इलेक्ट्रॉनिक बैंड संरचना: Difference between revisions
m (added Category:Vigyan Ready using HotCat) |
No edit summary |
||
(10 intermediate revisions by 4 users not shown) | |||
Line 1: | Line 1: | ||
{{Short description|Describes the range of energies of an electron within the solid}} | {{Short description|Describes the range of energies of an electron within the solid}} | ||
{{Electronic structure methods}} | {{Electronic structure methods}} | ||
ठोस भौतिकी अवस्था में, एक ठोस की '''''इलेक्ट्रॉनिक बैंड संरचना''''' (या बस बैंड संरचना) ऊर्जा स्तरों की सीमा का वर्णन करती है जो इलेक्ट्रॉनों के भीतर निहित होती है, साथ ही साथ ऊर्जा की सीमाएं भी हैं जो उनके पास नहीं होती हैं (उन्हें'' बैंड गैप्स कहा जाता है'' या ''निषिद्ध बैंड | ठोस भौतिकी अवस्था में, एक ठोस की '''''इलेक्ट्रॉनिक बैंड संरचना''''' (या बस बैंड संरचना) ऊर्जा स्तरों की सीमा का वर्णन करती है जो इलेक्ट्रॉनों के भीतर निहित होती है, साथ ही साथ ऊर्जा की सीमाएं भी हैं जो उनके पास नहीं होती हैं (उन्हें'' बैंड गैप्स कहा जाता है'' या ''निषिद्ध बैंड'')। | ||
बैंड सिद्धांत | बैंड सिद्धांत इन बैंडों और बैंड अंतराल को प्राप्त करता है, जो परमाणुओं या अणुओं के एक बड़े, आवधिक जाली में एक इलेक्ट्रॉन के लिए अनुमत क्वांटम यांत्रिक तरंग फलनों की जांच करता है। बैंड सिद्धांत का सफलतापूर्वक उपयोग ठोस पदार्थों के कई भौतिक गुणों को समझाने के लिए किया गया है, जैसे कि विद्युत प्रतिरोधकता और ऑप्टिकल अवशोषण, और सभी ठोस-अवस्था वाले उपकरणों की समझ की नींव बनाता है। जहाँ ठोस-अवस्था वाले उपकरणों से तात्पर्य ट्रांजिस्टर, सोलर सेल आदि से है। | ||
{{toclimit|3}} | {{toclimit|3}} | ||
== '''क्यों बैंड और बैंड अंतराल होते हैं''' == | |||
== '''क्यों बैंड और बैंड अंतराल होते हैं | |||
[[File:Solid state electronic band structure.svg|thumb|upright=2.0|बड़ी संख्या में कार्बन परमाणुओं का एक काल्पनिक उदाहरण एक हीरे के क्रिस्टल को बनाने के लिए एक साथ लाया जा रहा है, जो इलेक्ट्रॉनिक बैंड संरचना के गठन का प्रदर्शन करता है। सही ग्राफ परमाणुओं के बीच रिक्ति के एक समारोह के रूप में ऊर्जा के स्तर को दिखाता है। जब बहुत दूर (ग्राफ के दाईं ओर) सभी परमाणुओं में एक ही ऊर्जा के साथ असतत वैलेंस ऑर्बिटल्स पी और एस होता है। हालांकि, जब परमाणु करीब आते हैं (बाईं ओर), उनके इलेक्ट्रॉन ऑर्बिटल्स स्थानिक रूप से ओवरलैप होने लगते हैं। ऑर्बिटल्स हाइब्रिडाइज़ करते हैं, और प्रत्येक परमाणु स्तर अलग -अलग ऊर्जाओं के साथ n स्तरों में विभाजित होता है, जहां n परमाणुओं की संख्या है। चूंकि n एक मैक्रोस्कोपिक आकार के क्रिस्टल में एक बहुत बड़ी संख्या है, इसलिए आसन्न स्तर ऊर्जावान रूप से एक साथ करीब हैं, प्रभावी रूप से एक निरंतर ऊर्जा बैंड बनाते हैं। वास्तविक डायमंड क्रिस्टल सेल आकार (ए द्वारा निरूपित) में, दो बैंड बनते हैं, जिसे वैलेंस और कंडक्शन बैंड कहा जाता है, जिसे 5.5 & nbsp; EV बैंड गैप द्वारा अलग किया जाता है। अंतर-परमाणु रिक्ति को और भी अधिक (जैसे, एक उच्च दबाव के तहत) कम करना बैंड संरचना को और संशोधित करता है।]] | [[File:Solid state electronic band structure.svg|thumb|upright=2.0|बड़ी संख्या में कार्बन परमाणुओं का एक काल्पनिक उदाहरण एक हीरे के क्रिस्टल को बनाने के लिए एक साथ लाया जा रहा है, जो इलेक्ट्रॉनिक बैंड संरचना के गठन का प्रदर्शन करता है। सही ग्राफ परमाणुओं के बीच रिक्ति के एक समारोह के रूप में ऊर्जा के स्तर को दिखाता है। जब बहुत दूर (ग्राफ के दाईं ओर) सभी परमाणुओं में एक ही ऊर्जा के साथ असतत वैलेंस ऑर्बिटल्स पी और एस होता है। हालांकि, जब परमाणु करीब आते हैं (बाईं ओर), उनके इलेक्ट्रॉन ऑर्बिटल्स स्थानिक रूप से ओवरलैप होने लगते हैं। ऑर्बिटल्स हाइब्रिडाइज़ करते हैं, और प्रत्येक परमाणु स्तर अलग -अलग ऊर्जाओं के साथ n स्तरों में विभाजित होता है, जहां n परमाणुओं की संख्या है। चूंकि n एक मैक्रोस्कोपिक आकार के क्रिस्टल में एक बहुत बड़ी संख्या है, इसलिए आसन्न स्तर ऊर्जावान रूप से एक साथ करीब हैं, प्रभावी रूप से एक निरंतर ऊर्जा बैंड बनाते हैं। वास्तविक डायमंड क्रिस्टल सेल आकार (ए द्वारा निरूपित) में, दो बैंड बनते हैं, जिसे वैलेंस और कंडक्शन बैंड कहा जाता है, जिसे 5.5 & nbsp; EV बैंड गैप द्वारा अलग किया जाता है। अंतर-परमाणु रिक्ति को और भी अधिक (जैसे, एक उच्च दबाव के तहत) कम करना बैंड संरचना को और संशोधित करता है।]] | ||
[[File:Metals and insulators, quantum difference from band structure.ogv|thumb|upright=1.65|बैंड के गठन का एनीमेशन और कैसे इलेक्ट्रॉनों ने उन्हें एक धातु और एक इन्सुलेटर में भर दिया]] | [[File:Metals and insulators, quantum difference from band structure.ogv|thumb|upright=1.65|बैंड के गठन का एनीमेशन और कैसे इलेक्ट्रॉनों ने उन्हें एक धातु और एक इन्सुलेटर में भर दिया]] | ||
एक एकल पृथक परमाणु के इलेक्ट्रॉनों पर परमाणु | एक एकल पृथक परमाणु के इलेक्ट्रॉनों पर परमाणु कक्षक पर कब्जा कर लेते है, जिनमें से प्रत्येक में असतत ऊर्जा स्तर होता है। जब दो या दो से अधिक परमाणु एक अणु बनाने के लिए एक साथ जुड़ते हैं, तो उनके परमाणु कक्षक अतिव्यापन और संकरण करते हैं।<ref name="Holgate">{{cite book | ||
| last1 = Holgate | | last1 = Holgate | ||
| first1 = Sharon Ann | | first1 = Sharon Ann | ||
Line 33: | Line 31: | ||
}}</ref> | }}</ref> | ||
इसी तरह, यदि समान परमाणुओं की एक बड़ी संख्या एक ठोस बनाने के लिए एक साथ आती है, जैसे कि एक क्रिस्टल जाली | इसी तरह, यदि समान परमाणुओं की एक बड़ी संख्या एक ठोस बनाने के लिए एक साथ आती है, जैसे कि एक क्रिस्टल जाली, परमाणुओं के परमाणु कक्षक पास के कक्षक के साथ अतिव्यापन करते हैं।<ref name="Holgate" /> प्रत्येक असतत ऊर्जा स्तर एन (''N)'' स्तरों में विभाजित होता है, प्रत्येक एक अलग ऊर्जा के साथ। चूंकि ठोस के एक मैक्रोस्कोपिक टुकड़े में परमाणुओं की संख्या एक बहुत बड़ी संख्या है (n ~ 10<sup>22 </sup>) ऑर्बिटल्स की संख्या बहुत बड़ी है और इस प्रकार वे ऊर्जा में बहुत बारीकी से फैले हुए हैं (10<sup>−22 </sup>-eV के क्रम में)। आसन्न स्तरों की ऊर्जा एक साथ इतनी करीब है कि उन्हें एक निरंतरता, एक ऊर्जा बैंड के रूप में माना जा सकता है। | ||
बैंड का यह गठन ज्यादातर परमाणु में सबसे बाहरी इलेक्ट्रॉनों (वैलेंस इलेक्ट्रॉनों) की एक विशेषता है, जो रासायनिक संबंध | बैंड का यह गठन ज्यादातर परमाणु में सबसे बाहरी इलेक्ट्रॉनों (वैलेंस इलेक्ट्रॉनों) की एक विशेषता है, जो रासायनिक संबंध और विद्युत चालकता में शामिल हैं। आंतरिक इलेक्ट्रॉन कक्षक एक महत्वपूर्ण डिग्री तक अतिव्यापन नहीं करते हैं, इसलिए उनके बैंड बहुत संकीर्ण होते हैं। | ||
बैंड अंतराल | बैंड अंतराल अनिवार्य रूप से ऊर्जा के किसी भी बैंड द्वारा कवर नहीं किए गए ऊर्जा के बचे हुए श्रेणियां हैं, जो ऊर्जा बैंड की परिमित चौड़ाई का परिणाम है। बैंड में अलग -अलग चौड़ाई होती है, जिसमें परमाणु कक्षक में अतिव्यापन की डिग्री के आधार पर चौड़ाई होती है, जिसमें से वे उत्पन्न होते हैं। दो आसन्न बैंड केवल ऊर्जा की सीमा को पूरी तरह से कवर करने के लिए पर्याप्त व्यापक नहीं हो सकते हैं। उदाहरण के लिए, कोर कक्षक (जैसे 1s electrons) से जुड़े बैंड आसन्न परमाणुओं के बीच छोटे ओवरलैप के कारण बेहद संकीर्ण हैं। नतीजतन, कोर बैंड के बीच बड़े बैंड अंतराल होते हैं। उच्च बैंड में अधिक ओवरलैप के साथ तुलनात्मक रूप से बड़े कक्षक शामिल होते हैं, उच्च ऊर्जा पर उत्तरोत्तर व्यापक हो जाते हैं ताकि उच्च ऊर्जा पर कोई बैंड अंतराल न हो। | ||
== '''बुनियादी अवधारणाएं | == '''बुनियादी अवधारणाएं''' == | ||
=== मान्यताओं और बैंड संरचना सिद्धांत की सीमाएँ | === मान्यताओं और बैंड संरचना सिद्धांत की सीमाएँ === | ||
बैंड सिद्धांत | बैंड सिद्धांत केवल ठोस के क्वांटम स्थिति के लिए एक अनुमान है, जो एक साथ बंधे कई समान परमाणुओं या अणुओं से युक्त ठोस पदार्थों पर लागू होता है। बैंड सिद्धांत को मान्य होने के लिए आवश्यक धारणाएं निम्न हैं: | ||
* अनंत आकार की प्रणाली | * अनंत आकार की प्रणाली: बैंड के निरंतर होने के लिए, सामग्री के टुकड़े में बड़ी संख्या में परमाणु शामिल होने चाहिए। चूंकि सामग्री का एक मैक्रोस्कोपिक टुकड़ा 10 <sup>22 </sup>परमाणु के क्रम पर होता है, यह एक गंभीर प्रतिबंध नहीं है; बैंड सिद्धांत भी एकीकृत सर्किट में सूक्ष्म आकार के ट्रांजिस्टर पर लागू होता है। संशोधनों के साथ, बैंड संरचना की अवधारणा को उन प्रणालियों तक भी बढ़ाया जा सकता है जो केवल कुछ आयामों के साथ बड़े होते हैं, जैसे कि दो-आयामी इलेक्ट्रॉन सिस्टम। | ||
* सजातीय प्रणाली | * सजातीय प्रणाली: बैंड संरचना एक सामग्री की एक आंतरिक संपत्ति है, जो मानता है कि सामग्री सजातीय है। व्यावहारिक रूप से, इसका मतलब है कि सामग्री का रासायनिक मेकअप पूरे टुकड़े में एक समान होना चाहिए। | ||
* गैर-अंतःक्रिया | * गैर-अंतःक्रिया: बैंड संरचना एकल इलेक्ट्रॉन अवस्थाओं का वर्णन करती है। इन अवस्थाओं का अस्तित्व यह मानता है कि इलेक्ट्रॉन जाली कंपन, अन्य इलेक्ट्रॉनों, फोटॉन आदि के साथ गतिशील रूप से बातचीत किए बिना स्थिर क्षमता में भ्रमड़ करते हैं। | ||
उपरोक्त मान्यताओं को कई महत्वपूर्ण व्यावहारिक स्थितियों में तोड़ा गया है, और बैंड संरचना के उपयोग को बैंड सिद्धांत की सीमाओं पर एक कड़ी निगरानी रखने की आवश्यकता होती है: | उपरोक्त मान्यताओं को कई महत्वपूर्ण व्यावहारिक स्थितियों में तोड़ा गया है, और बैंड संरचना के उपयोग को बैंड सिद्धांत की सीमाओं पर एक कड़ी निगरानी रखने की आवश्यकता होती है: | ||
* अमानवीयता और | * अमानवीयता और अंतरफलक: सतहों, संयोजन और अन्य अमानवीयता के पास,बल्क बैंड संरचना बाधित है। न केवल स्थानीय छोटे पैमाने पर व्यवधान हैं (जैसे, सतह की स्थिति या बैंड गैप के अंदर डोपेंट स्टेट्स, बल्कि स्थानीय चार्ज असंतुलन भी हैं। इन चार्ज असंतुलन में विद्युतस्थितिकी प्रभाव होते हैं जो अर्धचालक, इंसुलेटर और वैक्यूम (डोपिंग, बैंड झुकने वाले) में गहराई से विस्तारित होते हैं। | ||
