अवमंदन (डैम्पिंग): Difference between revisions

From Vigyanwiki
No edit summary
 
(15 intermediate revisions by 5 users not shown)
Line 1: Line 1:
{{Short description|Influence on an oscillating physical system which reduces or prevents its oscillation}}
{{Short description|Influence on an oscillating physical system which reduces or prevents its oscillation}}
{{about|damping in oscillatory systems}}
{{about|ऑसिलेटरी सिस्टम में अवमंदन}}
{{Dynamics}}
{{Dynamics}}
[[File:Damped spring.gif|thumb|upright|के साथ वसंत -मास प्रणाली को कम कर दिया {{nowrap|''ζ'' < 1}}]]अवमंदक ऐसी भौतिक प्रक्रिया है जो दोलन प्रणाली के प्रभाव को कम करने और रोकने की क्रिया पर कार्य करता है I भौतिक प्रणालियों में अवमंदक उन प्रक्रियाओं द्वारा निर्मित होता है जो दोलन में संग्रहीत [[ऊर्जा]] को क्षय करते हैं।<ref>{{cite book
[[File:Damped spring.gif|thumb|upright|के साथ वसंत -मास प्रणाली को कम कर दिया {{nowrap|''ζ'' < 1}}]]'''अवमंदन''' ऐसी भौतिक क्रिया है जो दोलन प्रणाली के प्रभाव को कम करने और रोकने की प्रक्रिया पर कार्य करती हैI भौतिक प्रणालियों में अवमंदक उन प्रक्रियाओं द्वारा निर्मित है जो दोलन में संग्रहीत [[ऊर्जा]] का क्षय करते हैं।<ref>{{cite book
| title = An Introduction to Mechanical Vibrations
| title = An Introduction to Mechanical Vibrations
| author = Steidel
| author = Steidel
Line 8: Line 8:
| publisher = John Wiley & Sons
| publisher = John Wiley & Sons
| page = 37
| page = 37
| quote = ''damped'', which is the term used in the study of vibration to denote a dissipation of energy}}</ref> उदाहरण के तौर पर [[इलेक्ट्रॉनिक दोलक]] में [[विद्युत प्रतिरोध और चालन|विद्युत प्रतिरोध,चालन]] और [[ऑप्टिकल थरथरानवाला|प्रकाशिकी]] में प्रकाश के अवशोषण में तरलयुक्त द्रव्य दोलन प्रणाली में बाधा डाल सकती है जिससे दोलन प्रणाली धीमे हो जाती है I ऊर्जा हानि के आधार पर अवमंदक अन्य दोलन प्रणालियों जैसे कि पारिस्थितिकी और साइकिल में महत्वपूर्ण नहीं हो सकता है।<ref name="MPRS">{{cite journal
| quote = ''damped'', which is the term used in the study of vibration to denote a dissipation of energy}}</ref> उदाहरण के तौर पर विद्युत् दोलक [[विद्युत प्रतिरोध और चालन|विद्युत प्रतिरोध, चालन]] और [[ऑप्टिकल थरथरानवाला|प्रकाशिकी]] में प्रकाश के अवशोषण में द्रव्य दोलन प्रणाली में बाधा उत्पन्न करती है इसकी गति और प्रक्रिया दोनों ही प्रणालियों पर इसका प्रभाव धीमा हो जाता है जिससे दोलन प्रणाली धीमे हो जाती है I डैम्पिंग यानि अवमंदन ऊर्जा हानि पर आधारित नहीं है यह अन्य घर्षण युक्त दोलन प्रणालियों जैसे कि जैविक प्रणालियों और बाइक में महत्वपूर्ण हैI
| journal = [[Proceedings of the Royal Society A]]
| volume = 463
| issue = 2084
| year = 2007
| pages = 1955–1982
| title = Linearized dynamics equations for the balance and steer of a bicycle: a benchmark and review
| doi = 10.1098/rspa.2007.1857
| quote = lean and steer perturbations die away in a seemingly damped fashion. However, the system has no true damping and conserves energy. The energy in the lean and steer oscillations is transferred to the forward speed rather than being dissipated.
|bibcode = 2007RSPSA.463.1955M
|author1=J. P. Meijaard |author2=J. M. Papadopoulos |author3=A. Ruina |author4=A. L. Schwab  | s2cid = 18309860
|name-list-style=amp }}</ref> घर्षण परिकल्पना को लेकर असमंजस नहीं रखना चाहिए ये एक तरह का विघटनकारी बल हैi घर्षण अवमंदक का एक कारक हो सकता है या हो सकता है।


अवमंदक अनुपात आयाम रहित माप है जिसमें बताया गया है कि किसी गड़बड़ी के बाद [[लयबद्ध दोलक]] कैसे क्षय होता है। स्थिर संतुलन की स्थिति से विचलित होने पर कई प्रणालियां दोलनशील व्यवहार प्रदर्शित करती हैं। कई प्रणालियां जब वे [[स्थिर संतुलन]] की स्थिति से विक्षुब्ध होते हैं तो वे दोलन क्रिया को प्रदर्शित करते हैंI  उदाहरण के लिए किसी स्प्रिंग से लटका हुआ पिंड यदि खींचा और छोड़ा जाए तो ऊपर और नीचे उछल सकता है। प्रत्येक उछाल पर सिस्टम अपनी संतुलन की स्थिति में लौटता है लेकिन इसे अतिकृत करता है। कभी -कभी यह क्रिया घर्षण प्रणाली को आद्र कर देता है और दोलनों को धीरे -धीरे शून्य या [[क्षीणन]] की ओर आयाम में क्षय करने का कारण बन सकता है।  
अवमंदक अनुपात आयाम रहित माप की प्रणाली है जिसके अंतर्गत दोलन प्रणाली की क्षय प्रक्रिया का वर्णन किया गया हैI स्थिर संतुलन की स्थिति से विचलित होने पर कई प्रणालियां दोलनशील व्यवहार प्रदर्शित करती हैं। उदाहरण के लिए किसी स्प्रिंग से लटका हुआ पिंड यदि खींचा और छोड़ा जाए तो ऊपर और नीचे उछलता है। प्रत्येक उछाल पर प्रणाली अपनी संतुलन की स्थिति में लौटता है लेकिन इसे अतिकृत करता है। कभी -कभी यह क्रिया घर्षण प्रणाली को आद्र कर देता है और दोलनों को धीरे -धीरे शून्य या [[क्षीणन]] की ओर आयाम में क्षय करने का कारण बन सकता है।  


अवमंदक अनुपात सिस्टम पैरामीटर है जिसे द्वारा निरूपित किया गया है {{mvar|ζ}} "ज़ेटा" जो कि ({{math|1=''ζ'' = 0}}), अंडरडैम्पेड ({{math|''ζ'' < 1}}) गंभीर रूप से नम ({{math|1=''ζ'' = 1}}) अतिअवमंदित करने के लिए ({{math|''ζ'' > 1}})अनवमंदित से भिन्न हो सकता है
अवमंदक अनुपात प्रणाली पैरामीटर है जिसे द्वारा निरूपित किया गया है {{mvar|ζ}} "ज़ेटा" जो कि ({{math|1=''ζ'' = 0}}), अंडरडैम्पेड ({{math|''ζ'' < 1}}) गंभीर रूप से नम ({{math|1=''ζ'' = 1}}) अतिअवमंदित करने के लिए ({{math|''ζ'' > 1}}) अनवमंदित से भिन्न हो सकता हैI


