परमाणु, आणविक और प्रकाशिक भौतिकी: Difference between revisions
No edit summary |
|||
(12 intermediate revisions by 5 users not shown) | |||
Line 1: | Line 1: | ||
{{Short description|Study of matter-light interactions at small scales}} | {{Short description|Study of matter-light interactions at small scales}} | ||
{{quantum mechanics}} | {{quantum mechanics}} | ||
परमाणु, आणविक और प्रकाशिक भौतिकी (एएमओ) पदार्थ-पदार्थ और प्रकाश-पदार्थ के बिच का अध्ययन है; कई इलेक्ट्रॉन वाल्ट के चारों ओर<ref name=nap>{{cite book|title=परमाणु, आणविक और ऑप्टिकल भौतिकी|year=1986|publisher=National Academy Press|isbn=978-0-309-03575-0|url=https://archive.org/details/atomicmolecularo00nati_0}}</ref> एक या कुछ परमाणुओं और ऊर्जा के स्तर पर होता है।<ref name=Drake>{{Cite book|title=परमाणु, आणविक और ऑप्टिकल भौतिकी की पुस्तिका|author=Editor: Gordon Drake (Various authors)|year=1996|publisher=[[Springer Science+Business Media|Springer]]|isbn=978-0-387-20802-2}}</ref>{{rp|1356}}<ref name=chen>{{cite book|editor-last=Chen|editor-first=L. T. |title=Atomic, Molecular and Optical Physics: New Research|year=2009|publisher=Nova Science Publishers|isbn=978-1-60456-907-0}}</ref> तीनों क्षेत्र आपस में घनिष्ठ रूप से जुड़े हुए हैं। एएमओ सिद्धांत में [[शास्त्रीय भौतिकी]], [[अर्धशास्त्रीय भौतिकी]] | '''परमाणु, आणविक और प्रकाशिक भौतिकी''' (एएमओ) पदार्थ-पदार्थ और प्रकाश-पदार्थ के बिच का अध्ययन है; कई इलेक्ट्रॉन वाल्ट के चारों ओर<ref name=nap>{{cite book|title=परमाणु, आणविक और ऑप्टिकल भौतिकी|year=1986|publisher=National Academy Press|isbn=978-0-309-03575-0|url=https://archive.org/details/atomicmolecularo00nati_0}}</ref> एक या कुछ परमाणुओं और ऊर्जा के स्तर पर होता है।<ref name=Drake>{{Cite book|title=परमाणु, आणविक और ऑप्टिकल भौतिकी की पुस्तिका|author=Editor: Gordon Drake (Various authors)|year=1996|publisher=[[Springer Science+Business Media|Springer]]|isbn=978-0-387-20802-2}}</ref>{{rp|1356}}<ref name=chen>{{cite book|editor-last=Chen|editor-first=L. T. |title=Atomic, Molecular and Optical Physics: New Research|year=2009|publisher=Nova Science Publishers|isbn=978-1-60456-907-0}}</ref> तीनों क्षेत्र आपस में घनिष्ठ रूप से जुड़े हुए हैं। एएमओ सिद्धांत में [[शास्त्रीय भौतिकी|प्राचीन]], [[अर्धशास्त्रीय भौतिकी|अर्धश्रेण्य भौतिकी]] और [[क्वांटम भौतिकी]] उपचार सम्मिलित हैं। सामान्यतौर पर, उत्सर्जन वर्णक्रम के सिद्धांत और अनुप्रयोग, अवशोषण ([[विद्युत चुम्बकीय विकिरण]]), उत्तेजित अवस्था परमाणुओं और [[अणु]]ओं से विद्युत चुम्बकीय विकिरण (प्रकाश) का फैलाव, स्पेक्ट्रोस्कोपी का विश्लेषण, लेसर और मेसर की पीढ़ी, और सामान्य रूप से पदार्थ के प्रकाशिकी गुणों के श्रेणियों में कमी आती है। | ||