* ठीक उसी तरह, अधिकांश इलेक्ट्रॉनिक प्रभाव (धारिता | * ठीक उसी तरह, अधिकांश इलेक्ट्रॉनिक प्रभाव (धारिता, विद्युत चालन, विद्युत-क्षेत्र स्क्रीनिंग) में सतहों और/या निकट अंतरफलक से गुजरने वाले इलेक्ट्रॉनों की भौतिकी शामिल होती है। इन प्रभावों का पूरा विवरण, एक बैंड संरचना चित्र में, इलेक्ट्रॉन-इलेक्ट्रॉन परस्पर क्रिया के कम से कम एक अल्पविकसित मॉडल की आवश्यकता होती है (देखें अंतरिक्ष चार्ज, बैंड बेन्डिंग)। | ||
* छोटे सिस्टम | * छोटे सिस्टम: उन प्रणालियों के लिए जो हर आयाम के साथ छोटे होते हैं (जैसे, एक छोटा अणु या एक क्वांटम डॉट), कोई निरंतर बैंड संरचना नहीं है। छोटे और बड़े आयामों के बीच क्रॉसओवर मेसोस्कोपिक भौतिकी का दायरा है। | ||
* दृढ़ता से सहसंबद्ध सामग्री | * दृढ़ता से सहसंबद्ध सामग्री (उदाहरण के लिए, mott insulators) को केवल एकल-इलेक्ट्रॉन अवस्थाएं के संदर्भ में समझा नहीं जा सकता है। इन सामग्रियों के इलेक्ट्रॉनिक बैंड संरचनाओं को खराब रूप से परिभाषित किया गया है (या कम से कम, विशिष्ट रूप से परिभाषित नहीं) और उनकी भौतिक स्थिति के बारे में उपयोगी जानकारी प्रदान नहीं कर सकते हैं। | ||
=== क्रिस्टलीय समरूपता और वेववेक्टर | === क्रिस्टलीय समरूपता और वेववेक्टर === | ||
[[File:Brillouin Zone (1st, FCC).svg|thumb|अंजीर 1. विशेष समरूपता बिंदुओं के लिए लेबल दिखाते हुए एक चेहरे-केंद्रित क्यूबिक जाली का ब्रिलॉइन ज़ोन।]] | |||
[[File:Bulkbandstructure.gif|thumb|300 पीएक्स | अंजीर 2. एसआई, जीई, जीएएएस और इनस के लिए बैंड संरचना प्लॉट तंग बाध्यकारी मॉडल के साथ उत्पन्न।ध्यान दें कि SI और GE अप्रत्यक्ष बैंड गैप सामग्री हैं, जबकि GAAS और INAs प्रत्यक्ष हैं।]] | [[File:Bulkbandstructure.gif|thumb|300 पीएक्स | अंजीर 2. एसआई, जीई, जीएएएस और इनस के लिए बैंड संरचना प्लॉट तंग बाध्यकारी मॉडल के साथ उत्पन्न।ध्यान दें कि SI और GE अप्रत्यक्ष बैंड गैप सामग्री हैं, जबकि GAAS और INAs प्रत्यक्ष हैं।]] | ||
{{Main| | {{Main|बलोच की प्रमेय|ब्रिलॉइन क्षेत्र}} | ||
{{See also| | {{See also|भौतिकी में समरूपता| | ||
बैंड संरचना गणना एक क्रिस्टल जाली | क्रिस्टलोग्राफिक बिंदु समूह|अंतरिक्ष समूह}} | ||
बैंड संरचना गणना एक क्रिस्टल जाली की आवधिक प्रकृति का लाभ उठाती है, इसकी समरूपता का शोषण करती है। एकल-इलेक्ट्रॉन श्रोडिंगर समीकरण एक जाली-आवासीय क्षमता में एक इलेक्ट्रॉन के लिए हल किया जाता है, जिससे ब्लोच इलेक्ट्रॉनों को हल के रूप में दिया जाता है | |||
:<math>\psi_{n\mathbf{k}}(\mathbf{r})=e^{i\mathbf{k}\cdot\mathbf{r}}u_{n\mathbf{k}}(\mathbf{r})</math>, | :<math>\psi_{n\mathbf{k}}(\mathbf{r})=e^{i\mathbf{k}\cdot\mathbf{r}}u_{n\mathbf{k}}(\mathbf{r})</math>, | ||
जहां k को वेववेक्टर | जहां k को वेववेक्टर कहा जाता है। K के प्रत्येक मान के लिए, बैंड इंडेक्स ''n '' द्वारा लेबल किए गए श्रोडिंगर समीकरण के कई समाधान हैं, जो केवल ऊर्जा बैंड की संख्या में हैं। इन ऊर्जा स्तरों में से प्रत्येक K में परिवर्तन के साथ सुचारू रूप से विकसित होता है, जिससे अवस्था का एक सहज बैंड बनता है। प्रत्येक बैंड के लिए हम एक फ़ंक्शन को परिभाषित कर सकते हैं '' ई ''<sub>''n''</sub>(के) (''E<sub>n</sub>''('''k''')), जो उस बैंड में इलेक्ट्रॉनों के लिए फैलाव संबंध है। | ||
वेववेक्टर | वेववेक्टर, ब्रिलियन ज़ोन के अंदर किसी भी मूल्य पर ले जाता है, जो कि वेववेक्टर (पारस्परिक जाली) में एक पॉलीहेड्रॉन है जो क्रिस्टल की जाली से संबंधित है। ब्रिलियन ज़ोन के बाहर वेववेक्टर केवल उन अवस्थाओं के अनुरूप हैं जो ब्रिलियन ज़ोन के भीतर उन अवस्थाओं के लिए भौतिक रूप से समान हैं। ब्रिलियन ज़ोन में विशेष उच्च समरूपता बिंदु/रेखाएँ γ, Δ, λ, σ (चित्र 1 देखें) जैसे लेबल दिये गए हैं। | ||
वेववेक्टर | वेववेक्टर के एक फलन के रूप में एक बैंड के आकार की कल्पना करना मुश्किल है, क्योंकि इसमें चार-आयामी स्थान में एक भूखंड की आवश्यकता होगी,'' E vs. k<sub>x</sub>, k<sub>y</sub>, k<sub>z,विज्ञान</sub>साहित्य में 'बैंड संरचना भूखंडों' को देखना सामान्य है जो E<sub>n</sub>('''k''') के मानों को दर्शाता है।<ref>{{Cite web|url=http://www.ioffe.ru/SVA/NSM/Semicond/AlGaAs/bandstr.html|title=NSM Archive - Aluminium Gallium Arsenide (AlGaAs) - Band structure and carrier concentration|website=www.ioffe.ru}}</ref><ref name="SpringerBandStructure">{{cite web|title=Electronic Band Structure|url=https://www.springer.com/cda/content/document/cda_downloaddocument/9783642007095-c1.pdf?SGWID=0-0-45-898341-p173918216|website=www.springer.com|publisher=Springer|access-date=10 November 2016|page=24}}</ref> बैंड संरचना को देखने के लिए एक और विधि, वेववेक्टर स्पेस में एक स्थिर-ऊर्जा समस्थानिक की साजिश करना है, जो किसी विशेष मूल्य के बराबर ऊर्जा के साथ अवस्थाओं को दिखाता है। फर्मी स्तर के बराबर ऊर्जा वाली अवस्था को समस्थानिक फर्मी सतह के रूप में जाना जाता है।'' | ||
बैंड गैप | बैंड गैप के आसपास के ''अवस्थाओं'' के वेववेक्टर का उपयोग करके ऊर्जा बैंड अंतराल को वर्गीकृत किया जा सकता है: | ||
* डायरेक्ट बैंड गैप: बैंड गैप के ऊपर निम्नतम-ऊर्जा अवस्था में k वही होता है जो बैंड गैप के नीचे उच्चतम-ऊर्जा अवस्था होती है। | * डायरेक्ट बैंड गैप: बैंड गैप के ऊपर निम्नतम-ऊर्जा अवस्था में k वही होता है जो बैंड गैप के नीचे उच्चतम-ऊर्जा अवस्था होती है। | ||
* अप्रत्यक्ष बैंड गैप: बैंड गैप के ऊपर और नीचे की निकटतम अवस्थाओं में k का मान समान नहीं होता है। | * अप्रत्यक्ष बैंड गैप: बैंड गैप के ऊपर और नीचे की निकटतम अवस्थाओं में k का मान समान नहीं होता है। | ||
==== विषमता: गैर-क्रिस्टलीय ठोस पदार्थों में बैंड संरचनाएं | ==== विषमता: गैर-क्रिस्टलीय ठोस पदार्थों में बैंड संरचनाएं ==== | ||
यद्यपि इलेक्ट्रॉनिक बैंड संरचनाएं आमतौर पर क्रिस्टलीय | यद्यपि इलेक्ट्रॉनिक बैंड संरचनाएं आमतौर पर क्रिस्टलीय सामग्री से जुड़ी होती हैं, क्वासी-क्रिस्टलीय और अनाकार ठोस भी बैंड अंतराल का प्रदर्शन कर सकते हैं। ये अध्ययन करने के लिए सैद्धांतिक रूप से कुछ अधिक कठिन हैं क्योंकि उनके पास एक क्रिस्टल की सरल समरूपता की कमी है, और सामान्यतया एक सटीक फैलाव संबंध निर्धारित करना संभव नहीं है। नतीजतन, ठोस पदार्थों के इलेक्ट्रॉनिक बैंड संरचना पर लगभग सभी मौजूदा सैद्धांतिक कार्य ने क्रिस्टलीय सामग्रियों पर ध्यान केंद्रित किया है। | ||
=== अवस्था का घनत्व | === अवस्था का घनत्व === | ||
{{Main| | {{Main|अवस्थाओं का घनत्व}} | ||
स्टेट्स फ़ंक्शन | स्टेट्स फ़ंक्शन ''g''(''E'') के घनत्व को E के निकट इलेक्ट्रॉन ऊर्जा के लिए प्रति इकाई आयतन, प्रति इकाई ऊर्जा में इलेक्ट्रॉनिक अवस्थाओं की संख्या के रूप में परिभाषित किया गया है। | ||
बैंड थ्योरी | बैंड थ्योरी पर आधारित प्रभावों की गणना के लिए स्टेट्स फंक्शन का घनत्व महत्वपूर्ण है। फर्मी के गोल्डन रूल में, ऑप्टिकल अवशोषण की दर की गणना के लिए, यह एक इलेक्ट्रॉन के लिए उत्तेजनीय इलेक्ट्रॉनों की संख्या और अंतिम अवस्था की संख्या दोनों प्रदान करता है। यह विद्युत चालकता की गणना में दिखाई देता है जहां यह मोबाइल अवस्था की संख्या प्रदान करता है, और इलेक्ट्रॉन बिखरने की दरों की गणना में जहां यह बिखरने के बाद अंतिम अवस्था की संख्या प्रदान करता है।{{Citation needed|date=October 2015}} | ||
एक बैंड गैप | एक बैंड गैप के अंदर ऊर्जा के लिए, ''g''(''E'') = 0। | ||
=== बैंड का भरना | === बैंड का भरना === | ||
{{Main| | {{Main|फर्मी स्तर|फर्मी-डिराक आँकड़े}} | ||
{{Band structure filling diagram}} | {{Band structure filling diagram}} | ||
थर्मोडायनामिक संतुलन में | थर्मोडायनामिक संतुलन में, एक इलेक्ट्रॉन से भरी ऊर्जा ई (''E)'' की स्थिति की संभावना फर्मी-डीरेक वितरण द्वारा दी गई है, एक थर्मोडायनामिक वितरण जो पाउली बहिष्करण सिद्धांत को ध्यान में रखता है: | ||
:<math>f(E) = \frac{1}{1 + e^{{(E-\mu)}/{k_{\rm B} T}}}</math> | :<math>f(E) = \frac{1}{1 + e^{{(E-\mu)}/{k_{\rm B} T}}}</math> | ||
जहाँ पे: | जहाँ पे: | ||
पदार्थ में इलेक्ट्रॉनों का घनत्व केवल अवस्था के घनत्व के समय फर्मी-डीरेक वितरण | <nowiki>*</nowiki>''k''<sub>B</sub>''T'' बोल्ट्जमैन नियतांक Boltzmann's constant) और तापमान का उत्पाद है, और | ||
*µ इलेक्ट्रॉनों की कुल रासायनिक क्षमता है, या फर्मी स्तर (अर्धचालक भौतिकी में, यह मात्रा अक्सर ''E''<sub>F</sub> को दर्शाती है)। एक ठोस का फ़र्मी स्तर सीधे उस ठोस पर वोल्टेज से संबंधित होता है, जैसा कि एक वोल्टमीटर के साथ मापा जाता है। परंपरागत रूप से, बैंड संरचना भूखंडों में फर्मी स्तर को ऊर्जा का शून्य (एक ऑर्बिटरी चॉइस) माना जाता है। | |||
पदार्थ में इलेक्ट्रॉनों का घनत्व केवल अवस्था के घनत्व के समय फर्मी-डीरेक वितरण का अभिन्न अंग है: | |||
:<math>N/V = \int_{-\infty}^{\infty} g(E) f(E)\, dE</math> | :<math>N/V = \int_{-\infty}^{\infty} g(E) f(E)\, dE</math> | ||
यद्यपि बैंड की संख्या अनंत होती है और इस प्रकार अनंत संख्या में अवस्थाओं की संख्या होती है, लेकिन इन बैंडों में केवल एक परिमित संख्या | यद्यपि बैंड की संख्या अनंत होती है और इस प्रकार अनंत संख्या में अवस्थाओं की संख्या होती है, लेकिन इन बैंडों में केवल एक परिमित संख्या में इलेक्ट्रॉनों की संख्या होती है। इलेक्ट्रॉनों की संख्या के लिए पसंदीदा मूल्य विद्युतस्थितिकी का एक परिणाम है: यद्यपि किसी सामग्री की सतह को चार्ज किया जा सकता है, सामग्री का आंतरिक थोक चार्ज करना पसंद करता है। चार्ज तटस्थता की स्थिति का मतलब है कि एन/वी (''N''/''V)'' को सामग्री में प्रोटॉन के घनत्व से मेल खाना चाहिए। ऐसा होने के लिए, सामग्री खुद को विद्युतस्थितिकी रूप से समायोजित करती है, अपनी बैंड संरचना को ऊर्जा में ऊपर या नीचे स्थानांतरित करती है जिससे जी(ई)को स्थानांतरित कर दिया जाता है, जब तक कि यह फर्मी स्तर के संबंध में सही संतुलन में न हो। | ||