ढोलक प्रणाली का व्यवहार अक्सर विभिन्न प्रकार के विषयों में रुचि रखता है जिसमें [[नियंत्रण इंजीनियरिंग]], [[केमिकल इंजीनियरिंग]], [[मैकेनिकल इंजीनियरिंग]], [[संरचनागत वास्तुविद्या]] और [[विद्युत अभियन्त्रण]] शामिल हैं।  
दोलक प्रणाली का व्यवहार अक्सर विभिन्न प्रकार के विषयों में रुचि रखता है जिसमें [[नियंत्रण इंजीनियरिंग]], [[केमिकल इंजीनियरिंग]], [[मैकेनिकल इंजीनियरिंग]], [[संरचनागत वास्तुविद्या]] और [[विद्युत अभियन्त्रण]] सम्मिलित हैं।  


== दोलन मामले ==
== दोलन मामले ==


वर्तमान में अवमंदक की मात्रा के आधार पर प्रणाली विभिन्न दोलन व्यवहार और गति को प्रदर्शित करती है।
वर्तमान में अवमंदक की मात्रा के आधार पर प्रणाली विभिन्न दोलन व्यवहार और गति को प्रदर्शित करती है।
* जहां स्प्रिंग -मास सिस्टम पूरी तरह से क्षतिहीन है द्रव्यमान अस्पष्टतापूर्वक अनिश्चित काल के लिए दोलन गतिशील रहेगाI इस काल्पनिक प्रक्रिया को असंबद्ध कहा जाता है।
* जहां स्प्रिंग -मास प्रणाली पूरी तरह से क्षतिहीन है द्रव्यमान अस्पष्टतापूर्वक अनिश्चित काल के लिए दोलन गतिशील रहेगाI इस काल्पनिक प्रक्रिया को असंबद्ध कहा जाता है।
* आम तौर पर द्रव्यमान अपनी प्रारंभिक स्थिति को पार करने के लिए जाता है, और फिर वापस लौटता हैI प्रत्येक ओवरशूट के साथ, सिस्टम में कुछ ऊर्जा विघटित हो जाती है, और दोलन शून्य की ओर मर जाते हैं।इस मामले को अंडरडैम्प कहा जाता है।
*यदि प्रणाली में उच्च नुकसान होता है, उदाहरण के लिए, यदि वसंत -मास प्रयोग एक [[चिपचिपा]] तरल पदार्थ में आयोजित किया गया था, तो द्रव्यमान धीरे -धीरे कभी भी ओवरशूट किए बिना अपनी आराम की स्थिति में वापस आ सकता है। इस मामले को ओवरडैम्प कहा जाता है।
* ओवरडैम्प किए गए और अंडरडैम्प किए गए मामलों के बीच, एक निश्चित स्तर की भिगोना मौजूद है, जिस पर सिस्टम बस ओवरशूट करने में विफल रहेगा और एक भी दोलन नहीं करेगा।इस मामले को क्रिटिकल डंपिंग कहा जाता है।महत्वपूर्ण भिगोना और ओवरडैम्पिंग के बीच महत्वपूर्ण अंतर यह है कि, महत्वपूर्ण भिगोना में, सिस्टम न्यूनतम समय में संतुलन में लौटता है।
* सामान्यतः द्रव्यमान अपनी प्रारंभिक स्थिति को पार करने के लिए जाता है, और फिर वापस लौटता हैI प्रत्येक ओवरशूट के साथ, प्रणाली में कुछ ऊर्जा विघटित हो जाती है, और दोलन शून्य की ओर जाते हैं। इस मामले को अंडरडैम्प कहा जाता है।
* ओवरडैम्प किए गए और अंडरडैम्प किए गए मामलों के बीच, एक निश्चित स्तर की भिगोना मौजूद है, जिस पर प्रणाली बस ओवरशूट करने में विफल रहेगा और एक भी दोलन नहीं करेगा। इस मामले को क्रिटिकल डंपिंग कहा जाता है। महत्वपूर्ण भिगोना और ओवरडैम्पिंग के बीच महत्वपूर्ण अंतर यह है कि, महत्वपूर्ण भिगोना में, प्रणाली न्यूनतम समय में संतुलन में लौटता है।


== ज्यावक्रीय तरंगे ==
== ज्यावक्रीय तरंगे ==
{{distinguish|Damped wave (radio transmission)}}
{{distinguish|अवमंदित तरंग (रेडियो प्रसारण)}}
[[File:DampedCosine.svg|thumb|350px|एक नम साइनसोइडल तरंग का प्लॉट फ़ंक्शन के रूप में दर्शाया गया है <math>y(t) = e^{- t} \cos(2 \pi t)</math>]]ज्यावक्रीय सांकेतिक तरंगे सांकेतिक लहर है जिसका आयाम समय बढ़ने के साथ शून्य पर पहुंचता है। यह अवमंदित द्वितीय कोटिक क्रमिक व्यवस्था से मेल खाता हैI  इन तरंगों को आमतौर पर [[विज्ञान]] और [[अभियांत्रिकी]] में देखा जाता है जहां गुणावृत्ति न्यून अवमंदित ऊर्जा दोलक की आपूर्ति की तुलना में तेजी से ऊर्जा की क्षति हो रही है I  
[[File:DampedCosine.svg|thumb|350px|एक नम साइनसोइडल तरंग का प्लॉट फ़ंक्शन के रूप में दर्शाया गया है <math>y(t) = e^{- t} \cos(2 \pi t)</math>]]ज्यावक्रीय सांकेतिक तरंगे सांकेतिक लहर है जिसका आयाम समय बढ़ने के साथ शून्य पर पहुंचता है। यह अवमंदित द्वितीय कोटिक क्रमिक व्यवस्था से मेल खाता हैI  इन तरंगों को सामान्यतः [[विज्ञान]] और [[अभियांत्रिकी]] में देखा जाता है जहां गुणावृत्ति न्यून अवमंदित ऊर्जा दोलक की आपूर्ति की तुलना में तेजी से ऊर्जा की क्षति हो रही है I  
 
ज्यावक्रीय सांकेतिक ऐसी तरंगे = 0 मूल (आयाम = 0) से शुरू होती है। ज्यावक्रीय तरंगे अपनी उच्चतम मूल्य को प्रदर्शित करती है जो ज्यावक्रीय तरंगों से भिन्न होते हैं दिया गया ज्यावक्रीय तरंग मध्यवर्ती चरण की हो सकती है जिसमें द्विजया और कोटिज्या घटक दोनों होते हैं। इस तरह प्रारंभिक चरण में द्विजया लहर  सभी ज्यावक्रीय तरंगों का वर्णन करती हैI
 
अवमंदित सामान्यतः  रैखिक प्रणालियों में पाया जाने वाला रूप है। यह रूप घातीय है जिसमें क्रमिक घातीय क्षय वक्र है। यही है जब आप प्रत्येक क्रमिक वक्र के अधिकतम बिंदु को जोड़ते हैं तो परिणाम घातीय क्षय जैसा दिखता है। घातीय रूप से ज्यावक्रीय सांकेतिक तरंगे के लिए सामान्य समीकरण का प्रतिनिधित्व किया जा सकता हैI<math display="block">y(t) = A e^{-\lambda t} \cos(\omega t - \phi)</math>