== परमाणु और आणविक भौतिकी == | == परमाणु और आणविक भौतिकी == | ||
Main article: परमाणु भौतिकी और आणविक भौतिकी | |||
[[परमाणु भौतिकी]] एएमओ का उपक्षेत्र है जो परमाणुओं को [[इलेक्ट्रॉन|इलेक्ट्रानों]] की पृथक प्रणाली और [[परमाणु नाभिक]] के रूप में अध्ययन करता है, जबकि [[आणविक भौतिकी]] अणुओं के भौतिक गुणों का अध्ययन है। मानक अंग्रेजी में 'परमाणु' और 'परमाणु' के पर्यायवाची उपयोग के कारण 'परमाणु भौतिकी' शब्द अधिकांशतः परमाणु ऊर्जा और [[परमाणु बम|परमाणु बमों]] से जुड़ा होता है। चूँकि, भौतिक विज्ञानी परमाणु भौतिकी के बीच अंतर करते हैं - जो परमाणु के साथ नाभिक और इलेक्ट्रॉनों वाली प्रणाली के रूप में व्यवहार करता है - और परमाणु भौतिकी, जो केवल परमाणु नाभिक को मानता है। महत्वपूर्ण प्रायोगिक तकनीकें विभिन्न प्रकार की [[स्पेक्ट्रोस्कोपी]] हैं। आणविक भौतिकी, जबकि परमाणु भौतिकी से निकटता से संबंधित है, सैद्धांतिक रसायन विज्ञान, [[भौतिक रसायन]] विज्ञान और [[रासायनिक भौतिकी]] के साथ भी बहुत अत्यधिक है।<ref>{{Cite book|page=[https://archive.org/details/mcgrawhillencycl1993park/page/803 803]|title=मैकग्रा हिल एनसाइक्लोपीडिया ऑफ फिजिक्स|author=C.B. Parker|year=1994|edition=2nd|publisher=McGraw Hill|isbn=978-0-07-051400-3|url=https://archive.org/details/mcgrawhillencycl1993park/page/803}}</ref> दोनों उपक्षेत्र मुख्य रूप से [[इलेक्ट्रॉनिक संरचना]] और गतिशील प्रक्रियाओं से संबंधित हैं जिनके द्वारा ये व्यवस्थाएं बदलती हैं। सामान्यतौर पर इस कार्य में क्वांटम यांत्रिकी का उपयोग करना सम्मिलित होता है। आण्विक भौतिकी के लिए, इस दृष्टिकोण को [[क्वांटम रसायन]] शास्त्र के रूप में जाना जाता है। आणविक भौतिकी का एक महत्वपूर्ण कथन यह है कि परमाणु भौतिकी के क्षेत्र में आवश्यक [[परमाणु कक्षीय]] सिद्धांत का विस्तार [[आणविक कक्षीय]] सिद्धांत तक होता है।<ref>{{Cite book|chapter=chapter 9|title=रसायन विज्ञान, पदार्थ और ब्रह्मांड|author1=R. E. Dickerson |author2=I. Geis |year=1976|publisher=W.A. Benjamin Inc. (USA)|isbn=978-0-19-855148-5}}</ref> आणविक भौतिकी अणुओं में परमाणु प्रक्रियाओं से संबंधित है, परन्तु यह [[आणविक संरचना]] के कारण होने वाले प्रभावों से भी संबंधित है। इसके अतिरिक्त इलेक्ट्रॉनिक उत्तेजना क्षेत्रों के लिए जो परमाणुओं से ज्ञात होते हैं, अणु घूमने और कंपन करने में सक्षम होते हैं। ये घुमाव और कंपन परिमाणित होते हैं; असतत [[ऊर्जा स्तर]] हैं। विभिन्न घूर्णी अवस्थाओं के बीच सबसे छोटे ऊर्जा अंतर उपस्थित होते हैं, इसलिए शुद्ध घूर्णी [[स्पेक्ट्रम]] विद्युत चुम्बकीय स्पेक्ट्रम के दूर [[अवरक्त]] क्षेत्र (लगभग 30 - 150 माइक्रोन [[तरंग दैर्ध्य]]) में होते हैं। [[रैखिक अणुओं की कंपन स्पेक्ट्रोस्कोपी]] निकट अवरक्त (लगभग 1 - 5 माइक्रोमीटर) में होती है और इलेक्ट्रॉनिक संक्रमण से उत्पन्न स्पेक्ट्रा ज्यादातर दृश्य और [[पराबैंगनी]] क्षेत्रों में होते हैं। अणुओं के घूर्णी और कंपन स्पेक्ट्रा गुणों को मापने से नाभिक के बीच की दूरी की गणना की जा सकती है।