==== फर्मी स्तर (चालन बैंड, वैलेंस बैंड) के पास बैंड के नाम | ==== फर्मी स्तर (चालन बैंड, वैलेंस बैंड) के पास बैंड के नाम ==== | ||
एक ठोस में अनुमत बैंड | ==== एक ठोस में अनुमत बैंड की संख्या अनंत होती है, जैसे कि एक परमाणु में असीम रूप से कई ऊर्जा स्तर होते हैं। हालांकि, अधिकांश बैंडों में बहुत अधिक ऊर्जा होती है, और आमतौर पर सामान्य परिस्थितियों में अवहेलना होती है।<ref>High-energy bands are important for [[electron diffraction]] physics, where the electrons can be injected into a material at high energies, see {{Cite journal | last1 = Stern | first1 = R. | last2 = Perry | first2 = J. | last3 = Boudreaux | first3 = D. | doi = 10.1103/RevModPhys.41.275 | title = Low-Energy Electron-Diffraction Dispersion Surfaces and Band Structure in Three-Dimensional Mixed Laue and Bragg Reflections | journal = Reviews of Modern Physics | volume = 41 | issue = 2 | pages = 275 | year = 1969 |bibcode = 1969RvMP...41..275S }}.</ref> इसके विपरीत, कोर ऑर्बिटल्स (जैसे 1 एस इलेक्ट्रॉनों) से जुड़े बहुत कम ऊर्जा बैंड हैं। ये कम-ऊर्जा कोर बैंड भी सामान्य परिस्थितियों में अवहेलना ही करते हैं क्योंकि वे हर समय इलेक्ट्रॉनों से भरे रहते हैं, और इसलिए निष्क्रिय होते हैं।<ref>Low-energy bands are however important in the [[Auger effect]].</ref> इसी तरह, सामग्री में उनके बैंड संरचना में कई बैंड अंतराल होते हैं। ==== | ||
सबसे महत्वपूर्ण बैंड और बैंड अंतराल | सबसे महत्वपूर्ण बैंड और बैंड अंतराल- जो इलेक्ट्रॉनिकी और प्रकाश इलेक्ट्रॉनिकी के लिए प्रासंगिक हैं - वे फर्मी स्तर के पास ऊर्जा वाले हैं। फ़र्मी स्तर के पास बैंड और बैंड अंतराल को विशेष नाम दिए गए हैं, जो सामग्री के आधार पर हैं: | ||
* एक अर्धचालक | * एक अर्धचालक या बैंड इन्सुलेटर में, फर्मी स्तर एक बैंड गैप से घिरा हुआ है, जिसे बैंड गैप के रूप में संदर्भित किया जाता है (इसे बैंड संरचना में अन्य बैंड अंतराल से अलग करने के लिए)। बैंड गैप के ऊपर निकटतम बैंड को चालन बैंड कहा जाता है, और बैंड गैप के नीचे के निकटतम बैंड को वैलेंस बैंड कहा जाता है। नाम वैलेंस बैंड को रसायन विज्ञान के सादृश्य द्वारा गढ़ा गया था, क्योंकि अर्धचालक (और इंसुलेटर) में वैलेंस बैंड, संयोजकता कक्षक से बाहर बनाया गया है। | ||
* एक धातु या अर्धधातु में, फर्मी स्तर | * एक धातु या अर्धधातु में, फर्मी स्तर एक या अधिक अनुमत बैंड के अंदर है। अर्धधातु में बैंड को आमतौर पर कंडक्शन बैंड या वैलेंस बैंड के रूप में संदर्भित किया जाता है, जो इस बात पर निर्भर करता है कि चार्ज ट्रांसपोर्ट अधिक इलेक्ट्रॉन-लाइक या होल-जैसे, अर्धचालक के सादृश्य द्वारा। हालांकि, कई धातुओं में, बैंड न तो इलेक्ट्रॉन की तरह होते हैं और न ही होल जैसे होते हैं, और अक्सर सिर्फ वैलेंस बैंड कहा जाता है क्योंकि वे वैलेंस ऑर्बिटल्स से बने होते हैं।<ref>In copper, for example, the [[Effective mass (solid-state physics)|effective mass]] is a [[tensor]] and also changes sign depending on the wave vector, as can be seen in the [[De Haas–Van Alphen effect]]; see https://www.phys.ufl.edu/fermisurface/</ref> एक धातु की बैंड संरचना में बैंड अंतराल कम ऊर्जा भौतिकी के लिए महत्वपूर्ण नहीं है, क्योंकि वे फ़र्मी स्तर से बहुत दूर हैं। | ||
== '''क्रिस्टल में सिद्धांत | == '''क्रिस्टल में सिद्धांत''' == | ||
ANSATZ एक आवधिक क्रिस्टल जाली (periodic crystal lattice) में इलेक्ट्रॉन तरंगों का विशेष मामला है, जो बलोच के प्रमेय | ANSATZ एक आवधिक क्रिस्टल जाली (periodic crystal lattice) में इलेक्ट्रॉन तरंगों का विशेष मामला है, जो बलोच के प्रमेय का उपयोग करते हुए सामान्यतया विवर्तन के गतिशील सिद्धांत में माना जाता है। प्रत्येक क्रिस्टल एक आवधिक संरचना है जिसे एक ब्राविस जाली (Bravais lattice) द्वारा चित्रित किया जाता है, और प्रत्येक ब्राविस जाली के लिए हम पारस्परिक जाली का निर्धारण कर सकते हैं, जो तीन पारस्परिक जाली वैक्टरों ('''b'''<sub>1</sub>, '''b'''<sub>2</sub>, '''b'''<sub>3</sub>) के एक सेट में आवधिकता को घेरता है। अब, किसी भी आवधिक संभावित ''V''('''r''') जो प्रत्यक्ष जाली के समान आवधिकता को साझा करते हैं, को एक फूरियर श्रृंखला के रूप में विस्तारित किया जा सकता है, जिसके एकमात्र गैर-लुप्त होने वाले घटक पारस्परिक जाली वैक्टर से जुड़े हैं। इसे विस्तार रूप में लिखा जा सकता है: | ||
:<math>V(\mathbf{r}) = \sum_{\mathbf{K}}{V_{\mathbf{K}}e^{i \mathbf{K}\cdot\mathbf{r}}}</math> | :<math>V(\mathbf{r}) = \sum_{\mathbf{K}}{V_{\mathbf{K}}e^{i \mathbf{K}\cdot\mathbf{r}}}</math> | ||
जहां k = '''K''' = ''m''<sub>1</sub>'''b'''<sub>1</sub> + ''m''<sub>2</sub>'''b'''<sub>2</sub> + ''m''<sub>3</sub>'''b'''<sub>3</sub> , जहां (''m''<sub>1</sub>, ''m''<sub>2</sub>, ''m''<sub>3</sub>) पूर्णांक हैं। | जहां k = '''K''' = ''m''<sub>1</sub>'''b'''<sub>1</sub> + ''m''<sub>2</sub>'''b'''<sub>2</sub> + ''m''<sub>3</sub>'''b'''<sub>3</sub> , जहां (''m''<sub>1</sub>, ''m''<sub>2</sub>, ''m''<sub>3</sub>) पूर्णांक हैं। | ||
इस सिद्धांत से, एक विशेष सामग्री की बैंड संरचना | इस सिद्धांत से, एक विशेष सामग्री की बैंड संरचना की भविष्यवाणी करने का प्रयास किया जा सकता है, हालांकि इलेक्ट्रॉनिक संरचना गणना के लिए अधिकांश एब इनिटियो तरीके ऑब्जर्वड बैंड गैप की भविष्यवाणी करने में विफल रहे हैं। | ||
=== लगभग मुक्त इलेक्ट्रॉन सन्निकटन | === लगभग मुक्त इलेक्ट्रॉन सन्निकटन === | ||
{{Main| | {{Main|लगभग मुक्त इलेक्ट्रॉन मॉडल|मुक्त इलेक्ट्रॉन मॉडल|छद्मसंभाव्य}} | ||
लगभग मुक्त इलेक्ट्रॉन सन्निकटन में | लगभग मुक्त इलेक्ट्रॉन सन्निकटन में, इलेक्ट्रॉनों के बीच अन्योन्यक्रिया को पूरी तरह से नजरअंदाज कर दिया जाता है। यह सन्निकटन बलोच के प्रमेय के उपयोग की अनुमति देता है, जिसमें कहा गया है कि आवधिक क्षमता में इलेक्ट्रॉनों में तरंगों और ऊर्जा होती है जो कि पड़ोसी पारस्परिक जाली वैक्टर के बीच एक निरंतर चरण बदलाव तक वेववेक्टर में आवधिक होते हैं। आवधिकता के परिणामों को बलोच के प्रमेय द्वारा गणितीय रूप से वर्णित किया गया है, जिसमें कहा गया है कि ईजेनस्टेट वेवफंक्शन का रूप है | ||
:<math>{\Psi}_{n,\mathbf{k}} (\mathbf{r}) = e^{i \mathbf{k}\cdot\mathbf{r}} u_n(\mathbf{r}) </math> | :<math>{\Psi}_{n,\mathbf{k}} (\mathbf{r}) = e^{i \mathbf{k}\cdot\mathbf{r}} u_n(\mathbf{r}) </math> | ||
Line 129: | Line 129: | ||
:<math>u_n(\mathbf{r}) = u_n(\mathbf{r}-\mathbf{R}) </math>। | :<math>u_n(\mathbf{r}) = u_n(\mathbf{r}-\mathbf{R}) </math>। | ||
यहां इंडेक्स n एन-वें एनर्जी बैंड (''n-th'' energy band) को संदर्भित करता है, वेववेक्टर 'के' | यहां इंडेक्स n एन-वें एनर्जी बैंड (''n-th'' energy band) को संदर्भित करता है, वेववेक्टर 'के' इलेक्ट्रॉन की गति की दिशा से संबंधित है, 'आर' ('''r)''' क्रिस्टल में स्थिति है, और 'आर' ('''R)''' एक परमाणु साइट का स्थान है।<ref name=Kittel>Kittel, p. 179</ref> | ||
NFE मॉडल विशेष रूप से धातुओं जैसे सामग्रियों में अच्छी तरह से काम करता है जहां पड़ोसी परमाणुओं के बीच की दूरी छोटी होती है। ऐसी सामग्रियों में पड़ोसी परमाणुओं पर परमाणु ऑर्बिटल्स | NFE मॉडल विशेष रूप से धातुओं जैसे सामग्रियों में अच्छी तरह से काम करता है जहां पड़ोसी परमाणुओं के बीच की दूरी छोटी होती है। ऐसी सामग्रियों में पड़ोसी परमाणुओं पर परमाणु ऑर्बिटल्स और क्षमता का ओवरलैप अपेक्षाकृत बड़ा है। उस स्थिति में इलेक्ट्रॉन के तरंग फ़ंक्शन को एक (संशोधित) प्लेन वेव द्वारा अनुमानित किया जा सकता है। एल्यूमीनियम जैसी धातु की बैंड संरचना भी खाली जाली सन्निकटन के करीब हो जाती है। | ||
=== तंग बाध्यकारी मॉडल | === तंग बाध्यकारी मॉडल === | ||
{{Main| | {{Main|दृढ़ बंधन}} | ||
लगभग मुक्त इलेक्ट्रॉन सन्निकटन | लगभग मुक्त इलेक्ट्रॉन सन्निकटन के विपरीत चरम मानता है कि क्रिस्टल में इलेक्ट्रॉन घटक परमाणुओं की एक सभा की तरह व्यवहार करते हैं। यह टाइट बाइंडिंग मॉडल समय-स्वतंत्र एकल इलेक्ट्रॉन श्रोडिंगर समीकरण (time-independent single electron Schrödinger equation) का समाधान मानता है <math>\Psi</math> परमाणु ऑर्बिटल्स के एक रैखिक संयोजन द्वारा अच्छी तरह से अनुमानित है <math>\psi_n(\mathbf{r})</math>.<ref name=Kittel1>Kittel, pp. 245-248</ref> | ||
:<math>\Psi(\mathbf{r}) = \sum_{n,\mathbf{R}} b_{n,\mathbf{R}} \psi_n(\mathbf{r}-\mathbf{R})</math>, | :<math>\Psi(\mathbf{r}) = \sum_{n,\mathbf{R}} b_{n,\mathbf{R}} \psi_n(\mathbf{r}-\mathbf{R})</math>, | ||
Line 147: | Line 147: | ||
|url=https://books.google.com/books?id=BGdHpCAMiLgC&q=wannier+functions&pg=PA332}}</ref> | |url=https://books.google.com/books?id=BGdHpCAMiLgC&q=wannier+functions&pg=PA332}}</ref> | ||
:<math>a_n(\mathbf{r}-\mathbf{R}) = \frac{V_{C}}{(2\pi)^{3}} \int_\text{BZ} d\mathbf{k} e^{-i\mathbf{k}\cdot(\mathbf{R} -\mathbf{r})}u_{n\mathbf{k}}</math>; | :<math>a_n(\mathbf{r}-\mathbf{R}) = \frac{V_{C}}{(2\pi)^{3}} \int_\text{BZ} d\mathbf{k} e^{-i\mathbf{k}\cdot(\mathbf{R} -\mathbf{r})}u_{n\mathbf{k}}</math>; | ||