ज्यावक्रीय सांकेतिक तरंगे = 0 मूल (आयाम = 0) से शुरू होती है। ज्यावक्रीय तरंगे अपनी उच्चतम मूल्य को प्रदर्शित करती है जो ज्यावक्रीय तरंगों से भिन्न होते हैं दिया गया ज्यावक्रीय तरंग मध्यवर्ती चरण की हो सकती है जिसमें द्विजया और कोटिज्या घटक दोनों होते हैं। इस तरह प्रारंभिक चरण में द्विजया लहर  सभी ज्यावक्रीय तरंगों का वर्णन करती हैI


अवमंदित आमतौर पर  रैखिक प्रणालियों में पाया जाने वाला रूप है।यह रूप घातीय है जिसमें क्रमिक घातीय क्षय वक्र है। यही है जब आप प्रत्येक क्रमिक वक्र के अधिकतम बिंदु को जोड़ते हैं तो परिणाम घातीय क्षय जैसा दिखता है। घातीय रूप से ज्यावक्रीय सांकेतिक तरंगे के लिए सामान्य समीकरण का प्रतिनिधित्व किया जा सकता हैI
<math>y(t)</math> समय पर तात्कालिक आयाम है {{mvar|t}};
<math display="block">y(t) = A e^{-\lambda t} \cos(\omega t - \phi)</math>
*<math>y(t)</math> समय पर तात्कालिक आयाम है {{mvar|t}};
*<math>A</math> लिफाफे का प्रारंभिक आयाम है;
*<math>A</math> लिफाफे का प्रारंभिक आयाम है;
*<math>\lambda</math> स्वतंत्र चर की समय इकाइयों के पारस्परिक में क्षय दर है {{mvar|t}};
*<math>\lambda</math> स्वतंत्र चर की समय इकाइयों के पारस्परिक में क्षय दर है {{mvar|t}};
Line 48: Line 39:
*<math>\omega</math> कोणीय [[आवृत्ति]] है।
*<math>\omega</math> कोणीय [[आवृत्ति]] है।


अन्य महत्वपूर्ण मापदंडों में शामिल हैंI
अन्य महत्वपूर्ण मापदंडों में सम्मिलित हैंI
* आवृत्ति: <math>f = \omega / (2\pi)</math>, प्रति समय इकाई चक्रों की संख्या।यह व्युत्क्रम समय इकाइयों में व्यक्त किया जाता है <math>t^{-1}</math>, या [[हेटर्स]]।
* आवृत्ति: <math>f = \omega / (2\pi)</math>, प्रति समय इकाई चक्रों की संख्या।यह व्युत्क्रम समय इकाइयों में व्यक्त किया जाता है <math>t^{-1}</math>, या [[हेटर्स]]।
* [[स्थिर समय]]: <math>\tau = 1 / \lambda</math>, [[ई (गणितीय स्थिरांक)]] के कारक द्वारा कम होने के आयाम के लिए समय।
* [[स्थिर समय]]: <math>\tau = 1 / \lambda</math>, [[ई (गणितीय स्थिरांक)]] के कारक द्वारा कम होने के आयाम के लिए समय।
Line 56: Line 47:


== अवमंदक अनुपात परिभाषा ==
== अवमंदक अनुपात परिभाषा ==
[[File:2nd Order Damping Ratios.svg|thumb|400px|upright=1.3|दूसरे क्रम की प्रणाली पर अलग-अलग भिगोना अनुपात का प्रभाव।]]अवमंदक अनुपात पैरामीटर है जिसे आमतौर पर ग्रीक पत्र ज़ेटा द्वारा निरूपित किया जाता हैI<ref>{{cite book
[[File:2nd Order Damping Ratios.svg|thumb|400px|upright=1.3|दूसरे क्रम की प्रणाली पर अलग-अलग भिगोना अनुपात का प्रभाव।]]अवमंदक अनुपात पैरामीटर है जिसे सामान्यतः ग्रीक पत्र ज़ेटा द्वारा निरूपित किया जाता हैI<ref>{{cite book
| title = Introduction to Mechatronics and Measurement  
| title = Introduction to Mechatronics and Measurement  
| last = Alciatore
| last = Alciatore
Line 63: Line 54:
| year = 2007
| year = 2007
| edition = 3rd
| edition = 3rd
| isbn = 978-0-07-296305-2}}</ref> यह दूसरे क्रम के अंतर समीकरण की [[आवृत्ति प्रतिक्रिया]] की विशेषता है। दूसरे क्रम के साधारण अंतर समीकरण।यह [[नियंत्रण सिद्धांत]] के अध्ययन में विशेष रूप से महत्वपूर्ण है।यह हार्मोनिक ऑसिलेटर में भी महत्वपूर्ण है। सामान्य तौर पर उच्च अवमंदक अनुपात प्रणाली प्रभाव का अधिक प्रदर्शन करेंगे। न्यून अवमंदित का मूल्य 1 से कम है।
| isbn = 978-0-07-296305-2}}</ref> यह दूसरे क्रम के अंतर समीकरण की [[आवृत्ति प्रतिक्रिया]] की विशेषता है। दूसरे क्रम के साधारण अंतर समीकरण। यह [[नियंत्रण सिद्धांत]] के अध्ययन में विशेष रूप से महत्वपूर्ण है। यह हार्मोनिक ऑसिलेटर में भी महत्वपूर्ण है। सामान्य तौर पर उच्च अवमंदक अनुपात प्रणाली प्रभाव का अधिक प्रदर्शन करेंगे। न्यून अवमंदित का मूल्य 1 से कम है।


अवमंदक अनुपात महत्वपूर्ण भिगोना के सापेक्ष एक प्रणाली में भिगोना के स्तर को व्यक्त करने का एक गणितीय साधन प्रदान करता है।मास एम, डंपिंग गुणांक सी, और स्प्रिंग कॉन्स्टेंट के साथ एक नम हार्मोनिक ऑसिलेटर के लिए, इसे महत्वपूर्ण डंपिंग गुणांक के लिए सिस्टम के अंतर समीकरण में भिगोना गुणांक के अनुपात के रूप में परिभाषित किया जा सकता है:
अवमंदन अनुपात महत्वपूर्ण अवमंदन के सापेक्ष एक प्रणाली में अवमंदन के स्तर को व्यक्त करने का एक गणितीय साधन प्रदान करता है। द्रव्यमान m अवमंदन गुणांक c और स्थिरांक k के साथ अवमंदित हार्मोनिक दोलक के लिए अवकलन समीकरण में महत्वपूर्ण अवमंदन गुणांक के अनुपात के रूप में परिभाषित किया जा सकता हैI


:<math> \zeta = \frac{c}{c_c} = \frac {\text{actual damping}} {\text{critical damping}},</math>
:<math> \zeta = \frac{c}{c_c} = \frac {\text{actual damping}} {\text{critical damping}},</math>
जहां सिस्टम का समीकरण गति का समीकरण है
जहां प्रणाली का समीकरण गति का समीकरण है
:<math> m\frac{d^2x}{dt^2} + c\frac{dx}{dt} + kx = 0 </math>
:<math> m\frac{d^2x}{dt^2} + c\frac{dx}{dt} + kx = 0 </math>
और इसी महत्वपूर्ण भिगोना गुणांक है
इस समीकरण का महत्वपूर्ण गुणांक है
:<math> c_c = 2 \sqrt{k m} </math>
:<math> c_c = 2 \sqrt{k m} </math>
या
या
:<math> c_c =  2 m \sqrt{\frac{k}{m}} = 2m \omega_n </math>
कहाँ पे
:<math> \omega_n = \sqrt{\frac{k}{m}} </math> सिस्टम की [[प्राकृतिक आवृत्ति]] है।


