आयतन समाकलन: Difference between revisions

From Vigyanwiki
No edit summary
 
(4 intermediate revisions by 4 users not shown)
Line 2: Line 2:
{{Calculus |Multivariable}}
{{Calculus |Multivariable}}


गणित में, विशेष रूप से [[बहुभिन्नरूपी कैलकुलस|बहुचर गणना]] '''आयतन समाकलन''' (∭) 3-[[त्रि-आयामी स्थान|आयामी समष्टि]] पर एक समाकलन को संदर्भित करती है अर्थात् यह अनेक समाकलनों की एक विशेष स्थिति है। कई अनुप्रयोगों के लिए [[भौतिक विज्ञान]] में आयतन समाकलन विशेष रूप से महत्वपूर्ण हैं, उदाहरण के लिए [[फ्लक्स|प्रवाह]] घनत्व की गणना करने के लिए इसका उपयोग किया जाता है।
गणित में, विशेष रूप से [[बहुभिन्नरूपी कैलकुलस|बहुचर गणना]] '''आयतन समाकल''' या '''आयतन समाकलन''' (∭) 3-[[त्रि-आयामी स्थान|आयामी समष्टि]] पर एक समाकल को संदर्भित करती है अर्थात् यह अनेक समाकलों की एक विशेष स्थिति है। कई अनुप्रयोगों के लिए [[भौतिक विज्ञान]] में आयतन समाकल विशेष रूप से महत्वपूर्ण हैं उदाहरण के लिए [[फ्लक्स|प्रवाह]] घनत्व की गणना करने के लिए इसका उपयोग किया जाता है।


== निर्देशांक ==
== निर्देशांक ==
इसका तात्पर्य किसी फलन <math>f(x,y,z),</math> के क्षेत्र <math>D \subset \R^3</math> के भीतर बहु समाकलन भी हो सकता है इसे सामान्यतः इस प्रकार लिखा जाता है:<math display="block">\iiint_D f(x,y,z)\,dx\,dy\,dz.</math>[[बेलनाकार निर्देशांक|बेलनाकार निर्देशांकों]] में आयतन समाकल है:<math display="block">\iiint_D f(\rho,\varphi,z) \rho \,d\rho \,d\varphi \,dz,</math>गोलीय निर्देशांकों में आयतन समाकल आईएसओ फलन का प्रयोग करते हुए कोणों के लिए <math>\varphi</math> दिगंश के रूप में और <math>\theta</math> ध्रुवीय अक्ष से मापा जाता है:<math display="block">\iiint_D f(r,\theta,\varphi) r^2 \sin\theta \,dr \,d\theta\, d\varphi .</math>
इसका तात्पर्य किसी फलन <math>f(x,y,z),</math> के क्षेत्र <math>D \subset \R^3</math> के भीतर बहु समाकल भी हो सकता है इसे सामान्यतः इस प्रकार लिखा जाता है:<math display="block">\iiint_D f(x,y,z)\,dx\,dy\,dz.</math>[[बेलनाकार निर्देशांक|बेलनाकार निर्देशांकों]] में आयतन समाकल है:<math display="block">\iiint_D f(\rho,\varphi,z) \rho \,d\rho \,d\varphi \,dz,</math>गोलीय निर्देशांकों में आयतन समाकल आईएसओ फलन का प्रयोग करते हुए कोणों के लिए <math>\varphi</math> दिगंश के रूप में और <math>\theta</math> ध्रुवीय अक्ष से मापा जाता है:<math display="block">\iiint_D f(r,\theta,\varphi) r^2 \sin\theta \,dr \,d\theta\, d\varphi .</math>
 