जिसमें <math>u_{n\mathbf{k}}</math> बलोच के प्रमेय | जिसमें <math>u_{n\mathbf{k}}</math> बलोच के प्रमेय का आवधिक हिस्सा है और इंटीग्रल ब्रिलोइन ज़ोन पर है। यहाँ सूचकांक (n) क्रिस्टल में n-th ऊर्जा बैंड को संदर्भित करता है।परमाणु ऑर्बिटल्स की तरह, परमाणु साइटों के पास वैनियर फ़ंक्शंस स्थानीयकृत होते हैं, लेकिन बलोच फ़ंक्शंस के संदर्भ में परिभाषित किया जा रहा है, वे क्रिस्टल क्षमता के आधार पर समाधानों से सटीक रूप से संबंधित हैं। विभिन्न परमाणु साइटों 'आर' (R) पर वैनियर फ़ंक्शन ऑर्थोगोनल हैं। वैनियर फ़ंक्शन का उपयोग n-th एनर्जी बैंड के लिए श्रोडिंगर सॉल्यूशन बनाने के लिए किया जा सकता है: | ||
:<math>\Psi_{n,\mathbf{k}} (\mathbf{r}) = \sum_{\mathbf{R}} e^{-i\mathbf{k}\cdot(\mathbf{R}-\mathbf{r})}a_n(\mathbf{r} - \mathbf{R})</math>। | :<math>\Psi_{n,\mathbf{k}} (\mathbf{r}) = \sum_{\mathbf{R}} e^{-i\mathbf{k}\cdot(\mathbf{R}-\mathbf{r})}a_n(\mathbf{r} - \mathbf{R})</math>। | ||
टीबी मॉडल (TB model) परमाणु ऑर्बिटल्स और पड़ोसी परमाणुओं | टीबी मॉडल (TB model) परमाणु ऑर्बिटल्स और पड़ोसी परमाणुओं पर क्षमता के बीच सीमित ओवरलैप वाली सामग्रियों में अच्छी तरह से काम करता है। SI, GAAS, SiO<sub>2</sub>जैसी सामग्रियों की बैंड संरचनाएं उदाहरण के लिए डायमंड को परमाणु sp<sup>3</sup> ऑर्बिटल्स के आधार पर टीबी-हैमिल्टनियों द्वारा अच्छी तरह से वर्णित किया गया है। संक्रमण धातुओं में एक मिश्रित टीबी-एनएफई मॉडल का उपयोग व्यापक एनएफई चालन बैंड और संकीर्ण एम्बेडेड टीबी डी-बैंड का वर्णन करने के लिए किया जाता है। वानियर फलनों के परमाणु कक्षीय भाग के रेडियल फलनों की गणना सबसे आसानी से स्यूडोपोटेंशियल विधियों के उपयोग द्वारा की जाती है। एनएफई, टीबी या संयुक्त एनएफई-टीबी बैंड संरचना, गणना,<ref name=Harrison>{{cite book | ||
|author=Walter Ashley Harrison | |author=Walter Ashley Harrison | ||
|title=Electronic Structure and the Properties of Solids | |title=Electronic Structure and the Properties of Solids | ||
Line 158: | Line 158: | ||
|url=https://books.google.com/books?id=R2VqQgAACAAJ | |url=https://books.google.com/books?id=R2VqQgAACAAJ | ||
|isbn=978-0-486-66021-9 | |isbn=978-0-486-66021-9 | ||
}}</ref> कभी -कभी स्यूडोपोटेंशियल तरीकों | }}</ref> कभी -कभी स्यूडोपोटेंशियल तरीकों के आधार पर तरंग फ़ंक्शन सन्निकटन के साथ विस्तारित किया जाता है, अक्सर आगे की गणना के लिए एक आर्थिक शुरुआती बिंदु के रूप में उपयोग किया जाता है। | ||
=== केकेआर मॉडल | === केकेआर मॉडल === | ||
{{Main| | {{Main|एकाधिक बिखरने का सिद्धांत}} | ||
केकेआर विधि (KKR method), जिसे मल्टीपल स्कैटरिंग थ्योरी "multiple scattering theory" या ग्रीन की फ़ंक्शन विधि भी कहा जाता है, हैमिल्टन के बजाय इनवर्स ट्रांजीशन मैट्रिक्स टी T के स्थिर मान ज्ञात करता है। कोरिंगा, कोहन और रोस्टॉकर द्वारा एक वैरिएशनल कार्यान्वयन का सुझाव दिया गया था, और इसे अक्सर कोरिंगा -कोन -रोस्टोकर विधि के रूप में संदर्भित किया जाता है।<ref name=Galsin>{{cite book |title=Impurity Scattering in Metal Alloys |author=Joginder Singh Galsin |page=Appendix C |url=https://books.google.com/books?id=kmcLT63iX_EC&q=KKR+method+band+structure&pg=PA498 |isbn=978-0-306-46574-1 |year=2001 |publisher=Springer |no-pp=true}}</ref><ref name=Ohtaka>{{cite book |title=Photonic Crystals |author=Kuon Inoue, Kazuo Ohtaka |page=66 |url=https://books.google.com/books?id=GIa3HRgPYhAC&q=KKR+method+band+structure&pg=PA66 |isbn=978-3-540-20559-3 |year=2004 |publisher=Springer}}</ref> केकेआर या ग्रीन के फंक्शन फॉर्मुलेशन की सबसे महत्वपूर्ण विशेषताएं हैं (1) यह समस्या के दो पहलुओं को अलग करता है: संरचना (परमाणुओं की स्थिति) बिखरने (परमाणुओं की रासायनिक पहचान) से; और (2) ग्रीन के फ़ंक्शन इलेक्ट्रॉनिक गुणों के एक स्थानीयकृत विवरण के लिए एक प्राकृतिक दृष्टिकोण प्रदान करते हैं जो मिश्र धातुओं और अन्य अव्यवस्थित प्रणाली के लिए अनुकूलित किए जा सकते हैं। परमाणु स्थितियों पर इस सन्निकटन केंद्रों का सबसे सरल रूप गैर-अतिव्यापी क्षेत्रों (मफिन टिन के रूप में संदर्भित) है। इन क्षेत्रों के भीतर, एक इलेक्ट्रॉन द्वारा अनुभव की जाने वाली क्षमता को दिए गए नाभिक के बारे में गोलाकार रूप से सममित होने का अनुमान लगाया गया है। शेष अंतरालीय क्षेत्र में, स्क्रीन की गई क्षमता को एक स्थिर के रूप में अनुमानित किया जाता है। परमाणु-केंद्रित क्षेत्रों और अंतरालीय क्षेत्र के बीच क्षमता की निरंतरता लागू की जाती है। | |||
=== घनत्व-कार्यात्मक सिद्धांत === | |||
{{Main|सघनता व्यावहारिक सिद्धांत}} | |||
{{See also|कोह्न-शाम समीकरण | |||
}} | |||
हाल के भौतिकी साहित्य में, इलेक्ट्रॉनिक संरचनाओं और बैंड भूखंडों के एक बड़े हिस्से की गणना घनत्व-कार्यात्मक सिद्धांत (डीएफटी) "density-functional theory" (DFT) का उपयोग करके की जाती है, जो एक मॉडल नहीं है, बल्कि एक सिद्धांत है, अर्थात्, एक सूक्ष्म प्रथम-सिद्धांत जो संघनित पदार्थ भौतिकी का सिद्धांत है जो इलेक्ट्रॉनिक घनत्व के कार्यात्मक में एक विनिमय-सहसंबंध शब्द की शुरूआत के माध्यम से इलेक्ट्रॉन-इलेक्ट्रॉन कई-शरीर की समस्या से निपटने का प्रयास करता है। डीएफटी-गणना वाले बैंड कई मामलों में प्रयोगात्मक रूप से माप बैंड के साथ पाए जाते हैं, उदाहरण के लिए कोण-हल किए गए फोटोइमिशन स्पेक्ट्रोस्कोपी (एआरपीईएस)। विशेष रूप से, बैंड का आकार सामान्य तौर पर डीएफटी द्वारा अच्छी तरह से पुन: पेश किया जाता है। लेकिन प्रयोग के परिणामों की तुलना में डीएफटी बैंड में व्यवस्थित त्रुटियां भी हैं। विशेष रूप से, डीएफटी व्यवस्थित रूप से लगभग 30-40% इंसुलेटर और अर्धचालक में बैंड गैप को कम करता है।<ref>{{Cite journal|last1=Assadi|first1=M. Hussein. N.|last2=Hanaor|first2=Dorian A. H.| date=2013-06-21|title=Theoretical study on copper's energetics and magnetism in TiO<sub>2</sub> polymorphs|journal=Journal of Applied Physics|volume=113|issue=23| pages=233913–233913–5|arxiv=1304.1854|doi=10.1063/1.4811539|bibcode=2013JAP...113w3913A|s2cid=94599250|issn=0021-8979}}</ref> | |||
यह आमतौर पर माना जाता है कि डीएफटी केवल एक प्रणाली के जमीनी अवस्था गुणों की भविष्यवाणी करने के लिए एक सिद्धांत है (जैसे कि कुल ऊर्जा, परमाणु संरचना, आदि), और यह कि एक्ससिटेड स्टेट प्रोपर्टीज को डीएफटी द्वारा निर्धारित नहीं किया जा सकता है। यह एक गलत धारणा है। सिद्धांत रूप में, डीएफटी किसी भी सिस्टम की किसी भी संपत्ति (ग्राउंड स्टेट या एक्ससिटेड स्टेट) को निर्धारित कर सकता है जो एक कार्यात्मक है जो उस प्रोपर्टी के लिए ग्राउंड स्टेट डेन्सिटी को मैप करता है। यह होहेनबर्ग -कोन प्रमेय का सार है।<ref>{{cite journal|last=Hohenberg|first=P| author2=Kohn, W.|title=Inhomogeneous Electron Gas|journal=Phys. Rev.|date=Nov 1964| volume=136|issue=3B|pages=B864–B871| doi=10.1103/PhysRev.136.B864|bibcode = 1964PhRv..136..864H |doi-access=free}}</ref> प्रयोग में, हालांकि, कोई ज्ञात कार्यात्मक मौजूद नहीं है जो एक सामग्री के भीतर इलेक्ट्रॉनों की उत्तेजना ऊर्जा के लिए ग्राउंड स्टेट डेन्सिटी को मैप करता है। इस प्रकार, साहित्य में एक डीएफटी बैंड प्लॉट के रूप में उद्धृत किया गया है, डीएफटी कोहन-शम समीकरणों का एक प्रतिनिधित्व है। कोहन-शम ऊर्जा, अर्थात्, एक काल्पनिक गैर-अंतःक्रियात्मक प्रणाली की ऊर्जा, कोहन-शम प्रणाली, जिसकी कोई भौतिक व्याख्या नहीं है। कोहन -शम इलेक्ट्रॉनिक संरचना को एक प्रणाली के वास्तविक, क्वासिपार्टिकल इलेक्ट्रॉनिक संरचना के साथ भ्रमित नहीं होना चाहिए, और कोहन -शम ऊर्जाओं के लिए कोई कोपमैन की प्रमेय होल्डिंग नहीं है, जैसा कि हार्ट्री -फॉक ऊर्जा के लिए है, जिसे वास्तव में क्वासिपार्टिकल ऊर्जा के लिए एक अनुमान माना जा सकता है। इसलिए, सिद्धांत रूप में, कोहन-शम आधारित डीएफटी, एक बैंड सिद्धांत नहीं है, अर्थात, बैंड और बैंड-प्लॉट की गणना के लिए उपयुक्त सिद्धांत नहीं है। सिद्धांत रूप में समय-निर्भर घनत्व कार्यात्मक सिद्धांत| समय-निर्भर DFT का उपयोग वास्तविक बैंड संरचना की गणना करने के लिए किया जा सकता है, हालांकि व्यवहारिकता में यह अक्सर मुश्किल होता है। एक लोकप्रिय दृष्टिकोण हाइब्रिड फ़ंक्शंस का उपयोग है, जिसमें हार्ट्री -फॉक सटीक एक्सचेंज का एक हिस्सा शामिल है; यह अर्धचालकों के अनुमानित बैंडगैप्स में पर्याप्त सुधार करता है, लेकिन धातुओं और व्यापक-बैंडगैप सामग्री के लिए कम विश्वसनीय है।<ref name="Paier">{{Cite journal | last1 = Paier | first1 = J. | last2 = Marsman | first2 = M. | last3 = Hummer | first3 = K. | last4 = Kresse | first4 = G. | last5 = Gerber | first5 = I. C. | last6 = Angyán | first6 = J. G. | title = Screened hybrid density functionals applied to solids | journal = J Chem Phys | volume = 124 | issue = 15 | pages = 154709 |date=2006 | doi = 10.1063/1.2187006 | pmid = 16674253 |bibcode = 2006JChPh.124o4709P }}</ref> | |||
=== ग्रीन के फ़ंक्शन के तरीके और ab initio GW सन्निकटन | === ग्रीन के फ़ंक्शन के तरीके और ab initio GW सन्निकटन === | ||
{{Main| | {{Main|ग्रीन फंक्शन (अनेक-बॉडी थ्योरी)|ग्रीन-कुबो संबंध | ||
इलेक्ट्रॉन-इलेक्ट्रॉन इंटरैक्शन | }} | ||
इलेक्ट्रॉन-इलेक्ट्रॉन इंटरैक्शन सहित बैंड की गणना करने के लिए मैनी बॉडी इफेक्ट्स, कोई भी तथाकथित ग्रीन के फ़ंक्शन (कई-बॉडी थ्योरी) का सहारा ले सकता है। वास्तव में, एक प्रणाली के ग्रीन के फंक्शन का ज्ञान दोनों जमीन (कुल ऊर्जा) प्रदान करता है और एक्ससिटेड स्टेट ऑब्जरवेशन ऑफ द सिस्टम भी प्रदान करता है और सिस्टम के राज्य वेधशालाओं (state observables) को भी उत्साहित करता है। ग्रीन के कार्य (Green's function) के ध्रुव क़य्वासीप्रैक्टिकल (quasiparticle) ऊर्जा, जो एक ठोस के बैंड हैं। ग्रीन के फ़ंक्शन की गणना डायसन समीकरण (Dyson equation) को हल करके की जा सकती है, जब सिस्टम की आत्म-ऊर्जा ज्ञात होती है। ठोस जैसी वास्तविक प्रणालियों के लिए, आत्म-ऊर्जा एक बहुत ही जटिल मात्रा है और समस्या को हल करने के लिए आमतौर पर अनुमानों की आवश्यकता होती है। ऐसा ही एक सन्निकटन, GW सन्निकटन है, इसलिए गणितीय रूप से कहा जाता है गणितीय रूप से स्व-ऊर्जा ग्रीन के फ़ंक्शन G के उत्पाद Σ = GW और गतिशील रूप से स्क्रीन किए गए इंटरैक्शन W के रूप में लेती है और इसे पूरी तरह से अब इनिसियो वे (''ab initio'' way) से भी तैयार किया जा सकता है। जीडब्ल्यू सन्निकटन प्रयोग के साथ समझौते में इंसुलेटर और अर्धचालकों के बैंड अंतराल प्रदान करता है, और इसलिए व्यवस्थित डीएफटी (systematic DFT underestimation) को कम करने के लिए। | |||