भिगोना अनुपात आयामहीन है, समान इकाइयों के दो गुणांक का अनुपात है।
<math> c_c =  2 m \sqrt{\frac{k}{m}} = 2m \omega_n </math>
:अन्य समीकरण
:<math> \omega_n = \sqrt{\frac{k}{m}} </math> यह दोलक प्रक्रिया की प्राकृतिक [[प्राकृतिक आवृत्ति|आवृत्ति]] है।
 
अवमंदन अनुपात आयामहीन है समान इकाइयों के दो गुणांक का अनुपात है।


== व्युत्पत्ति ==
== व्युत्पत्ति ==
एक हार्मोनिक थरथरानवाला की प्राकृतिक आवृत्ति का उपयोग करना <math display="inline">\omega_n = \sqrt{{k}/{m}}</math> और ऊपर भिगोना अनुपात की परिभाषा, हम इसे फिर से लिख सकते हैं:
प्राकृतिक आवृत्ति का उपयोग करना <math display="inline">\omega_n = \sqrt{{k}/{m}}</math> और ऊपर उपरोक्त अवमंदक अनुपात की परिभाषा इस प्रकार दे सकते हैंI
:<math> \frac{d^2x}{dt^2} + 2\zeta\omega_n\frac{dx}{dt} + \omega_n^2 x = 0. </math>
:<math> \frac{d^2x}{dt^2} + 2\zeta\omega_n\frac{dx}{dt} + \omega_n^2 x = 0. </math>
यह समीकरण केवल द्रव्यमान -विभाजन प्रणाली की तुलना में अधिक सामान्य है, और विद्युत सर्किट और अन्य डोमेन पर भी लागू होता है।इसे दृष्टिकोण के साथ हल किया जा सकता है
यह समीकरण केवल द्रव्यमान -विभाजन प्रणाली की तुलना में अधिक सामान्य है और विद्युत सर्किट और अन्य डोमेन पर भी लागू होता है। इसे दृष्टिकोण के साथ हल किया जा सकता है
:<math> x(t) = C e^{s t},</math>
:<math> x(t) = C e^{s t},</math>
जहां सी और एस दोनों [[जटिल संख्या]] स्थिरांक हैं, एस संतोषजनक के साथ
जहां C और S दोनों [[जटिल संख्या]] स्थिरांक हैं
:<math> s = -\omega_n \left(\zeta \pm i \sqrt{1 - \zeta^2}\right). </math>
:<math> s = -\omega_n \left(\zeta \pm i \sqrt{1 - \zeta^2}\right). </math>
समीकरण को संतुष्ट करने वाले एस के दो मूल्यों के लिए दो ऐसे समाधान, सामान्य वास्तविक समाधान बनाने के लिए जोड़े जा सकते हैं, कई शासनों में दोलन और क्षय गुणों के साथ:
समीकरण को S के दो मूल्यों के लिए दो ऐसे समाधान सामान्य वास्तविक समाधान बनाने के लिए जोड़े जा सकते हैंI


;Undamped: वह मामला है जहां <math>\zeta = 0</math> अनिर्दिष्ट सरल हार्मोनिक थरथरानवाला के अनुरूप है, और उस स्थिति में समाधान जैसा दिखता है <math>\exp(i\omega_nt)</math>, आशा के अनुसार।यह मामला प्राकृतिक दुनिया में बेहद दुर्लभ है, जिसमें निकटतम उदाहरण ऐसे मामले हैं जहां घर्षण उद्देश्यपूर्ण रूप से न्यूनतम मूल्यों को कम कर दिया गया था।
;न्यून अवमंदित: न्यून अवमंदित वह है जहां <math>\zeta = 0</math> अनिर्दिष्ट सरल हार्मोनिक दोलक के अनुरूप है और उस स्थिति में <math>\exp(i\omega_nt)</math> घर्षण उद्देश्यपूर्ण रूप से न्यूनतम मूल्यों को कम कर दिया गयाI
;अंडरडैम्पेड: यदि एस जटिल मूल्यों की एक जोड़ी है, तो प्रत्येक जटिल समाधान शब्द एक दोलन वाले हिस्से के साथ संयुक्त रूप से एक क्षयकारी घातीय है जो दिखता है <math display="inline">\exp\left(i \omega_n \sqrt{1 - \zeta^2}t\right)</math>।यह मामला होता है <math> \ 0 \le \zeta < 1 </math>, और अंडरडैम्पेड (जैसे, बंजी केबल) के रूप में संदर्भित किया जाता है।
;न्यून अवमंदित: यदि S जटिल मूल्यों का युग्म है तो प्रत्येक जटिल समाधान शब्द दोलन वाले हिस्से के साथ संयुक्त रूप से घातीय है जो दिखता है <math display="inline">\exp\left(i \omega_n \sqrt{1 - \zeta^2}t\right)</math> इसे <math> \ 0 \le \zeta < 1 </math>, और न्यून अवमंदित के रूप में संदर्भित किया जाता है।
;ओवरडैम्पेड: यदि एस वास्तविक मूल्यों की एक जोड़ी है, तो समाधान केवल दो क्षयकारी घातीय का एक योग है जिसमें कोई दोलन नहीं है।यह मामला होता है <math> \zeta > 1 </math>, और इसे ओवरडैम्प के रूप में संदर्भित किया जाता है।ऐसी परिस्थितियाँ जहां ओवरडैम्पिंग व्यावहारिक होती है, अगर ओवरशूटिंग होती है, तो आमतौर पर यांत्रिक के बजाय इलेक्ट्रिकल होता है।उदाहरण के लिए, ऑटोपायलट में एक विमान को उतरना: यदि सिस्टम ओवरशूट करता है और लैंडिंग गियर को बहुत देर से जारी करता है, तो परिणाम एक आपदा होगा।
;अति अवमंदित: यदि S वास्तविक मूल्यों की जोड़ी है तो समाधान केवल दो क्षयकारी घातीय का योग है जिसमें कोई दोलन नहीं है। जिसे ओवरडैम्प  <math> \zeta > 1 </math> के रूप में संदर्भित किया जाता है।
;गंभीर रूप से नम: वह मामला जहां <math> \zeta = 1 </math> ओवरडैम्प किए गए और अंडरडैम्प किए गए मामलों के बीच की सीमा है, और इसे गंभीर रूप से नम करने के लिए संदर्भित किया जाता है।यह कई मामलों में एक वांछनीय परिणाम है जहां एक नम ऑसिलेटर के इंजीनियरिंग डिजाइन की आवश्यकता होती है (जैसे, एक दरवाजा बंद तंत्र)।