<ref>{{Cite book|chapter=chapters 12, 13, 17|title=The Light Fantastic – Introduction to Classic and Quantum Optics|author=I.R. Kenyon|year=2008|publisher=Oxford University Press|isbn=978-0-19-856646-5|chapter-url-access=registration|chapter-url=https://archive.org/details/lightfantasticmo0000keny}}</ref> जैसा कि कई वैज्ञानिक क्षेत्रों के साथ होता है, कठोर रेखांकन अत्यधिक काल्पनिक हो सकता है और परमाणु भौतिकी को अधिकांशतः परमाणु, आणविक और प्रकाशिक भौतिकी के व्यापक संदर्भ में माना जाता है। भौतिकी अनुसंधान समूह सामान्यतौर पर वर्गीकृत होते हैं। | |||
== प्रकाशिकी भौतिकी == | == प्रकाशिकी भौतिकी == | ||
Line 15: | Line 16: | ||
| url =http://www.optics.arizona.edu/research/faculty-specialties/optical-physics | | url =http://www.optics.arizona.edu/research/faculty-specialties/optical-physics | ||
| access-date = Apr 23, 2014}}</ref> यह सामान्य [[प्रकाशिकी]] और प्रकाशिक [[ऑप्टिकल इंजीनियरिंग|इंजीनियरिंग]] से भिन्न है क्योंकि यह नई घटनाओं की खोज और अनुप्रयोग पर केंद्रित है। चूँकि, प्रकाशिकी भौतिकी, क्रियान्वित प्रकाशिकी और प्रकाशिकी इंजीनियरिंग के बीच कोई बहुत अंतर नहीं है, क्योंकि प्रकाशिकी इंजीनियरिंग के उपकरण और क्रियान्वित प्रकाशिकी के अनुप्रयोग प्रकाशिकी भौतिकी में आरंभिक शोध के लिए आवश्यक हैं, और यह शोध नए उपकरणों के विकास की ओर ले जाता है। अधिकांशतः वही लोग आरंभिक अनुसंधान और अनुप्रयुक्त प्रौद्योगिकी विकास दोनों में सम्मिलित होते हैं, उदाहरण के लिए एसई हैरिस द्वारा विद्युत् चुंबकीय रूप से प्रेरित पारदर्शिता और हैरिस और [[लेने वेस्टरगार्ड हाऊ]] द्वारा [[धीमी रोशनी]] का प्रायोगिक प्रदर्शन करता है।<ref>{{cite web |url=http://sciencewatch.com/nobel/predictions/slow-light |title=धीमी रोशनी|website=Science Watch |access-date=Jan 22, 2013}}</ref><ref>{{Cite book|chapter=chapters 9,10|title=Light and Matter: Electromagnetism, Optics, Spectroscopy and Lasers|author=Y.B. Band|year=2010|publisher=John Wiley & Sons|isbn=978-0-471-89931-0}}</ref> प्रकाशिक भौतिकी के शोधकर्ता प्रकाश स्रोतों का उपयोग और विकास करते हैं जो [[माइक्रोवेव]] से [[एक्स-रे]] तक विद्युत चुम्बकीय वर्णक्रम फैलाते हैं। क्षेत्र में प्रकाश, रैखिक और अरैखिक प्रकाशिकी प्रक्रियाओं और स्पेक्ट्रोस्कोपी की पीढ़ी और पहचान सम्मिलित है। लेजर और [[लेजर स्पेक्ट्रोस्कोपी]] ने प्रकाशिक विज्ञान को बदल दिया है। प्रकाशिक भौतिकी में प्रमुख अध्ययन भी [[क्वांटम प्रकाशिकी]] और ससंजन (भौतिकी) और [[गुजरने|प्रकाशिकी से गुजरने]] के लिए समर्पित है।