=== डायनेमिक मीन-फील्ड थ्योरी | === डायनेमिक मीन-फील्ड थ्योरी ) === | ||
{{Main| | {{Main|गतिशील माध्य-क्षेत्र सिद्धांत | ||
}} | |||
=== अन्य | यद्यपि लगभग मुक्त इलेक्ट्रॉन सन्निकटन इलेक्ट्रॉन बैंड संरचनाओं के कई गुणों का वर्णन करने में सक्षम है, इस सिद्धांत का एक परिणाम यह है कि यह प्रत्येक यूनिट सेल में समान संख्या में इलेक्ट्रॉनों की भविष्यवाणी करता है। यदि इलेक्ट्रॉनों की संख्या विषम है, तब हम उम्मीद करेंगे कि प्रत्येक यूनिट सेल में एक अयुग्मित इलेक्ट्रॉन है, और इस प्रकार वैलेंस बैंड पूरी तरह से अधिकृत नहीं कर रहा है, जिससे सामग्री एक कंडक्टर बन जाती है। हालांकि, सीओओ जैसी सामग्री जिसमें प्रति यूनिट सेल में विषम संख्या होती है, इस परिणाम के साथ सीधे विरोध में, इंसुलेटर होते हैं। इस तरह की सामग्री को एक mott इन्सुलेटर के रूप में जाना जाता है, और विसंगति को समझाने के लिए विस्तृत इलेक्ट्रॉन-इलेक्ट्रॉन इंटरैक्शन (बैंड सिद्धांत में क्रिस्टल क्षमता पर केवल एक औसत प्रभाव के रूप में इलाज किया जाता है) को शामिल करने की आवश्यकता होती है। हबर्ड मॉडल एक अनुमानित सिद्धांत है जिसमें इन इंटरैक्शन को शामिल किया गया है। इसे तथाकथित डायनेमिक मीन-फील्ड थ्योरी के भीतर गैर-पर्टर्बिटिक रूप से उपचारित किया जा सकता है, जो लगभग मुक्त इलेक्ट्रॉन सन्निकटन और परमाणु सीमा के बीच अंतर को कम करने का प्रयास करता है। औपचारिक रूप से, हालांकि, अवस्थाएं इस मामले में गैर-हस्तक्षेप नहीं कर रहे हैं और एक बैंड संरचना की अवधारणा इन मामलों का वर्णन करने के लिए पर्याप्त नहीं है। | ||
=== अन्य === | |||
सैद्धांतिक ठोस अवस्था भौतिकी में बैंड संरचनाओं की गणना एक महत्वपूर्ण विषय है। ऊपर उल्लिखित मॉडलों के अलावा, अन्य मॉडलों में निम्नलिखित शामिल हैं: | सैद्धांतिक ठोस अवस्था भौतिकी में बैंड संरचनाओं की गणना एक महत्वपूर्ण विषय है। ऊपर उल्लिखित मॉडलों के अलावा, अन्य मॉडलों में निम्नलिखित शामिल हैं: | ||
*खाली जाली सन्निकटन | *खाली जाली सन्निकटन: मुक्त स्थान के एक क्षेत्र की बैंड संरचना जिसे एक जाली में विभाजित किया गया है। | ||
*k · P perturbation सिद्धांत | *k · P perturbation सिद्धांत: एक ऐसी तकनीक है जो एक बैंड संरचना को केवल कुछ मापदंडों के संदर्भ में वर्णित करने की अनुमति देती है। तकनीक का उपयोग सामान्य तौर पर अर्धचालक के लिए किया जाता है, और मॉडल में मापदंडों को अक्सर प्रयोग द्वारा निर्धारित किया जाता है। | ||
*क्रोनिग-पेनी मॉडल | *क्रोनिग-पेनी मॉडल, क्रोनिग-पेनी मॉडल, बैंड गठन के चित्रण के लिए उपयोगी एक आयामी आयताकार कुआं मॉडल सरल होते हुए भी, यह कई महत्वपूर्ण घटनाओं की भविष्यवाणी करता है, लेकिन मात्रात्मक नहीं है। | ||
*हबर्ड मॉडल | *हबर्ड मॉडल | ||
बैंड संरचना को वेववेक्टर | बैंड संरचना को वेववेक्टर के लिए सामान्यीकृत किया गया है जो जटिल संख्याएं हैं, जिसके परिणामस्वरूप एक जटिल बैंड संरचना कहा जाता है, जो सतहों और इंटरफेस पर रुचि रखता है। | ||
प्रत्येक मॉडल कुछ प्रकार के ठोस पदार्थों का बहुत अच्छी तरह से वर्णन करता है, और कुछ अन्य का खराब तरीके से। लगभग मुक्त इलेक्ट्रॉन मॉडल | प्रत्येक मॉडल कुछ प्रकार के ठोस पदार्थों का बहुत अच्छी तरह से वर्णन करता है, और कुछ अन्य का खराब तरीके से। लगभग मुक्त इलेक्ट्रॉन मॉडल धातुओं के लिए अच्छी तरह से काम करता है, लेकिन गैर-धातुओं के लिए खराब है। तंग बाइंडिंग मॉडल आयनिक इंसुलेटर के लिए बेहद सटीक है, जैसे कि मेटल हलाइड लवण (जैसे NaCl)। | ||
== '''बैंड आरेख | == '''बैंड आरेख''' == | ||
यह समझने के लिए कि वास्तविक स्थान में फ़र्मी स्तर | यह समझने के लिए कि वास्तविक स्थान में फ़र्मी स्तर के सापेक्ष बैंड संरचना कैसे बदलती है, एक बैंड संरचना प्लॉट को अक्सर बैंड आरेख के रूप में पहली बार सरल बनाया जाता है । एक बैंड आरेख में ऊर्ध्वाधर अक्ष ऊर्जा है जबकि क्षैतिज अक्ष वास्तविक स्थान का प्रतिनिधित्व करता है। क्षैतिज रेखाएं ऊर्जा के स्तर का प्रतिनिधित्व करती हैं, जबकि ब्लॉक ऊर्जा बैंड का प्रतिनिधित्व करते हैं। जब इन आरेख में क्षैतिज रेखाएं धीमी हो जाती हैं, तो स्तर या बैंड की ऊर्जा दूरी के साथ बदल जाती है। आरेखित रूप से, यह क्रिस्टल सिस्टम के भीतर एक विद्युत क्षेत्र की उपस्थिति को दर्शाता है। बैंड आरेख एक दूसरे के संपर्क में रखने पर एक दूसरे से विभिन्न सामग्रियों के सामान्य बैंड संरचना गुणों से संबंधित होने में उपयोगी होते हैं। | ||
== '''यह भी देखें | == '''यह भी देखें''' == | ||
* बैंड-गैप इंजीनियरिंग-एक सामग्री के बैंड संरचना को बदलने की प्रक्रिया | * बैंड-गैप इंजीनियरिंग-एक सामग्री के बैंड संरचना को बदलने की प्रक्रिया | ||
*फेलिक्स बलोच | *फेलिक्स बलोच- बैंड संरचना के सिद्धांत में अग्रणी | ||
* एलन हेरिस विल्सन | * एलन हेरिस विल्सन- बैंड संरचना के सिद्धांत में अग्रणी | ||
== उद्धरण == | == उद्धरण == | ||
Line 234: | Line 238: | ||
{{Atomic models}} | {{Atomic models}} | ||
{{Condensed matter physics topics}} | {{Condensed matter physics topics}} | ||
[[Category: Machine Translated Page]] | [[Category:All articles with unsourced statements]] | ||
[[Category:Vigyan Ready]] | [[Category:Articles with hatnote templates targeting a nonexistent page]] | ||
[[Category:Articles with unsourced statements from October 2015]] | |||
[[Category:Collapse templates]] | |||
[[Category:Electronic structure methods]] | |||
[[Category:Lua-based templates]] | |||
[[Category:Machine Translated Page]] | |||
[[Category:Navigational boxes| ]] | |||
[[Category:Navigational boxes without horizontal lists]] | |||
[[Category:Pages with script errors]] | |||
[[Category:Physics sidebar templates]] | |||
[[Category:Short description with empty Wikidata description]] | |||
[[Category:Sidebars with styles needing conversion]] | |||
[[Category:Template documentation pages|Documentation/doc]] | |||
[[Category:Templates Translated in Hindi]] | |||
[[Category:Templates Vigyan Ready]] | |||
[[Category:Templates generating microformats]] | |||
[[Category:Templates that add a tracking category]] | |||
[[Category:Templates that are not mobile friendly]] | |||
[[Category:Templates that generate short descriptions]] | |||
[[Category:Templates using TemplateData]] | |||
[[Category:Wikipedia metatemplates]] | |||
[[Category:इलेक्ट्रॉनिक बैंड संरचनाएं| इलेक्ट्रॉनिक बैंड संरचनाएं ]] | |||
[[Category:ठोस राज्य इंजीनियरिंग]] | |||
[[Category:वीडियो क्लिप वाले लेख]] |
Latest revision as of 09:38, 22 August 2023
ठोस भौतिकी अवस्था में, एक ठोस की इलेक्ट्रॉनिक बैंड संरचना (या बस बैंड संरचना) ऊर्जा स्तरों की सीमा का वर्णन करती है जो इलेक्ट्रॉनों के भीतर निहित होती है, साथ ही साथ ऊर्जा की सीमाएं भी हैं जो उनके पास नहीं होती हैं (उन्हें बैंड गैप्स कहा जाता है या निषिद्ध बैंड)।
बैंड सिद्धांत इन बैंडों और बैंड अंतराल को प्राप्त करता है, जो परमाणुओं या अणुओं के एक बड़े, आवधिक जाली में एक इलेक्ट्रॉन के लिए अनुमत क्वांटम यांत्रिक तरंग फलनों की जांच करता है। बैंड सिद्धांत का सफलतापूर्वक उपयोग ठोस पदार्थों के कई भौतिक गुणों को समझाने के लिए किया गया है, जैसे कि विद्युत प्रतिरोधकता और ऑप्टिकल अवशोषण, और सभी ठोस-अवस्था वाले उपकरणों की समझ की नींव बनाता है। जहाँ ठोस-अवस्था वाले उपकरणों से तात्पर्य ट्रांजिस्टर, सोलर सेल आदि से है।
क्यों बैंड और बैंड अंतराल होते हैं
एक एकल पृथक परमाणु के इलेक्ट्रॉनों पर परमाणु कक्षक पर कब्जा कर लेते है, जिनमें से प्रत्येक में असतत ऊर्जा स्तर होता है। जब दो या दो से अधिक परमाणु एक अणु बनाने के लिए एक साथ जुड़ते हैं, तो उनके परमाणु कक्षक अतिव्यापन और संकरण करते हैं।[1][2]
इसी तरह, यदि समान परमाणुओं की एक बड़ी संख्या एक ठोस बनाने के लिए एक साथ आती है, जैसे कि एक क्रिस्टल जाली, परमाणुओं के परमाणु कक्षक पास के कक्षक के साथ अतिव्यापन करते हैं।[1] प्रत्येक असतत ऊर्जा स्तर एन (N) स्तरों में विभाजित होता है, प्रत्येक एक अलग ऊर्जा के साथ। चूंकि ठोस के एक मैक्रोस्कोपिक टुकड़े में परमाणुओं की संख्या एक बहुत बड़ी संख्या है (n ~ 1022 ) ऑर्बिटल्स की संख्या बहुत बड़ी है और इस प्रकार वे ऊर्जा में बहुत बारीकी से फैले हुए हैं (10−22 -eV के क्रम में)। आसन्न स्तरों की ऊर्जा एक साथ इतनी करीब है कि उन्हें एक निरंतरता, एक ऊर्जा बैंड के रूप में माना जा सकता है।
बैंड का यह गठन ज्यादातर परमाणु में सबसे बाहरी इलेक्ट्रॉनों (वैलेंस इलेक्ट्रॉनों) की एक विशेषता है, जो रासायनिक संबंध और विद्युत चालकता में शामिल हैं। आंतरिक इलेक्ट्रॉन कक्षक एक महत्वपूर्ण डिग्री तक अतिव्यापन नहीं करते हैं, इसलिए उनके बैंड बहुत संकीर्ण होते हैं।
बैंड अंतराल अनिवार्य रूप से ऊर्जा के किसी भी बैंड द्वारा कवर नहीं किए गए ऊर्जा के बचे हुए श्रेणियां हैं, जो ऊर्जा बैंड की परिमित चौड़ाई का परिणाम है। बैंड में अलग -अलग चौड़ाई होती है, जिसमें परमाणु कक्षक में अतिव्यापन की डिग्री के आधार पर चौड़ाई होती है, जिसमें से वे उत्पन्न होते हैं। दो आसन्न बैंड केवल ऊर्जा की सीमा को पूरी तरह से कवर करने के लिए पर्याप्त व्यापक नहीं हो सकते हैं। उदाहरण के लिए, कोर कक्षक (जैसे 1s electrons) से जुड़े बैंड आसन्न परमाणुओं के बीच छोटे ओवरलैप के कारण बेहद संकीर्ण हैं। नतीजतन, कोर बैंड के बीच बड़े बैंड अंतराल होते हैं। उच्च बैंड में अधिक ओवरलैप के साथ तुलनात्मक रूप से बड़े कक्षक शामिल होते हैं, उच्च ऊर्जा पर उत्तरोत्तर व्यापक हो जाते हैं ताकि उच्च ऊर्जा पर कोई बैंड अंतराल न हो।