== क्यू कारक और क्षय दर ==
== क्यू कारक और दर ==
क्यू कारक, भिगोना अनुपात ζ, और घातीय क्षय दर α ऐसे संबंधित हैं<ref name=Siebert>{{cite book | title = Circuits, Signals, and Systems | author = William McC. Siebert | publisher = MIT Press }}</ref>
क्यू कारक अवमंदन अनुपात ζ और घातीय क्षय दर α ऐसे संबंधित हैं<ref name=Siebert>{{cite book | title = Circuits, Signals, and Systems | author = William McC. Siebert | publisher = MIT Press }}</ref>
:<math>
:<math>
\zeta = \frac{1}{2 Q} = { \alpha \over \omega_n }.
\zeta = \frac{1}{2 Q} = { \alpha \over \omega_n }.
</math>
</math>
जब एक दूसरे क्रम की प्रणाली होती है <math>\zeta < 1</math> (यानी, जब सिस्टम को कम करके आंका जाता है), इसमें दो जटिल संयुग्म डंडे होते हैं, जिनमें से प्रत्येक का एक वास्तविक हिस्सा होता है <math>-\alpha</math>;अर्थात्, क्षय दर पैरामीटर <math>\alpha</math> दोलनों के [[घातीय क्षय]] की दर का प्रतिनिधित्व करता है।एक कम भिगोना अनुपात एक कम क्षय दर का अर्थ है, और इसलिए बहुत कम समय के लिए बहुत कम समय के लिए दोलन करता है।<ref>
जब एक दूसरे क्रम की प्रणाली होती है <math>\zeta < 1</math> में दो जटिल संयुग्म होते हैं जिनमें से प्रत्येक का वास्तविक हिस्सा होता है i <math>-\alpha</math>; अर्थात्क्ष क्षय दर पैरामीटर <math>\alpha</math> दोलनों के [[घातीय क्षय]] की दर का प्रतिनिधित्व करता है। <ref>
{{cite book
{{cite book
  | title = Process control engineering: a textbook for chemical, mechanical and electrical engineers
  | title = Process control engineering: a textbook for chemical, mechanical and electrical engineers
Line 107: Line 98:
  | page = 96
  | page = 96
  | url = https://books.google.com/books?id=NOpmEHNRH98C&pg=PA96
  | url = https://books.google.com/books?id=NOpmEHNRH98C&pg=PA96
  }}</ref> उदाहरण के लिए, एक उच्च गुणवत्ता वाले [[ट्यूनिंग कांटा]], जिसमें बहुत कम भिगोना अनुपात होता है, में एक दोलन होता है जो एक लंबे समय तक रहता है, एक हथौड़ा द्वारा मारा जाने के बाद बहुत धीरे -धीरे क्षय होता है।
  }}</ref> उदाहरण के लिए उच्च गुणवत्ता वाले [[ट्यूनिंग कांटा]] "एक  रह का यन्त्र " जिसमें बहुत कम अनुपात होता है जिसमें दोलन होता है जो लंबे समय तक रहता है काफी दबाव के बाद भी  बहुत धीरे -धीरे क्षय होता है।


== लॉगरिदमिक घटाव ==
== लघुगणक  घटाव ==


[[File:Dampingratio111.svg|thumb|400px|right|]]अंडरडैम्पेड कंपन के लिए, भिगोना अनुपात भी लॉगरिदमिक घटाव से संबंधित है <math>\delta</math>।भिगोना अनुपात किसी भी दो चोटियों के लिए पाया जा सकता है, भले ही वे आसन्न न हों।<ref>{{Cite web|url=https://www.brown.edu/Departments/Engineering/Courses/En4/Notes/vibrations_free_damped/vibrations_free_damped.htm|title = Dynamics and Vibrations: Notes: Free Damped Vibrations}}</ref> आसन्न चोटियों के लिए:<ref>{{Cite web|url=https://pm-engr.com/damping-evaluation-2/|title = Damping Evaluation|date = 19 October 2015}}</ref>
[[File:Dampingratio111.svg|thumb|400px|right|]]<math>\delta</math> लघुगणक घटाव से संबंधित है  
:<math> \zeta = \frac{\delta}{\sqrt{\delta^2 + \left(2\pi\right)^2}}</math> कहाँ पे <math>\delta = \ln\frac{x_0}{x_1}</math>
:<math> \zeta = \frac{\delta}{\sqrt{\delta^2 + \left(2\pi\right)^2}}</math> कहाँ पे <math>\delta = \ln\frac{x_0}{x_1}</math>
जहां एक्स<sub>0</sub> और एक्स<sub>1</sub> किसी भी दो क्रमिक चोटियों के आयाम हैं।
जहां ''x''<sub>0</sub> और ''x''<sub>1</sub> किसी भी दो क्रमिक समीकरणों के आयाम हैं।


जैसा कि सही आंकड़े में दिखाया गया है:
जैसा कि आंकड़े में दिखाया गया है:


:<math>  \delta = \ln\frac{x_1}{x_3}=\ln\frac{x_2}{x_4}=\ln\frac{x_1-x_2}{x_3-x_4}</math>
:<math>  \delta = \ln\frac{x_1}{x_3}=\ln\frac{x_2}{x_4}=\ln\frac{x_1-x_2}{x_3-x_4}</math>
कहाँ पे <math>x_1</math>, <math>x_3</math> दो क्रमिक सकारात्मक चोटियों के आयाम हैं और <math>x_2</math>, <math>x_4</math> दो क्रमिक नकारात्मक चोटियों के आयाम हैं।
:
जहां <math>x_1</math>, <math>x_3</math> दो क्रमिक सकारात्मक और <math>x_2</math>, <math>x_4</math> दो क्रमिक नकारात्मक श्रेणियों के आयाम हैं।


== प्रतिशत ओवरशूट ==
== प्रतिशत ओवरशूट ==
नियंत्रण सिद्धांत में, [[ओवरशूट (संकेत)]] एक आउटपुट को संदर्भित करता है जो इसके अंतिम, स्थिर-राज्य मूल्य से अधिक है।<ref name="Kuo">{{cite book|url=http://worldcat.org/isbn/0471134767|title=Automatic control systems|author=Kuo, Benjamin C & Golnaraghi M F|publisher=Wiley|year=2003|isbn=0-471-13476-7|edition=Eighth|location=NY|page=§7.3 p. 236–237}}</ref> एक कदम प्रतिक्रिया के लिए, प्रतिशत ओवरशूट (पीओ) चरण मूल्य से विभाजित चरण मूल्य का अधिकतम मूल्य माइनस है।यूनिट स्टेप के मामले में, '' ओवरशूट '' [[कदम की प्रतिक्रिया]] माइनस वन का अधिकतम मूल्य है।
नियंत्रण सिद्धांत में [[ओवरशूट (संकेत)|संकेत]] आउटपुट को संदर्भित करता है जो इसके अंतिम स्थिर मूल्य से अधिक है।<ref name="Kuo">{{cite book|url=http://worldcat.org/isbn/0471134767|title=Automatic control systems|author=Kuo, Benjamin C & Golnaraghi M F|publisher=Wiley|year=2003|isbn=0-471-13476-7|edition=Eighth|location=NY|page=§7.3 p. 236–237}}</ref> यूनिट स्टेप के ''तहत ''अतिलंघन [[कदम की प्रतिक्रिया|की प्रतिक्रिया]] माइनस एक का अधिकतम मूल्य है।


प्रतिशत ओवरशूट (पीओ) भिगोना अनुपात ('' '' ') से संबंधित है:
अतिलंघन प्रतिशत "PO" संबंधित है (''ζ'') :


: <math> \mathrm{PO} = 100 \exp \left({-\frac{\zeta\pi}{\sqrt{1-\zeta^2}}}\right) </math>
: <math> \mathrm{PO} = 100 \exp \left({-\frac{\zeta\pi}{\sqrt{1-\zeta^2}}}\right) </math>
इसके विपरीत, भिगोना अनुपात (ζ) जो किसी दिए गए प्रतिशत ओवरशूट की उपज देता है: द्वारा दिया जाता है:
इसके विपरीत अवमंदन अनुपात (ζ) जो किसी दिए गए प्रतिशत द्वारा दिया जाता है:


: <math> \zeta = \frac{-\ln\left(\frac{\rm PO}{100}\right)}{\sqrt{\pi^2 + \ln^2\left(\frac{\rm PO}{100}\right)}} </math>
: <math> \zeta = \frac{-\ln\left(\frac{\rm PO}{100}\right)}{\sqrt{\pi^2 + \ln^2\left(\frac{\rm PO}{100}\right)}} </math>


== उदाहरण और अनुप्रयोग ==
== उदाहरण और अनुप्रयोग ==


=== विस्कोस ड्रैग ===
जब कोई वस्तु हवा के माध्यम से गिर रही है तो इसमें उत्पन्न होने वाला एकमात्र बल वायु प्रतिरोध है। उदाहरण के लिए स्वचालित दरवाजों या एंटी-स्लैम दरवाजों में यही बल लागू होता है।<ref name=":0">{{Cite web|title=damping {{!}} Definition, Types, & Examples|url=https://www.britannica.com/science/damping|access-date=2021-06-09|website=Encyclopedia Britannica|language=en}}</ref>
 
जब कोई वस्तु हवा के माध्यम से गिर रही है, तो इसके फ्रीफॉल का विरोध करने वाला एकमात्र बल वायु प्रतिरोध है।पानी या तेल के माध्यम से गिरने वाली एक वस्तु अधिक से अधिक दर से धीमी हो जाएगी, जब तक कि अंततः एक स्थिर-राज्य वेग तक नहीं पहुंच जाए क्योंकि ड्रैग बल गुरुत्वाकर्षण से बल के साथ संतुलन में आता है।यह चिपचिपा ड्रैग की अवधारणा है, जो उदाहरण के लिए स्वचालित दरवाजों या एंटी-स्लैम दरवाजों में लागू होता है।<ref name=":0">{{Cite web|title=damping {{!}} Definition, Types, & Examples|url=https://www.britannica.com/science/damping|access-date=2021-06-09|website=Encyclopedia Britannica|language=en}}</ref>
 
 
=== विद्युत प्रणालियों में भिगोना / प्रतिरोध ===
 
इलेक्ट्रिकल सिस्टम जो वैकल्पिक वर्तमान (एसी) के साथ काम करते हैं, विद्युत प्रवाह को नम करने के लिए प्रतिरोधों का उपयोग करते हैं, क्योंकि वे आवधिक हैं।डिमर स्विच या वॉल्यूम नॉब्स एक विद्युत प्रणाली में भिगोना के उदाहरण हैं। <ref name=":0" />
 


=== चुंबकीय भिगोना ===
=== विद्युत प्रणालियों में अवमंदन  ===


काइनेटिक ऊर्जा जो दोलनों का कारण बनती है, इलेक्ट्रिक एडी धाराओं द्वारा गर्मी के रूप में विघटित हो जाती है जो एक चुंबक के ध्रुवों से गुजरने से प्रेरित होती है, या तो एक कॉइल या एल्यूमीनियम प्लेट द्वारा।दूसरे शब्दों में, चुंबकीय बलों के कारण होने वाला प्रतिरोध एक प्रणाली को धीमा कर देता है।इस अवधारणा का एक उदाहरण लागू किया जा रहा है रोलर कोस्टर पर ब्रेक है। <ref>{{Cite web|title=Eddy Currents and Magnetic Damping {{!}} Physics|url=https://courses.lumenlearning.com/physics/chapter/23-4-eddy-currents-and-magnetic-damping/|access-date=2021-06-09|website=courses.lumenlearning.com}}</ref>
विद्युत प्रणाली जो वैकल्पिक वर्तमान एसी के साथ काम करते हैं विद्युत प्रवाह को नम करने के लिए प्रतिरोधों का उपयोग करते हैं क्योंकि वे आवधिक हैं। डिमर स्विच या वॉल्यूम नॉब्स एक विद्युत प्रणाली में इसके उदाहरण हैं। <ref name=":0" />


'''चुंबकीय प्रणाली'''


गतिक ऊर्जा जो दोलनों का कारण बनती है विद्युत धाराओं से उत्सर्जित गर्मी के कारण विघटित हो जाती है जो चुंबकीय ध्रुव से गुजरने से या तो एल्यूमीनियम प्लेट द्वारा प्रेरित होती है दूसरे शब्दों में चुंबकीय बलों के कारण होने वाला प्रतिरोध एक प्रणाली को धीमा कर देता है। रोलर कोस्टर पर ब्रेक इस अवधारणा का एक उदाहरण है। <ref>{{Cite web|title=Eddy Currents and Magnetic Damping {{!}} Physics|url=https://courses.lumenlearning.com/physics/chapter/23-4-eddy-currents-and-magnetic-damping/|access-date=2021-06-09|website=courses.lumenlearning.com}}</ref>
== संदर्भ ==
== संदर्भ ==
{{reflist}}11. Britannica, Encyclopædia. “Damping.” ''Encyclopædia Britannica'', Encyclopædia Britannica, Inc., www.britannica.com/science/damping.
{{reflist}}11. Britannica, Encyclopædia. “Damping.” ''Encyclopædia Britannica'', Encyclopædia Britannica, Inc., www.britannica.com/science/damping.


12. OpenStax, College. “Physics.” ''Lumen'', courses.lumenlearning.com/physics/chapter/23-4-eddy-currents-and-magnetic-damping/.[[Category: यांत्रिकी की आयामहीन संख्या]] [[Category: अभियांत्रिकी अनुपात]] [[Category: सामान्य अवकल समीकरण]] [[Category: गणितीय विश्लेषण]] [[Category: शास्त्रीय यांत्रिकी]]
12. OpenStax, College. “Physics.” ''Lumen'', courses.lumenlearning.com/physics/chapter/23-4-eddy-currents-and-magnetic-damping/.
 
 


[[Category: Machine Translated Page]]
[[Category:Articles with hatnote templates targeting a nonexistent page]]
[[Category:CS1 English-language sources (en)]]
[[Category:Created On 25/01/2023]]
[[Category:Created On 25/01/2023]]
[[Category:Lua-based templates]]
[[Category:Machine Translated Page]]
[[Category:Mechanics templates]]
[[Category:Pages with empty portal template]]
[[Category:Pages with script errors]]
[[Category:Physics sidebar templates]]
[[Category:Portal-inline template with redlinked portals]]
[[Category:Short description with empty Wikidata description]]
[[Category:Templates Translated in Hindi]]
[[Category:Templates Vigyan Ready]]
[[Category:Templates that add a tracking category]]
[[Category:Templates that generate short descriptions]]
[[Category:Templates using TemplateData]]
[[Category:अभियांत्रिकी अनुपात]]
[[Category:गणितीय विश्लेषण]]
[[Category:यांत्रिकी की आयामहीन संख्या]]
[[Category:शास्त्रीय यांत्रिकी]]
[[Category:सामान्य अवकल समीकरण]]

Latest revision as of 10:09, 25 August 2023

के साथ वसंत -मास प्रणाली को कम कर दिया ζ < 1

अवमंदन ऐसी भौतिक क्रिया है जो दोलन प्रणाली के प्रभाव को कम करने और रोकने की प्रक्रिया पर कार्य करती हैI भौतिक प्रणालियों में अवमंदक उन प्रक्रियाओं द्वारा निर्मित है जो दोलन में संग्रहीत ऊर्जा का क्षय करते हैं।[1] उदाहरण के तौर पर विद्युत् दोलक विद्युत प्रतिरोध, चालन और प्रकाशिकी में प्रकाश के अवशोषण में द्रव्य दोलन प्रणाली में बाधा उत्पन्न करती है इसकी गति और प्रक्रिया दोनों ही प्रणालियों पर इसका प्रभाव धीमा हो जाता है जिससे दोलन प्रणाली धीमे हो जाती है I डैम्पिंग यानि अवमंदन ऊर्जा हानि पर आधारित नहीं है यह अन्य घर्षण युक्त दोलन प्रणालियों जैसे कि जैविक प्रणालियों और बाइक में महत्वपूर्ण हैI

