदर्श ताप विनिमायकों के साथ जिनकी गर्मी हस्तांतरण की सीमित दर होती है। जब गैस का तापमान हीट एक्सचेंजर तापमान के ऊपर और नीचे विचलित होता है, तो यह थर्मोडायनामिक हानि का कारण बनता है जिसे गर्मी का हस्तांतरण लॉस या हिस्टैरिसीस लॉस के रूप में जाना जाता है। चुकी, वास्तविक चक्र को प्रभावी बनाने के लिए हीट एक्सचेंजर्स अभी भी काफी अच्छी तरह से काम करते हैं, भले ही समग्र प्रणाली की वास्तविक तापीय क्षमता ऊष्मप्रवैगिकी के दूसरे नियम का लगभग आधा ही हो।
संचयी ऊष्मा और कार्य ऊर्जा
चित्र 6 अल्फा-प्रकार स्टर्लिंग इंजन डेटा का ग्राफ दिखाता जहां 'Q' ऊष्मा ऊर्जा को दर्शाता है, और 'W' कार्य ऊर्जा को दर्शाता है।
नीली बिंदीदार रेखा संपीड़न स्थान के काम का आउटपुट को दिखाती है। जैसे ही ट्रेस नीचे जाता है, गैस को संपीड़ित करने पर काम किया जाता है। चक्र के विस्तार की प्रक्रिया के समय, वास्तव में संपीड़न पिस्टन पर कुछ काम किया जाता है, जैसा कि ट्रेस के ऊपर की ओर गति से परिलक्षित होता है। चक्र के अंत में, यह मान ऋणात्मक है, यह दर्शाता है कि संपीड़न पिस्टन को काम के शुद्ध इनपुट की आवश्यकता होती है। नीली ठोस रेखा कूलर हीट एक्सचेंजर से निकलने वाली गर्मी को दिखाती है। कूलर से निकलने वाली गर्मी और कम्प्रेशन पिस्टन के काम में समान चक्र ऊर्जा होती है। यह पुनर्योजी (ठोस हरी रेखा) के शून्य-शुद्ध ताप हस्तांतरण के अनुरूप है। जैसा कि अपेक्षित होगा, हीटर और विस्तार स्थान दोनों में सकारात्मक ऊर्जा का प्रवाह होता है। काली बिंदीदार रेखा चक्र के शुद्ध कार्य उत्पादन को दर्शाती है। इस निशान पर, चक्र शुरू होने की तुलना में अधिक समाप्त होता है, यह दर्शाता है कि ऊष्मा इंजन ऊर्जा को ऊष्मा से कार्य में परिवर्तित करता है।
यह भी देखें
संदर्भ
- ↑ Robert Sier (1999). Hot air caloric and stirling engines. Vol.1, A history (1st Edition (Revised) ed.). L.A. Mair. ISBN 0-9526417-0-4.
- ↑ Organ, "The Regenerator and the Stirling Engine", p. xxii, Foreword by Urieli
- ↑ Organ, "The Regenerator and the Stirling Engine", p. 7
- ↑ Jakob, M. (1957) Heat Transfer II John Wiley, New York, USA and Chapman and Hall, London, UK
- ↑ A. Romanelli Alternative thermodynamic cycle for the Stirling machine, American Journal of Physics 85, 926 (2017)
- ↑ 6.0 6.1 Organ, "The Regenerator and the Stirling Engine"
- ↑ Israel Urieli (Dr. Iz), Associate Professor Mechanical Engineering: Stirling Cycle Machine Analysis Archived 2010-06-30 at the Wayback Machine
बाहरी कड़ियाँ
- I. Urieli Stirling Cycle Machine Analysis
- Polytropic cycle inside Stirling engine Stirling engine cycle