बुनियादी अवधारणाएं
मान्यताओं और बैंड संरचना सिद्धांत की सीमाएँ
बैंड सिद्धांत केवल ठोस के क्वांटम स्थिति के लिए एक अनुमान है, जो एक साथ बंधे कई समान परमाणुओं या अणुओं से युक्त ठोस पदार्थों पर लागू होता है। बैंड सिद्धांत को मान्य होने के लिए आवश्यक धारणाएं निम्न हैं:
- अनंत आकार की प्रणाली: बैंड के निरंतर होने के लिए, सामग्री के टुकड़े में बड़ी संख्या में परमाणु शामिल होने चाहिए। चूंकि सामग्री का एक मैक्रोस्कोपिक टुकड़ा 10 22 परमाणु के क्रम पर होता है, यह एक गंभीर प्रतिबंध नहीं है; बैंड सिद्धांत भी एकीकृत सर्किट में सूक्ष्म आकार के ट्रांजिस्टर पर लागू होता है। संशोधनों के साथ, बैंड संरचना की अवधारणा को उन प्रणालियों तक भी बढ़ाया जा सकता है जो केवल कुछ आयामों के साथ बड़े होते हैं, जैसे कि दो-आयामी इलेक्ट्रॉन सिस्टम।
- सजातीय प्रणाली: बैंड संरचना एक सामग्री की एक आंतरिक संपत्ति है, जो मानता है कि सामग्री सजातीय है। व्यावहारिक रूप से, इसका मतलब है कि सामग्री का रासायनिक मेकअप पूरे टुकड़े में एक समान होना चाहिए।
- गैर-अंतःक्रिया: बैंड संरचना एकल इलेक्ट्रॉन अवस्थाओं का वर्णन करती है। इन अवस्थाओं का अस्तित्व यह मानता है कि इलेक्ट्रॉन जाली कंपन, अन्य इलेक्ट्रॉनों, फोटॉन आदि के साथ गतिशील रूप से बातचीत किए बिना स्थिर क्षमता में भ्रमड़ करते हैं।
उपरोक्त मान्यताओं को कई महत्वपूर्ण व्यावहारिक स्थितियों में तोड़ा गया है, और बैंड संरचना के उपयोग को बैंड सिद्धांत की सीमाओं पर एक कड़ी निगरानी रखने की आवश्यकता होती है:
- अमानवीयता और अंतरफलक: सतहों, संयोजन और अन्य अमानवीयता के पास,बल्क बैंड संरचना बाधित है। न केवल स्थानीय छोटे पैमाने पर व्यवधान हैं (जैसे, सतह की स्थिति या बैंड गैप के अंदर डोपेंट स्टेट्स, बल्कि स्थानीय चार्ज असंतुलन भी हैं। इन चार्ज असंतुलन में विद्युतस्थितिकी प्रभाव होते हैं जो अर्धचालक, इंसुलेटर और वैक्यूम (डोपिंग, बैंड झुकने वाले) में गहराई से विस्तारित होते हैं।
- ठीक उसी तरह, अधिकांश इलेक्ट्रॉनिक प्रभाव (धारिता, विद्युत चालन, विद्युत-क्षेत्र स्क्रीनिंग) में सतहों और/या निकट अंतरफलक से गुजरने वाले इलेक्ट्रॉनों की भौतिकी शामिल होती है। इन प्रभावों का पूरा विवरण, एक बैंड संरचना चित्र में, इलेक्ट्रॉन-इलेक्ट्रॉन परस्पर क्रिया के कम से कम एक अल्पविकसित मॉडल की आवश्यकता होती है (देखें अंतरिक्ष चार्ज, बैंड बेन्डिंग)।
- छोटे सिस्टम: उन प्रणालियों के लिए जो हर आयाम के साथ छोटे होते हैं (जैसे, एक छोटा अणु या एक क्वांटम डॉट), कोई निरंतर बैंड संरचना नहीं है। छोटे और बड़े आयामों के बीच क्रॉसओवर मेसोस्कोपिक भौतिकी का दायरा है।
- दृढ़ता से सहसंबद्ध सामग्री (उदाहरण के लिए, mott insulators) को केवल एकल-इलेक्ट्रॉन अवस्थाएं के संदर्भ में समझा नहीं जा सकता है। इन सामग्रियों के इलेक्ट्रॉनिक बैंड संरचनाओं को खराब रूप से परिभाषित किया गया है (या कम से कम, विशिष्ट रूप से परिभाषित नहीं) और उनकी भौतिक स्थिति के बारे में उपयोगी जानकारी प्रदान नहीं कर सकते हैं।
क्रिस्टलीय समरूपता और वेववेक्टर
बैंड संरचना गणना एक क्रिस्टल जाली की आवधिक प्रकृति का लाभ उठाती है, इसकी समरूपता का शोषण करती है। एकल-इलेक्ट्रॉन श्रोडिंगर समीकरण एक जाली-आवासीय क्षमता में एक इलेक्ट्रॉन के लिए हल किया जाता है, जिससे ब्लोच इलेक्ट्रॉनों को हल के रूप में दिया जाता है
- ,
जहां k को वेववेक्टर कहा जाता है। K के प्रत्येक मान के लिए, बैंड इंडेक्स n द्वारा लेबल किए गए श्रोडिंगर समीकरण के कई समाधान हैं, जो केवल ऊर्जा बैंड की संख्या में हैं। इन ऊर्जा स्तरों में से प्रत्येक K में परिवर्तन के साथ सुचारू रूप से विकसित होता है, जिससे अवस्था का एक सहज बैंड बनता है। प्रत्येक बैंड के लिए हम एक फ़ंक्शन को परिभाषित कर सकते हैं ई n(के) (En(k)), जो उस बैंड में इलेक्ट्रॉनों के लिए फैलाव संबंध है।
वेववेक्टर, ब्रिलियन ज़ोन के अंदर किसी भी मूल्य पर ले जाता है, जो कि वेववेक्टर (पारस्परिक जाली) में एक पॉलीहेड्रॉन है जो क्रिस्टल की जाली से संबंधित है। ब्रिलियन ज़ोन के बाहर वेववेक्टर केवल उन अवस्थाओं के अनुरूप हैं जो ब्रिलियन ज़ोन के भीतर उन अवस्थाओं के लिए भौतिक रूप से समान हैं। ब्रिलियन ज़ोन में विशेष उच्च समरूपता बिंदु/रेखाएँ γ, Δ, λ, σ (चित्र 1 देखें) जैसे लेबल दिये गए हैं।
वेववेक्टर के एक फलन के रूप में एक बैंड के आकार की कल्पना करना मुश्किल है, क्योंकि इसमें चार-आयामी स्थान में एक भूखंड की आवश्यकता होगी, E vs. kx, ky, kz,विज्ञानसाहित्य में 'बैंड संरचना भूखंडों' को देखना सामान्य है जो En(k) के मानों को दर्शाता है।[3][4] बैंड संरचना को देखने के लिए एक और विधि, वेववेक्टर स्पेस में एक स्थिर-ऊर्जा समस्थानिक की साजिश करना है, जो किसी विशेष मूल्य के बराबर ऊर्जा के साथ अवस्थाओं को दिखाता है। फर्मी स्तर के बराबर ऊर्जा वाली अवस्था को समस्थानिक फर्मी सतह के रूप में जाना जाता है।
बैंड गैप के आसपास के अवस्थाओं के वेववेक्टर का उपयोग करके ऊर्जा बैंड अंतराल को वर्गीकृत किया जा सकता है:
- डायरेक्ट बैंड गैप: बैंड गैप के ऊपर निम्नतम-ऊर्जा अवस्था में k वही होता है जो बैंड गैप के नीचे उच्चतम-ऊर्जा अवस्था होती है।
- अप्रत्यक्ष बैंड गैप: बैंड गैप के ऊपर और नीचे की निकटतम अवस्थाओं में k का मान समान नहीं होता है।
विषमता: गैर-क्रिस्टलीय ठोस पदार्थों में बैंड संरचनाएं
यद्यपि इलेक्ट्रॉनिक बैंड संरचनाएं आमतौर पर क्रिस्टलीय सामग्री से जुड़ी होती हैं, क्वासी-क्रिस्टलीय और अनाकार ठोस भी बैंड अंतराल का प्रदर्शन कर सकते हैं। ये अध्ययन करने के लिए सैद्धांतिक रूप से कुछ अधिक कठिन हैं क्योंकि उनके पास एक क्रिस्टल की सरल समरूपता की कमी है, और सामान्यतया एक सटीक फैलाव संबंध निर्धारित करना संभव नहीं है। नतीजतन, ठोस पदार्थों के इलेक्ट्रॉनिक बैंड संरचना पर लगभग सभी मौजूदा सैद्धांतिक कार्य ने क्रिस्टलीय सामग्रियों पर ध्यान केंद्रित किया है।
अवस्था का घनत्व
स्टेट्स फ़ंक्शन g(E) के घनत्व को E के निकट इलेक्ट्रॉन ऊर्जा के लिए प्रति इकाई आयतन, प्रति इकाई ऊर्जा में इलेक्ट्रॉनिक अवस्थाओं की संख्या के रूप में परिभाषित किया गया है।
बैंड थ्योरी पर आधारित प्रभावों की गणना के लिए स्टेट्स फंक्शन का घनत्व महत्वपूर्ण है। फर्मी के गोल्डन रूल में, ऑप्टिकल अवशोषण की दर की गणना के लिए, यह एक इलेक्ट्रॉन के लिए उत्तेजनीय इलेक्ट्रॉनों की संख्या और अंतिम अवस्था की संख्या दोनों प्रदान करता है। यह विद्युत चालकता की गणना में दिखाई देता है जहां यह मोबाइल अवस्था की संख्या प्रदान करता है, और इलेक्ट्रॉन बिखरने की दरों की गणना में जहां यह बिखरने के बाद अंतिम अवस्था की संख्या प्रदान करता है।[citation needed]
एक बैंड गैप के अंदर ऊर्जा के लिए, g(E) = 0।
बैंड का भरना
थर्मोडायनामिक संतुलन में, एक इलेक्ट्रॉन से भरी ऊर्जा ई (E) की स्थिति की संभावना फर्मी-डीरेक वितरण द्वारा दी गई है, एक थर्मोडायनामिक वितरण जो पाउली बहिष्करण सिद्धांत को ध्यान में रखता है:
जहाँ पे:
*kBT बोल्ट्जमैन नियतांक Boltzmann's constant) और तापमान का उत्पाद है, और
- µ इलेक्ट्रॉनों की कुल रासायनिक क्षमता है, या फर्मी स्तर (अर्धचालक भौतिकी में, यह मात्रा अक्सर EF को दर्शाती है)। एक ठोस का फ़र्मी स्तर सीधे उस ठोस पर वोल्टेज से संबंधित होता है, जैसा कि एक वोल्टमीटर के साथ मापा जाता है। परंपरागत रूप से, बैंड संरचना भूखंडों में फर्मी स्तर को ऊर्जा का शून्य (एक ऑर्बिटरी चॉइस) माना जाता है।
पदार्थ में इलेक्ट्रॉनों का घनत्व केवल अवस्था के घनत्व के समय फर्मी-डीरेक वितरण का अभिन्न अंग है:
यद्यपि बैंड की संख्या अनंत होती है और इस प्रकार अनंत संख्या में अवस्थाओं की संख्या होती है, लेकिन इन बैंडों में केवल एक परिमित संख्या में इलेक्ट्रॉनों की संख्या होती है। इलेक्ट्रॉनों की संख्या के लिए पसंदीदा मूल्य विद्युतस्थितिकी का एक परिणाम है: यद्यपि किसी सामग्री की सतह को चार्ज किया जा सकता है, सामग्री का आंतरिक थोक चार्ज करना पसंद करता है। चार्ज तटस्थता की स्थिति का मतलब है कि एन/वी (N/V) को सामग्री में प्रोटॉन के घनत्व से मेल खाना चाहिए। ऐसा होने के लिए, सामग्री खुद को विद्युतस्थितिकी रूप से समायोजित करती है, अपनी बैंड संरचना को ऊर्जा में ऊपर या नीचे स्थानांतरित करती है जिससे जी(ई)को स्थानांतरित कर दिया जाता है, जब तक कि यह फर्मी स्तर के संबंध में सही संतुलन में न हो।
फर्मी स्तर (चालन बैंड, वैलेंस बैंड) के पास बैंड के नाम
एक ठोस में अनुमत बैंड की संख्या अनंत होती है, जैसे कि एक परमाणु में असीम रूप से कई ऊर्जा स्तर होते हैं। हालांकि, अधिकांश बैंडों में बहुत अधिक ऊर्जा होती है, और आमतौर पर सामान्य परिस्थितियों में अवहेलना होती है।[5] इसके विपरीत, कोर ऑर्बिटल्स (जैसे 1 एस इलेक्ट्रॉनों) से जुड़े बहुत कम ऊर्जा बैंड हैं। ये कम-ऊर्जा कोर बैंड भी सामान्य परिस्थितियों में अवहेलना ही करते हैं क्योंकि वे हर समय इलेक्ट्रॉनों से भरे रहते हैं, और इसलिए निष्क्रिय होते हैं।[6] इसी तरह, सामग्री में उनके बैंड संरचना में कई बैंड अंतराल होते हैं।
सबसे महत्वपूर्ण बैंड और बैंड अंतराल- जो इलेक्ट्रॉनिकी और प्रकाश इलेक्ट्रॉनिकी के लिए प्रासंगिक हैं - वे फर्मी स्तर के पास ऊर्जा वाले हैं। फ़र्मी स्तर के पास बैंड और बैंड अंतराल को विशेष नाम दिए गए हैं, जो सामग्री के आधार पर हैं:
- एक अर्धचालक या बैंड इन्सुलेटर में, फर्मी स्तर एक बैंड गैप से घिरा हुआ है, जिसे बैंड गैप के रूप में संदर्भित किया जाता है (इसे बैंड संरचना में अन्य बैंड अंतराल से अलग करने के लिए)। बैंड गैप के ऊपर निकटतम बैंड को चालन बैंड कहा जाता है, और बैंड गैप के नीचे के निकटतम बैंड को वैलेंस बैंड कहा जाता है। नाम वैलेंस बैंड को रसायन विज्ञान के सादृश्य द्वारा गढ़ा गया था, क्योंकि अर्धचालक (और इंसुलेटर) में वैलेंस बैंड, संयोजकता कक्षक से बाहर बनाया गया है।