अवमंदक अनुपात आयाम रहित माप की प्रणाली है जिसके अंतर्गत दोलन प्रणाली की क्षय प्रक्रिया का वर्णन किया गया हैI स्थिर संतुलन की स्थिति से विचलित होने पर कई प्रणालियां दोलनशील व्यवहार प्रदर्शित करती हैं। उदाहरण के लिए किसी स्प्रिंग से लटका हुआ पिंड यदि खींचा और छोड़ा जाए तो ऊपर और नीचे उछलता है। प्रत्येक उछाल पर प्रणाली अपनी संतुलन की स्थिति में लौटता है लेकिन इसे अतिकृत करता है। कभी -कभी यह क्रिया घर्षण प्रणाली को आद्र कर देता है और दोलनों को धीरे -धीरे शून्य या क्षीणन की ओर आयाम में क्षय करने का कारण बन सकता है।

अवमंदक अनुपात प्रणाली पैरामीटर है जिसे द्वारा निरूपित किया गया है ζ "ज़ेटा" जो कि (ζ = 0), अंडरडैम्पेड (ζ < 1) गंभीर रूप से नम (ζ = 1) अतिअवमंदित करने के लिए (ζ > 1) अनवमंदित से भिन्न हो सकता हैI

दोलक प्रणाली का व्यवहार अक्सर विभिन्न प्रकार के विषयों में रुचि रखता है जिसमें नियंत्रण इंजीनियरिंग, केमिकल इंजीनियरिंग, मैकेनिकल इंजीनियरिंग, संरचनागत वास्तुविद्या और विद्युत अभियन्त्रण सम्मिलित हैं।

दोलन मामले

वर्तमान में अवमंदक की मात्रा के आधार पर प्रणाली विभिन्न दोलन व्यवहार और गति को प्रदर्शित करती है।

  • जहां स्प्रिंग -मास प्रणाली पूरी तरह से क्षतिहीन है द्रव्यमान अस्पष्टतापूर्वक अनिश्चित काल के लिए दोलन गतिशील रहेगाI इस काल्पनिक प्रक्रिया को असंबद्ध कहा जाता है।
  • यदि प्रणाली में उच्च नुकसान होता है, उदाहरण के लिए, यदि वसंत -मास प्रयोग एक चिपचिपा तरल पदार्थ में आयोजित किया गया था, तो द्रव्यमान धीरे -धीरे कभी भी ओवरशूट किए बिना अपनी आराम की स्थिति में वापस आ सकता है। इस मामले को ओवरडैम्प कहा जाता है।
  • सामान्यतः द्रव्यमान अपनी प्रारंभिक स्थिति को पार करने के लिए जाता है, और फिर वापस लौटता हैI प्रत्येक ओवरशूट के साथ, प्रणाली में कुछ ऊर्जा विघटित हो जाती है, और दोलन शून्य की ओर जाते हैं। इस मामले को अंडरडैम्प कहा जाता है।
  • ओवरडैम्प किए गए और अंडरडैम्प किए गए मामलों के बीच, एक निश्चित स्तर की भिगोना मौजूद है, जिस पर प्रणाली बस ओवरशूट करने में विफल रहेगा और एक भी दोलन नहीं करेगा। इस मामले को क्रिटिकल डंपिंग कहा जाता है। महत्वपूर्ण भिगोना और ओवरडैम्पिंग के बीच महत्वपूर्ण अंतर यह है कि, महत्वपूर्ण भिगोना में, प्रणाली न्यूनतम समय में संतुलन में लौटता है।

ज्यावक्रीय तरंगे

एक नम साइनसोइडल तरंग का प्लॉट फ़ंक्शन के रूप में दर्शाया गया है

ज्यावक्रीय सांकेतिक तरंगे सांकेतिक लहर है जिसका आयाम समय बढ़ने के साथ शून्य पर पहुंचता है। यह अवमंदित द्वितीय कोटिक क्रमिक व्यवस्था से मेल खाता हैI इन तरंगों को सामान्यतः विज्ञान और अभियांत्रिकी में देखा जाता है जहां गुणावृत्ति न्यून अवमंदित ऊर्जा दोलक की आपूर्ति की तुलना में तेजी से ऊर्जा की क्षति हो रही है I

ज्यावक्रीय सांकेतिक ऐसी तरंगे = 0 मूल (आयाम = 0) से शुरू होती है। ज्यावक्रीय तरंगे अपनी उच्चतम मूल्य को प्रदर्शित करती है जो ज्यावक्रीय तरंगों से भिन्न होते हैं दिया गया ज्यावक्रीय तरंग मध्यवर्ती चरण की हो सकती है जिसमें द्विजया और कोटिज्या घटक दोनों होते हैं। इस तरह प्रारंभिक चरण में द्विजया लहर सभी ज्यावक्रीय तरंगों का वर्णन करती हैI

अवमंदित सामान्यतः रैखिक प्रणालियों में पाया जाने वाला रूप है। यह रूप घातीय है जिसमें क्रमिक घातीय क्षय वक्र है। यही है जब आप प्रत्येक क्रमिक वक्र के अधिकतम बिंदु को जोड़ते हैं तो परिणाम घातीय क्षय जैसा दिखता है। घातीय रूप से ज्यावक्रीय सांकेतिक तरंगे के लिए सामान्य समीकरण का प्रतिनिधित्व किया जा सकता हैI


समय पर तात्कालिक आयाम है t;

  • लिफाफे का प्रारंभिक आयाम है;
  • स्वतंत्र चर की समय इकाइयों के पारस्परिक में क्षय दर है t;
  • पर चरण कोण है t = 0;
  • कोणीय आवृत्ति है।

अन्य महत्वपूर्ण मापदंडों में सम्मिलित हैंI

  • आवृत्ति: , प्रति समय इकाई चक्रों की संख्या।यह व्युत्क्रम समय इकाइयों में व्यक्त किया जाता है , या हेटर्स
  • स्थिर समय: , ई (गणितीय स्थिरांक) के कारक द्वारा कम होने के आयाम के लिए समय।
  • आधा जीवन वह समय है जब यह घातीय आयाम लिफाफे के लिए एक कारक से घटने के लिए लेता है। यह बराबर है जो लगभग है
  • अवमंदन अनुपात: आवृत्ति के सापेक्ष क्षय दर का एक गैर-आयामी लक्षण वर्णन है, लगभग , या बिल्कुल
  • क्यू फैक्टर: भिगोना की मात्रा का एक और गैर-आयामी लक्षण वर्णन है;उच्च क्यू दोलन के सापेक्ष धीमी गति से भिगोना इंगित करता है।