<ref name="nap"/> प्रकाशिक भौतिकी में, तीव्र, अतिलघु विद्युत चुम्बकीय क्षेत्रों के लिए पृथक परमाणुओं की प्रतिक्रिया, उच्च क्षेत्रों में परमाणु-गुहा के बिच, और विद्युत चुम्बकीय क्षेत्र के क्वांटम गुण जैसे क्षेत्रों में भी समर्थन प्रदान किया जाता है।<ref>{{Cite book|pages=[https://archive.org/details/mcgrawhillencycl1993park/page/933 933–934]|title=मैकग्रा हिल एनसाइक्लोपीडिया ऑफ फिजिक्स|author=C.B. Parker|year=1994|edition=2nd|publisher=McGraw Hill|isbn=978-0-07-051400-3|url=https://archive.org/details/mcgrawhillencycl1993park/page/933}}</ref> अनुसंधान के अन्य महत्वपूर्ण क्षेत्रों में नैनो-प्रकाशिक मापन, [[विवर्तनिक प्रकाशिकी]], [[इंटरफेरोमेट्री]] निम्न-ससंजन इंटरफेरोमेट्री, प्रकाशिक ससंजन [[ऑप्टिकल कोहरेन्स टोमोग्राफी|टोमोग्राफी]], और [[निकट-क्षेत्र स्कैनिंग ऑप्टिकल माइक्रोस्कोप|निकट-क्षेत्र अवलोकन प्रकाशिक सूक्ष्मदर्शी निकट-क्षेत्र]] सूक्ष्मदर्शी के लिए नवीन प्रकाशिक तकनीकों का विकास सम्मिलित है। प्रकाशिक भौतिकी में अनुसंधान अतितीव्र प्रकाशिक विज्ञान और प्रौद्योगिकी पर जोर देता है। प्रकाशिक भौतिकी के अनुप्रयोग [[दूरसंचार]], चिकित्सा, निर्माण और यहां तक कि [[मनोरंजन]] में भी प्रगति करते हैं।<ref>{{Cite book|chapter=5, 6, 10, 16|title=The Light Fantastic – Introduction to Classic and Quantum Optics|author=I. R. Kenyon|year=2008|edition=2nd|publisher=Oxford University Press|isbn=978-0-19-856646-5|chapter-url-access=registration|chapter-url=https://archive.org/details/lightfantasticmo0000keny}}</ref> | | access-date = Apr 23, 2014}}</ref> यह सामान्य [[प्रकाशिकी]] और प्रकाशिक [[ऑप्टिकल इंजीनियरिंग|इंजीनियरिंग]] से भिन्न है क्योंकि यह नई घटनाओं की खोज और अनुप्रयोग पर केंद्रित है। चूँकि, प्रकाशिकी भौतिकी, क्रियान्वित प्रकाशिकी और प्रकाशिकी इंजीनियरिंग के बीच कोई बहुत अंतर नहीं है, क्योंकि प्रकाशिकी इंजीनियरिंग के उपकरण और क्रियान्वित प्रकाशिकी के अनुप्रयोग प्रकाशिकी भौतिकी में आरंभिक शोध के लिए आवश्यक हैं, और यह शोध नए उपकरणों के विकास की ओर ले जाता है। अधिकांशतः वही लोग आरंभिक अनुसंधान और अनुप्रयुक्त प्रौद्योगिकी विकास दोनों में सम्मिलित होते हैं, उदाहरण के लिए एसई हैरिस द्वारा विद्युत् चुंबकीय रूप से प्रेरित पारदर्शिता और हैरिस और [[लेने वेस्टरगार्ड हाऊ]] द्वारा [[धीमी रोशनी]] का प्रायोगिक प्रदर्शन करता है।