- एक धातु या अर्धधातु में, फर्मी स्तर एक या अधिक अनुमत बैंड के अंदर है। अर्धधातु में बैंड को आमतौर पर कंडक्शन बैंड या वैलेंस बैंड के रूप में संदर्भित किया जाता है, जो इस बात पर निर्भर करता है कि चार्ज ट्रांसपोर्ट अधिक इलेक्ट्रॉन-लाइक या होल-जैसे, अर्धचालक के सादृश्य द्वारा। हालांकि, कई धातुओं में, बैंड न तो इलेक्ट्रॉन की तरह होते हैं और न ही होल जैसे होते हैं, और अक्सर सिर्फ वैलेंस बैंड कहा जाता है क्योंकि वे वैलेंस ऑर्बिटल्स से बने होते हैं।[7] एक धातु की बैंड संरचना में बैंड अंतराल कम ऊर्जा भौतिकी के लिए महत्वपूर्ण नहीं है, क्योंकि वे फ़र्मी स्तर से बहुत दूर हैं।
क्रिस्टल में सिद्धांत
ANSATZ एक आवधिक क्रिस्टल जाली (periodic crystal lattice) में इलेक्ट्रॉन तरंगों का विशेष मामला है, जो बलोच के प्रमेय का उपयोग करते हुए सामान्यतया विवर्तन के गतिशील सिद्धांत में माना जाता है। प्रत्येक क्रिस्टल एक आवधिक संरचना है जिसे एक ब्राविस जाली (Bravais lattice) द्वारा चित्रित किया जाता है, और प्रत्येक ब्राविस जाली के लिए हम पारस्परिक जाली का निर्धारण कर सकते हैं, जो तीन पारस्परिक जाली वैक्टरों (b1, b2, b3) के एक सेट में आवधिकता को घेरता है। अब, किसी भी आवधिक संभावित V(r) जो प्रत्यक्ष जाली के समान आवधिकता को साझा करते हैं, को एक फूरियर श्रृंखला के रूप में विस्तारित किया जा सकता है, जिसके एकमात्र गैर-लुप्त होने वाले घटक पारस्परिक जाली वैक्टर से जुड़े हैं। इसे विस्तार रूप में लिखा जा सकता है:
जहां k = K = m1b1 + m2b2 + m3b3 , जहां (m1, m2, m3) पूर्णांक हैं।
इस सिद्धांत से, एक विशेष सामग्री की बैंड संरचना की भविष्यवाणी करने का प्रयास किया जा सकता है, हालांकि इलेक्ट्रॉनिक संरचना गणना के लिए अधिकांश एब इनिटियो तरीके ऑब्जर्वड बैंड गैप की भविष्यवाणी करने में विफल रहे हैं।
लगभग मुक्त इलेक्ट्रॉन सन्निकटन
लगभग मुक्त इलेक्ट्रॉन सन्निकटन में, इलेक्ट्रॉनों के बीच अन्योन्यक्रिया को पूरी तरह से नजरअंदाज कर दिया जाता है। यह सन्निकटन बलोच के प्रमेय के उपयोग की अनुमति देता है, जिसमें कहा गया है कि आवधिक क्षमता में इलेक्ट्रॉनों में तरंगों और ऊर्जा होती है जो कि पड़ोसी पारस्परिक जाली वैक्टर के बीच एक निरंतर चरण बदलाव तक वेववेक्टर में आवधिक होते हैं। आवधिकता के परिणामों को बलोच के प्रमेय द्वारा गणितीय रूप से वर्णित किया गया है, जिसमें कहा गया है कि ईजेनस्टेट वेवफंक्शन का रूप है
जहां बलोच कार्य करता है क्रिस्टल जाली पर आवधिक है, यानी,
- ।
यहां इंडेक्स n एन-वें एनर्जी बैंड (n-th energy band) को संदर्भित करता है, वेववेक्टर 'के' इलेक्ट्रॉन की गति की दिशा से संबंधित है, 'आर' (r) क्रिस्टल में स्थिति है, और 'आर' (R) एक परमाणु साइट का स्थान है।[8]
NFE मॉडल विशेष रूप से धातुओं जैसे सामग्रियों में अच्छी तरह से काम करता है जहां पड़ोसी परमाणुओं के बीच की दूरी छोटी होती है। ऐसी सामग्रियों में पड़ोसी परमाणुओं पर परमाणु ऑर्बिटल्स और क्षमता का ओवरलैप अपेक्षाकृत बड़ा है। उस स्थिति में इलेक्ट्रॉन के तरंग फ़ंक्शन को एक (संशोधित) प्लेन वेव द्वारा अनुमानित किया जा सकता है। एल्यूमीनियम जैसी धातु की बैंड संरचना भी खाली जाली सन्निकटन के करीब हो जाती है।
तंग बाध्यकारी मॉडल
लगभग मुक्त इलेक्ट्रॉन सन्निकटन के विपरीत चरम मानता है कि क्रिस्टल में इलेक्ट्रॉन घटक परमाणुओं की एक सभा की तरह व्यवहार करते हैं। यह टाइट बाइंडिंग मॉडल समय-स्वतंत्र एकल इलेक्ट्रॉन श्रोडिंगर समीकरण (time-independent single electron Schrödinger equation) का समाधान मानता है परमाणु ऑर्बिटल्स के एक रैखिक संयोजन द्वारा अच्छी तरह से अनुमानित है .[9]
- ,
जहां गुणांक इस फॉर्म का सबसे अच्छा अनुमानित समाधान देने के लिए चुना जाता है। इंडेक्स एन (n) एक परमाणु ऊर्जा स्तर को संदर्भित करता है और 'आर' (R) एक परमाणु साइट को संदर्भित करता है। इस विचार का उपयोग करके एक अधिक सटीक दृष्टिकोण वनियर फंक्शन (Wannier functions) को नियोजित करता है, द्वारा परिभाषित किया गया है:[10][11]
- ;
जिसमें बलोच के प्रमेय का आवधिक हिस्सा है और इंटीग्रल ब्रिलोइन ज़ोन पर है। यहाँ सूचकांक (n) क्रिस्टल में n-th ऊर्जा बैंड को संदर्भित करता है।परमाणु ऑर्बिटल्स की तरह, परमाणु साइटों के पास वैनियर फ़ंक्शंस स्थानीयकृत होते हैं, लेकिन बलोच फ़ंक्शंस के संदर्भ में परिभाषित किया जा रहा है, वे क्रिस्टल क्षमता के आधार पर समाधानों से सटीक रूप से संबंधित हैं। विभिन्न परमाणु साइटों 'आर' (R) पर वैनियर फ़ंक्शन ऑर्थोगोनल हैं। वैनियर फ़ंक्शन का उपयोग n-th एनर्जी बैंड के लिए श्रोडिंगर सॉल्यूशन बनाने के लिए किया जा सकता है:
- ।
टीबी मॉडल (TB model) परमाणु ऑर्बिटल्स और पड़ोसी परमाणुओं पर क्षमता के बीच सीमित ओवरलैप वाली सामग्रियों में अच्छी तरह से काम करता है। SI, GAAS, SiO2जैसी सामग्रियों की बैंड संरचनाएं उदाहरण के लिए डायमंड को परमाणु sp3 ऑर्बिटल्स के आधार पर टीबी-हैमिल्टनियों द्वारा अच्छी तरह से वर्णित किया गया है। संक्रमण धातुओं में एक मिश्रित टीबी-एनएफई मॉडल का उपयोग व्यापक एनएफई चालन बैंड और संकीर्ण एम्बेडेड टीबी डी-बैंड का वर्णन करने के लिए किया जाता है। वानियर फलनों के परमाणु कक्षीय भाग के रेडियल फलनों की गणना सबसे आसानी से स्यूडोपोटेंशियल विधियों के उपयोग द्वारा की जाती है। एनएफई, टीबी या संयुक्त एनएफई-टीबी बैंड संरचना, गणना,[12] कभी -कभी स्यूडोपोटेंशियल तरीकों के आधार पर तरंग फ़ंक्शन सन्निकटन के साथ विस्तारित किया जाता है, अक्सर आगे की गणना के लिए एक आर्थिक शुरुआती बिंदु के रूप में उपयोग किया जाता है।
केकेआर मॉडल
केकेआर विधि (KKR method), जिसे मल्टीपल स्कैटरिंग थ्योरी "multiple scattering theory" या ग्रीन की फ़ंक्शन विधि भी कहा जाता है, हैमिल्टन के बजाय इनवर्स ट्रांजीशन मैट्रिक्स टी T के स्थिर मान ज्ञात करता है। कोरिंगा, कोहन और रोस्टॉकर द्वारा एक वैरिएशनल कार्यान्वयन का सुझाव दिया गया था, और इसे अक्सर कोरिंगा -कोन -रोस्टोकर विधि के रूप में संदर्भित किया जाता है।[13][14] केकेआर या ग्रीन के फंक्शन फॉर्मुलेशन की सबसे महत्वपूर्ण विशेषताएं हैं (1) यह समस्या के दो पहलुओं को अलग करता है: संरचना (परमाणुओं की स्थिति) बिखरने (परमाणुओं की रासायनिक पहचान) से; और (2) ग्रीन के फ़ंक्शन इलेक्ट्रॉनिक गुणों के एक स्थानीयकृत विवरण के लिए एक प्राकृतिक दृष्टिकोण प्रदान करते हैं जो मिश्र धातुओं और अन्य अव्यवस्थित प्रणाली के लिए अनुकूलित किए जा सकते हैं। परमाणु स्थितियों पर इस सन्निकटन केंद्रों का सबसे सरल रूप गैर-अतिव्यापी क्षेत्रों (मफिन टिन के रूप में संदर्भित) है। इन क्षेत्रों के भीतर, एक इलेक्ट्रॉन द्वारा अनुभव की जाने वाली क्षमता को दिए गए नाभिक के बारे में गोलाकार रूप से सममित होने का अनुमान लगाया गया है। शेष अंतरालीय क्षेत्र में, स्क्रीन की गई क्षमता को एक स्थिर के रूप में अनुमानित किया जाता है। परमाणु-केंद्रित क्षेत्रों और अंतरालीय क्षेत्र के बीच क्षमता की निरंतरता लागू की जाती है।
घनत्व-कार्यात्मक सिद्धांत
हाल के भौतिकी साहित्य में, इलेक्ट्रॉनिक संरचनाओं और बैंड भूखंडों के एक बड़े हिस्से की गणना घनत्व-कार्यात्मक सिद्धांत (डीएफटी) "density-functional theory" (DFT) का उपयोग करके की जाती है, जो एक मॉडल नहीं है, बल्कि एक सिद्धांत है, अर्थात्, एक सूक्ष्म प्रथम-सिद्धांत जो संघनित पदार्थ भौतिकी का सिद्धांत है जो इलेक्ट्रॉनिक घनत्व के कार्यात्मक में एक विनिमय-सहसंबंध शब्द की शुरूआत के माध्यम से इलेक्ट्रॉन-इलेक्ट्रॉन कई-शरीर की समस्या से निपटने का प्रयास करता है। डीएफटी-गणना वाले बैंड कई मामलों में प्रयोगात्मक रूप से माप बैंड के साथ पाए जाते हैं, उदाहरण के लिए कोण-हल किए गए फोटोइमिशन स्पेक्ट्रोस्कोपी (एआरपीईएस)। विशेष रूप से, बैंड का आकार सामान्य तौर पर डीएफटी द्वारा अच्छी तरह से पुन: पेश किया जाता है। लेकिन प्रयोग के परिणामों की तुलना में डीएफटी बैंड में व्यवस्थित त्रुटियां भी हैं। विशेष रूप से, डीएफटी व्यवस्थित रूप से लगभग 30-40% इंसुलेटर और अर्धचालक में बैंड गैप को कम करता है।[15]
यह आमतौर पर माना जाता है कि डीएफटी केवल एक प्रणाली के जमीनी अवस्था गुणों की भविष्यवाणी करने के लिए एक सिद्धांत है (जैसे कि कुल ऊर्जा, परमाणु संरचना, आदि), और यह कि एक्ससिटेड स्टेट प्रोपर्टीज को डीएफटी द्वारा निर्धारित नहीं किया जा सकता है। यह एक गलत धारणा है। सिद्धांत रूप में, डीएफटी किसी भी सिस्टम की किसी भी संपत्ति (ग्राउंड स्टेट या एक्ससिटेड स्टेट) को निर्धारित कर सकता है जो एक कार्यात्मक है जो उस प्रोपर्टी के लिए ग्राउंड स्टेट डेन्सिटी को मैप करता है। यह होहेनबर्ग -कोन प्रमेय का सार है।[16] प्रयोग में, हालांकि, कोई ज्ञात कार्यात्मक मौजूद नहीं है जो एक सामग्री के भीतर इलेक्ट्रॉनों की उत्तेजना ऊर्जा के लिए ग्राउंड स्टेट डेन्सिटी को मैप करता है। इस प्रकार, साहित्य में एक डीएफटी बैंड प्लॉट के रूप में उद्धृत किया गया है, डीएफटी कोहन-शम समीकरणों का एक प्रतिनिधित्व है। कोहन-शम ऊर्जा, अर्थात्, एक काल्पनिक गैर-अंतःक्रियात्मक प्रणाली की ऊर्जा, कोहन-शम प्रणाली, जिसकी कोई भौतिक व्याख्या नहीं है। कोहन -शम इलेक्ट्रॉनिक संरचना को एक प्रणाली के वास्तविक, क्वासिपार्टिकल इलेक्ट्रॉनिक संरचना के साथ भ्रमित नहीं होना चाहिए, और कोहन -शम ऊर्जाओं के लिए कोई कोपमैन की प्रमेय होल्डिंग नहीं है, जैसा कि हार्ट्री -फॉक ऊर्जा के लिए है, जिसे वास्तव में क्वासिपार्टिकल ऊर्जा के लिए एक अनुमान माना जा सकता है। इसलिए, सिद्धांत रूप में, कोहन-शम आधारित डीएफटी, एक बैंड सिद्धांत नहीं है, अर्थात, बैंड और बैंड-प्लॉट की गणना के लिए उपयुक्त सिद्धांत नहीं है। सिद्धांत रूप में समय-निर्भर घनत्व कार्यात्मक सिद्धांत| समय-निर्भर DFT का उपयोग वास्तविक बैंड संरचना की गणना करने के लिए किया जा सकता है, हालांकि व्यवहारिकता में यह अक्सर मुश्किल होता है। एक लोकप्रिय दृष्टिकोण हाइब्रिड फ़ंक्शंस का उपयोग है, जिसमें हार्ट्री -फॉक सटीक एक्सचेंज का एक हिस्सा शामिल है; यह अर्धचालकों के अनुमानित बैंडगैप्स में पर्याप्त सुधार करता है, लेकिन धातुओं और व्यापक-बैंडगैप सामग्री के लिए कम विश्वसनीय है।[17]