अवमंदक अनुपात परिभाषा

दूसरे क्रम की प्रणाली पर अलग-अलग भिगोना अनुपात का प्रभाव।

अवमंदक अनुपात पैरामीटर है जिसे सामान्यतः ग्रीक पत्र ज़ेटा द्वारा निरूपित किया जाता हैI[2] यह दूसरे क्रम के अंतर समीकरण की आवृत्ति प्रतिक्रिया की विशेषता है। दूसरे क्रम के साधारण अंतर समीकरण। यह नियंत्रण सिद्धांत के अध्ययन में विशेष रूप से महत्वपूर्ण है। यह हार्मोनिक ऑसिलेटर में भी महत्वपूर्ण है। सामान्य तौर पर उच्च अवमंदक अनुपात प्रणाली प्रभाव का अधिक प्रदर्शन करेंगे। न्यून अवमंदित का मूल्य 1 से कम है।

अवमंदन अनुपात महत्वपूर्ण अवमंदन के सापेक्ष एक प्रणाली में अवमंदन के स्तर को व्यक्त करने का एक गणितीय साधन प्रदान करता है। द्रव्यमान m अवमंदन गुणांक c और स्थिरांक k के साथ अवमंदित हार्मोनिक दोलक के लिए अवकलन समीकरण में महत्वपूर्ण अवमंदन गुणांक के अनुपात के रूप में परिभाषित किया जा सकता हैI

जहां प्रणाली का समीकरण गति का समीकरण है

इस समीकरण का महत्वपूर्ण गुणांक है

या

अन्य समीकरण
यह दोलक प्रक्रिया की प्राकृतिक आवृत्ति है।

अवमंदन अनुपात आयामहीन है समान इकाइयों के दो गुणांक का अनुपात है।

व्युत्पत्ति

प्राकृतिक आवृत्ति का उपयोग करना और ऊपर उपरोक्त अवमंदक अनुपात की परिभाषा इस प्रकार दे सकते हैंI

यह समीकरण केवल द्रव्यमान -विभाजन प्रणाली की तुलना में अधिक सामान्य है और विद्युत सर्किट और अन्य डोमेन पर भी लागू होता है। इसे दृष्टिकोण के साथ हल किया जा सकता है

जहां C और S दोनों जटिल संख्या स्थिरांक हैं

समीकरण को S के दो मूल्यों के लिए दो ऐसे समाधान सामान्य वास्तविक समाधान बनाने के लिए जोड़े जा सकते हैंI

न्यून अवमंदित
न्यून अवमंदित वह है जहां अनिर्दिष्ट सरल हार्मोनिक दोलक के अनुरूप है और उस स्थिति में घर्षण उद्देश्यपूर्ण रूप से न्यूनतम मूल्यों को कम कर दिया गयाI
न्यून अवमंदित
यदि S जटिल मूल्यों का युग्म है तो प्रत्येक जटिल समाधान शब्द दोलन वाले हिस्से के साथ संयुक्त रूप से घातीय है जो दिखता है इसे , और न्यून अवमंदित के रूप में संदर्भित किया जाता है।
अति अवमंदित
यदि S वास्तविक मूल्यों की जोड़ी है तो समाधान केवल दो क्षयकारी घातीय का योग है जिसमें कोई दोलन नहीं है। जिसे ओवरडैम्प के रूप में संदर्भित किया जाता है।

क्यू कारक और दर

क्यू कारक अवमंदन अनुपात ζ और घातीय क्षय दर α ऐसे संबंधित हैं[3]

जब एक दूसरे क्रम की प्रणाली होती है में दो जटिल संयुग्म होते हैं जिनमें से प्रत्येक का वास्तविक हिस्सा होता है i ; अर्थात्क्ष क्षय दर पैरामीटर दोलनों के घातीय क्षय की दर का प्रतिनिधित्व करता है। [4] उदाहरण के लिए उच्च गुणवत्ता वाले ट्यूनिंग कांटा "एक  रह का यन्त्र " जिसमें बहुत कम अनुपात होता है जिसमें दोलन होता है जो लंबे समय तक रहता है काफी दबाव के बाद भी बहुत धीरे -धीरे क्षय होता है।

लघुगणक घटाव

Dampingratio111.svg

लघुगणक घटाव से संबंधित है

कहाँ पे

जहां x0 और x1 किसी भी दो क्रमिक समीकरणों के आयाम हैं।

जैसा कि आंकड़े में दिखाया गया है:

जहां , दो क्रमिक सकारात्मक और , दो क्रमिक नकारात्मक श्रेणियों के आयाम हैं।

प्रतिशत ओवरशूट

नियंत्रण सिद्धांत में संकेत आउटपुट को संदर्भित करता है जो इसके अंतिम स्थिर मूल्य से अधिक है।[5] यूनिट स्टेप के तहत अतिलंघन की प्रतिक्रिया माइनस एक का अधिकतम मूल्य है।

अतिलंघन प्रतिशत "PO" संबंधित है (ζ)  :

इसके विपरीत अवमंदन अनुपात (ζ) जो किसी दिए गए प्रतिशत द्वारा दिया जाता है:

उदाहरण और अनुप्रयोग

जब कोई वस्तु हवा के माध्यम से गिर रही है तो इसमें उत्पन्न होने वाला एकमात्र बल वायु प्रतिरोध है। उदाहरण के लिए स्वचालित दरवाजों या एंटी-स्लैम दरवाजों में यही बल लागू होता है।[6]

विद्युत प्रणालियों में अवमंदन 

विद्युत प्रणाली जो वैकल्पिक वर्तमान एसी के साथ काम करते हैं विद्युत प्रवाह को नम करने के लिए प्रतिरोधों का उपयोग करते हैं क्योंकि वे आवधिक हैं। डिमर स्विच या वॉल्यूम नॉब्स एक विद्युत प्रणाली में इसके उदाहरण हैं। [6]

चुंबकीय प्रणाली

गतिक ऊर्जा जो दोलनों का कारण बनती है विद्युत धाराओं से उत्सर्जित गर्मी के कारण विघटित हो जाती है जो चुंबकीय ध्रुव से गुजरने से या तो एल्यूमीनियम प्लेट द्वारा प्रेरित होती है दूसरे शब्दों में चुंबकीय बलों के कारण होने वाला प्रतिरोध एक प्रणाली को धीमा कर देता है। रोलर कोस्टर पर ब्रेक इस अवधारणा का एक उदाहरण है। [7]

संदर्भ

  1. Steidel (1971). An Introduction to Mechanical Vibrations. John Wiley & Sons. p. 37. damped, which is the term used in the study of vibration to denote a dissipation of energy
  2. Alciatore, David G. (2007). Introduction to Mechatronics and Measurement (3rd ed.). McGraw Hill. ISBN 978-0-07-296305-2.
  3. William McC. Siebert. Circuits, Signals, and Systems. MIT Press.
  4. Ming Rao and Haiming Qiu (1993). Process control engineering: a textbook for chemical, mechanical and electrical engineers. CRC Press. p. 96. ISBN 978-2-88124-628-9.
  5. Kuo, Benjamin C & Golnaraghi M F (2003). Automatic control systems (Eighth ed.). NY: Wiley. p. §7.3 p. 236–237. ISBN 0-471-13476-7.
  6. 6.0 6.1 "damping | Definition, Types, & Examples". Encyclopedia Britannica (in English). Retrieved 2021-06-09.
  7. "Eddy Currents and Magnetic Damping | Physics". courses.lumenlearning.com. Retrieved 2021-06-09.

11. Britannica, Encyclopædia. “Damping.” Encyclopædia Britannica, Encyclopædia Britannica, Inc., www.britannica.com/science/damping.

12. OpenStax, College. “Physics.” Lumen, courses.lumenlearning.com/physics/chapter/23-4-eddy-currents-and-magnetic-damping/.