 
== उदाहरण ==
== उदाहरण ==


समीकरण का एकीकरण <math> f(x,y,z) = 1 </math> एक इकाई घन पर निम्नलिखित परिणाम प्राप्त होता है:
समीकरण का समाकल <math> f(x,y,z) = 1 </math> एक इकाई घन पर निम्नलिखित परिणाम प्राप्त होता है:
<math display="block">\int_0^1 \int_0^1 \int_0^1 1 \,dx \,dy \,dz = \int_0^1 \int_0^1 (1 - 0) \,dy \,dz = \int_0^1 \left(1 - 0\right) dz = 1 - 0 = 1</math>
<math display="block">\int_0^1 \int_0^1 \int_0^1 1 \,dx \,dy \,dz = \int_0^1 \int_0^1 (1 - 0) \,dy \,dz = \int_0^1 \left(1 - 0\right) dz = 1 - 0 = 1</math>
अतः इकाई घन का आयतन अपेक्षित मान 1 है। हालांकि यह अपेक्षाकृत तुच्छ है और आयतन समाकलन कहीं अधिक प्रभावी है। उदाहरण के लिए यदि हमारे पास इकाई घन पर एक अदिश घनत्व फलन है तो आयतन समाकलन घन का कुल द्रव्यमान होगा। उदाहरण के लिए घनत्व फलन निम्न है: <math display="block"> \begin{cases}
अतः इकाई घन का आयतन अपेक्षित मान 1 है। हालांकि यह अपेक्षाकृत तुच्छ है और आयतन समाकल कहीं अधिक प्रभावी है। उदाहरण के लिए यदि हमारे पास इकाई घन पर एक अदिश घनत्व फलन है तो आयतन समाकल घन का कुल द्रव्यमान होगा। उदाहरण के लिए घनत्व फलन निम्न है: <math display="block"> \begin{cases}
f: \R^3 \to \R \\
f: \R^3 \to \R \\
f: (x,y,z) \mapsto x+y+z
f: (x,y,z) \mapsto x+y+z
Line 20: Line 18:
{{Portal|Mathematics}}
{{Portal|Mathematics}}
* [[विचलन प्रमेय|अपसरण प्रमेय]]
* [[विचलन प्रमेय|अपसरण प्रमेय]]
* [[भूतल अभिन्न|सतह समाकलन]]
* [[भूतल अभिन्न|पृष्ठीय समाकल]]
* [[मात्रा तत्व|आयतन अल्पांश]]
* [[मात्रा तत्व|आयतन अल्पांश]]


Line 28: Line 26:


{{Calculus topics}}
{{Calculus topics}}
[[Category: बहुभिन्नरूपी कैलकुलस]]


[[Category: Machine Translated Page]]
[[Category:Collapse templates]]
[[Category:Created On 24/03/2023]]
[[Category:Created On 24/03/2023]]
[[Category:Lua-based templates]]
[[Category:Machine Translated Page]]
[[Category:Navigational boxes| ]]
[[Category:Navigational boxes without horizontal lists]]
[[Category:Pages using sidebar with the child parameter]]
[[Category:Pages with empty portal template]]
[[Category:Pages with script errors]]
[[Category:Portal templates with redlinked portals]]
[[Category:Sidebars with styles needing conversion]]
[[Category:Template documentation pages|Documentation/doc]]
[[Category:Templates Vigyan Ready]]
[[Category:Templates generating microformats]]
[[Category:Templates that add a tracking category]]
[[Category:Templates that are not mobile friendly]]
[[Category:Templates that generate short descriptions]]
[[Category:Templates using TemplateData]]
[[Category:Wikipedia metatemplates]]
[[Category:बहुभिन्नरूपी कैलकुलस]]

Latest revision as of 16:15, 29 August 2023

गणित में, विशेष रूप से बहुचर गणना आयतन समाकल या आयतन समाकलन (∭) 3-आयामी समष्टि पर एक समाकल को संदर्भित करती है अर्थात् यह अनेक समाकलों की एक विशेष स्थिति है। कई अनुप्रयोगों के लिए भौतिक विज्ञान में आयतन समाकल विशेष रूप से महत्वपूर्ण हैं उदाहरण के लिए प्रवाह घनत्व की गणना करने के लिए इसका उपयोग किया जाता है।

निर्देशांक

इसका तात्पर्य किसी फलन के क्षेत्र के भीतर बहु समाकल भी हो सकता है इसे सामान्यतः इस प्रकार लिखा जाता है:

बेलनाकार निर्देशांकों में आयतन समाकल है:
गोलीय निर्देशांकों में आयतन समाकल आईएसओ फलन का प्रयोग करते हुए कोणों के लिए दिगंश के रूप में और ध्रुवीय अक्ष से मापा जाता है:

उदाहरण

समीकरण का समाकल एक इकाई घन पर निम्नलिखित परिणाम प्राप्त होता है:

अतः इकाई घन का आयतन अपेक्षित मान 1 है। हालांकि यह अपेक्षाकृत तुच्छ है और आयतन समाकल कहीं अधिक प्रभावी है। उदाहरण के लिए यदि हमारे पास इकाई घन पर एक अदिश घनत्व फलन है तो आयतन समाकल घन का कुल द्रव्यमान होगा। उदाहरण के लिए घनत्व फलन निम्न है:
घन का कुल द्रव्यमान है:

यह भी देखें

बाहरी संबंध

  • "Multiple integral", Encyclopedia of Mathematics, EMS Press, 2001 [1994]
  • Weisstein, Eric W. "Volume integral". MathWorld.