ग्रीन के फ़ंक्शन के तरीके और ab initio GW सन्निकटन
इलेक्ट्रॉन-इलेक्ट्रॉन इंटरैक्शन सहित बैंड की गणना करने के लिए मैनी बॉडी इफेक्ट्स, कोई भी तथाकथित ग्रीन के फ़ंक्शन (कई-बॉडी थ्योरी) का सहारा ले सकता है। वास्तव में, एक प्रणाली के ग्रीन के फंक्शन का ज्ञान दोनों जमीन (कुल ऊर्जा) प्रदान करता है और एक्ससिटेड स्टेट ऑब्जरवेशन ऑफ द सिस्टम भी प्रदान करता है और सिस्टम के राज्य वेधशालाओं (state observables) को भी उत्साहित करता है। ग्रीन के कार्य (Green's function) के ध्रुव क़य्वासीप्रैक्टिकल (quasiparticle) ऊर्जा, जो एक ठोस के बैंड हैं। ग्रीन के फ़ंक्शन की गणना डायसन समीकरण (Dyson equation) को हल करके की जा सकती है, जब सिस्टम की आत्म-ऊर्जा ज्ञात होती है। ठोस जैसी वास्तविक प्रणालियों के लिए, आत्म-ऊर्जा एक बहुत ही जटिल मात्रा है और समस्या को हल करने के लिए आमतौर पर अनुमानों की आवश्यकता होती है। ऐसा ही एक सन्निकटन, GW सन्निकटन है, इसलिए गणितीय रूप से कहा जाता है गणितीय रूप से स्व-ऊर्जा ग्रीन के फ़ंक्शन G के उत्पाद Σ = GW और गतिशील रूप से स्क्रीन किए गए इंटरैक्शन W के रूप में लेती है और इसे पूरी तरह से अब इनिसियो वे (ab initio way) से भी तैयार किया जा सकता है। जीडब्ल्यू सन्निकटन प्रयोग के साथ समझौते में इंसुलेटर और अर्धचालकों के बैंड अंतराल प्रदान करता है, और इसलिए व्यवस्थित डीएफटी (systematic DFT underestimation) को कम करने के लिए।
डायनेमिक मीन-फील्ड थ्योरी )
यद्यपि लगभग मुक्त इलेक्ट्रॉन सन्निकटन इलेक्ट्रॉन बैंड संरचनाओं के कई गुणों का वर्णन करने में सक्षम है, इस सिद्धांत का एक परिणाम यह है कि यह प्रत्येक यूनिट सेल में समान संख्या में इलेक्ट्रॉनों की भविष्यवाणी करता है। यदि इलेक्ट्रॉनों की संख्या विषम है, तब हम उम्मीद करेंगे कि प्रत्येक यूनिट सेल में एक अयुग्मित इलेक्ट्रॉन है, और इस प्रकार वैलेंस बैंड पूरी तरह से अधिकृत नहीं कर रहा है, जिससे सामग्री एक कंडक्टर बन जाती है। हालांकि, सीओओ जैसी सामग्री जिसमें प्रति यूनिट सेल में विषम संख्या होती है, इस परिणाम के साथ सीधे विरोध में, इंसुलेटर होते हैं। इस तरह की सामग्री को एक mott इन्सुलेटर के रूप में जाना जाता है, और विसंगति को समझाने के लिए विस्तृत इलेक्ट्रॉन-इलेक्ट्रॉन इंटरैक्शन (बैंड सिद्धांत में क्रिस्टल क्षमता पर केवल एक औसत प्रभाव के रूप में इलाज किया जाता है) को शामिल करने की आवश्यकता होती है। हबर्ड मॉडल एक अनुमानित सिद्धांत है जिसमें इन इंटरैक्शन को शामिल किया गया है। इसे तथाकथित डायनेमिक मीन-फील्ड थ्योरी के भीतर गैर-पर्टर्बिटिक रूप से उपचारित किया जा सकता है, जो लगभग मुक्त इलेक्ट्रॉन सन्निकटन और परमाणु सीमा के बीच अंतर को कम करने का प्रयास करता है। औपचारिक रूप से, हालांकि, अवस्थाएं इस मामले में गैर-हस्तक्षेप नहीं कर रहे हैं और एक बैंड संरचना की अवधारणा इन मामलों का वर्णन करने के लिए पर्याप्त नहीं है।
अन्य
सैद्धांतिक ठोस अवस्था भौतिकी में बैंड संरचनाओं की गणना एक महत्वपूर्ण विषय है। ऊपर उल्लिखित मॉडलों के अलावा, अन्य मॉडलों में निम्नलिखित शामिल हैं:
- खाली जाली सन्निकटन: मुक्त स्थान के एक क्षेत्र की बैंड संरचना जिसे एक जाली में विभाजित किया गया है।
- k · P perturbation सिद्धांत: एक ऐसी तकनीक है जो एक बैंड संरचना को केवल कुछ मापदंडों के संदर्भ में वर्णित करने की अनुमति देती है। तकनीक का उपयोग सामान्य तौर पर अर्धचालक के लिए किया जाता है, और मॉडल में मापदंडों को अक्सर प्रयोग द्वारा निर्धारित किया जाता है।
- क्रोनिग-पेनी मॉडल, क्रोनिग-पेनी मॉडल, बैंड गठन के चित्रण के लिए उपयोगी एक आयामी आयताकार कुआं मॉडल सरल होते हुए भी, यह कई महत्वपूर्ण घटनाओं की भविष्यवाणी करता है, लेकिन मात्रात्मक नहीं है।
- हबर्ड मॉडल
बैंड संरचना को वेववेक्टर के लिए सामान्यीकृत किया गया है जो जटिल संख्याएं हैं, जिसके परिणामस्वरूप एक जटिल बैंड संरचना कहा जाता है, जो सतहों और इंटरफेस पर रुचि रखता है।
प्रत्येक मॉडल कुछ प्रकार के ठोस पदार्थों का बहुत अच्छी तरह से वर्णन करता है, और कुछ अन्य का खराब तरीके से। लगभग मुक्त इलेक्ट्रॉन मॉडल धातुओं के लिए अच्छी तरह से काम करता है, लेकिन गैर-धातुओं के लिए खराब है। तंग बाइंडिंग मॉडल आयनिक इंसुलेटर के लिए बेहद सटीक है, जैसे कि मेटल हलाइड लवण (जैसे NaCl)।
बैंड आरेख
यह समझने के लिए कि वास्तविक स्थान में फ़र्मी स्तर के सापेक्ष बैंड संरचना कैसे बदलती है, एक बैंड संरचना प्लॉट को अक्सर बैंड आरेख के रूप में पहली बार सरल बनाया जाता है । एक बैंड आरेख में ऊर्ध्वाधर अक्ष ऊर्जा है जबकि क्षैतिज अक्ष वास्तविक स्थान का प्रतिनिधित्व करता है। क्षैतिज रेखाएं ऊर्जा के स्तर का प्रतिनिधित्व करती हैं, जबकि ब्लॉक ऊर्जा बैंड का प्रतिनिधित्व करते हैं। जब इन आरेख में क्षैतिज रेखाएं धीमी हो जाती हैं, तो स्तर या बैंड की ऊर्जा दूरी के साथ बदल जाती है। आरेखित रूप से, यह क्रिस्टल सिस्टम के भीतर एक विद्युत क्षेत्र की उपस्थिति को दर्शाता है। बैंड आरेख एक दूसरे के संपर्क में रखने पर एक दूसरे से विभिन्न सामग्रियों के सामान्य बैंड संरचना गुणों से संबंधित होने में उपयोगी होते हैं।
यह भी देखें
- बैंड-गैप इंजीनियरिंग-एक सामग्री के बैंड संरचना को बदलने की प्रक्रिया
- फेलिक्स बलोच- बैंड संरचना के सिद्धांत में अग्रणी
- एलन हेरिस विल्सन- बैंड संरचना के सिद्धांत में अग्रणी
उद्धरण
- ↑ 1.0 1.1 Holgate, Sharon Ann (2009). Understanding Solid State Physics. CRC Press. pp. 177–178. ISBN 978-1-4200-1232-3.
- ↑ Van Zeghbroeck, B. , 2011 (2011). "Section 2.3: Energy Bands". Principles of Semiconductor Devices. Electrical, Computer, Energy Engineering Dept., Univ. of Colorado at Boulder. Archived from the original on May 20, 2017. Retrieved March 13, 2017.
{{cite web}}
: CS1 maint: multiple names: authors list (link) - ↑ "NSM Archive - Aluminium Gallium Arsenide (AlGaAs) - Band structure and carrier concentration". www.ioffe.ru.
- ↑ "Electronic Band Structure" (PDF). www.springer.com. Springer. p. 24. Retrieved 10 November 2016.
- ↑ High-energy bands are important for electron diffraction physics, where the electrons can be injected into a material at high energies, see Stern, R.; Perry, J.; Boudreaux, D. (1969). "Low-Energy Electron-Diffraction Dispersion Surfaces and Band Structure in Three-Dimensional Mixed Laue and Bragg Reflections". Reviews of Modern Physics. 41 (2): 275. Bibcode:1969RvMP...41..275S. doi:10.1103/RevModPhys.41.275..
- ↑ Low-energy bands are however important in the Auger effect.
- ↑ In copper, for example, the effective mass is a tensor and also changes sign depending on the wave vector, as can be seen in the De Haas–Van Alphen effect; see https://www.phys.ufl.edu/fermisurface/
- ↑ Kittel, p. 179
- ↑ Kittel, pp. 245-248
- ↑ Kittel, Eq. 42 p. 267
- ↑ Daniel Charles Mattis (1994). The Many-Body Problem: Encyclopaedia of Exactly Solved Models in One Dimension. World Scientific. p. 340. ISBN 978-981-02-1476-0.
- ↑ Walter Ashley Harrison (1989). Electronic Structure and the Properties of Solids. Dover Publications. ISBN 978-0-486-66021-9.
- ↑ Joginder Singh Galsin (2001). Impurity Scattering in Metal Alloys. Springer. Appendix C. ISBN 978-0-306-46574-1.
- ↑ Kuon Inoue, Kazuo Ohtaka (2004). Photonic Crystals. Springer. p. 66. ISBN 978-3-540-20559-3.
- ↑ Assadi, M. Hussein. N.; Hanaor, Dorian A. H. (2013-06-21). "Theoretical study on copper's energetics and magnetism in TiO2 polymorphs". Journal of Applied Physics. 113 (23): 233913–233913–5. arXiv:1304.1854. Bibcode:2013JAP...113w3913A. doi:10.1063/1.4811539. ISSN 0021-8979. S2CID 94599250.
- ↑ Hohenberg, P; Kohn, W. (Nov 1964). "Inhomogeneous Electron Gas". Phys. Rev. 136 (3B): B864–B871. Bibcode:1964PhRv..136..864H. doi:10.1103/PhysRev.136.B864.
- ↑ Paier, J.; Marsman, M.; Hummer, K.; Kresse, G.; Gerber, I. C.; Angyán, J. G. (2006). "Screened hybrid density functionals applied to solids". J Chem Phys. 124 (15): 154709. Bibcode:2006JChPh.124o4709P. doi:10.1063/1.2187006. PMID 16674253.
सामान्य ग्रंथ सूची
- Charles Kittel (1996). Introduction to Solid State Physics (Seventh ed.). New York: Wiley. ISBN 978-0-471-11181-8.
अग्रिम पठन
- Ashcroft, Neil and N. David Mermin, Solid State Physics, ISBN 0-03-083993-9
- Harrison, Walter A., Elementary Electronic Structure, ISBN 981-238-708-0
- Harrison, Walter A.; W. A. Benjamin Pseudopotentials in the theory of metals, (New York) 1966
- Marder, Michael P., Condensed Matter Physics, ISBN 0-471-17779-2
- Martin, Richard, Electronic Structure: Basic Theory and Practical Methods, ISBN 0-521-78285-6
- Millman, Jacob; Arvin Gabriel, Microelectronics, ISBN 0-07-463736-3, Tata McGraw-Hill Edition.
- Nemoshkalenko, V. V., and N. V. Antonov, Computational Methods in Solid State Physics, ISBN 90-5699-094-2
- Omar, M. Ali, Elementary Solid State Physics: Principles and Applications, ISBN 0-201-60733-6
- Singh, Jasprit, Electronic and Optoelectronic Properties of Semiconductor Structures Chapters 2 and 3, ISBN 0-521-82379-X
- Vasileska, Dragica, Tutorial on Bandstructure Methods (2008)
बाहरी संबंध
- Animation, applications and research about quantum physics and band theory (Université Paris Sud)