<ref>{{cite web |url=http://sciencewatch.com/nobel/predictions/slow-light |title=धीमी रोशनी|website=Science Watch |access-date=Jan 22, 2013}}</ref><ref>{{Cite book|chapter=chapters 9,10|title=Light and Matter: Electromagnetism, Optics, Spectroscopy and Lasers|author=Y.B. Band|year=2010|publisher=John Wiley & Sons|isbn=978-0-471-89931-0}}</ref> प्रकाशिक भौतिकी के शोधकर्ता प्रकाश स्रोतों का उपयोग और विकास करते हैं जो [[माइक्रोवेव]] से [[एक्स-रे]] तक विद्युत चुम्बकीय वर्णक्रम फैलाते हैं। क्षेत्र में प्रकाश, रैखिक और अरैखिक प्रकाशिकी प्रक्रियाओं और स्पेक्ट्रोस्कोपी की पीढ़ी और पहचान सम्मिलित है। लेजर और [[लेजर स्पेक्ट्रोस्कोपी]] ने प्रकाशिक विज्ञान को बदल दिया है। प्रकाशिक भौतिकी में प्रमुख अध्ययन भी [[क्वांटम प्रकाशिकी]] और ससंजन (भौतिकी) और [[गुजरने|प्रकाशिकी से गुजरने]] के लिए समर्पित है।<ref name="nap"/> प्रकाशिक भौतिकी में, तीव्र, अतिलघु विद्युत चुम्बकीय क्षेत्रों के लिए पृथक परमाणुओं की प्रतिक्रिया, उच्च क्षेत्रों में परमाणु-गुहा के बिच, और विद्युत चुम्बकीय क्षेत्र के क्वांटम गुण जैसे क्षेत्रों में भी समर्थन प्रदान किया जाता है।<ref>{{Cite book|pages=[https://archive.org/details/mcgrawhillencycl1993park/page/933 933–934]|title=मैकग्रा हिल एनसाइक्लोपीडिया ऑफ फिजिक्स|author=C.B. Parker|year=1994|edition=2nd|publisher=McGraw Hill|isbn=978-0-07-051400-3|url=https://archive.org/details/mcgrawhillencycl1993park/page/933}}</ref> अनुसंधान के अन्य महत्वपूर्ण क्षेत्रों में नैनो-प्रकाशिक मापन, [[विवर्तनिक प्रकाशिकी]], [[इंटरफेरोमेट्री]] निम्न-ससंजन इंटरफेरोमेट्री, प्रकाशिक ससंजन [[ऑप्टिकल कोहरेन्स टोमोग्राफी|टोमोग्राफी]], और [[निकट-क्षेत्र स्कैनिंग ऑप्टिकल माइक्रोस्कोप|निकट-क्षेत्र अवलोकन प्रकाशिक सूक्ष्मदर्शी निकट-क्षेत्र]] सूक्ष्मदर्शी के लिए नवीन प्रकाशिक तकनीकों का विकास सम्मिलित है। प्रकाशिक भौतिकी में अनुसंधान अतितीव्र प्रकाशिक विज्ञान और प्रौद्योगिकी पर जोर देता है। प्रकाशिक भौतिकी के अनुप्रयोग [[दूरसंचार]], चिकित्सा, निर्माण और यहां तक कि [[मनोरंजन]] में भी प्रगति करते हैं।<ref>{{Cite book|chapter=5, 6, 10, 16|title=The Light Fantastic – Introduction to Classic and Quantum Optics|author=I. R. Kenyon|year=2008|edition=2nd|publisher=Oxford University Press|isbn=978-0-19-856646-5|chapter-url-access=registration|chapter-url=https://archive.org/details/lightfantasticmo0000keny}}</ref> | ||
== इतिहास == | == इतिहास == | ||
[[File:Bohr-atom-PAR.svg|thumb|right|200px|[[हाइड्रोजन परमाणु]] का [[बोहर मॉडल]]]]Main article: परमाणु सिद्धांत और क्वांटम यांत्रिकी के मूल | |||
[[File:Bohr-atom-PAR.svg|thumb|right|200px|[[हाइड्रोजन परमाणु]] का [[बोहर मॉडल]]]]परमाणु | |||
परमाणु भौतिकी की दिशा में प्रारंभिक कदमों में से यह मान्यता थी कि पदार्थ परमाणुओं से बना है, आधुनिक शब्दों में [[रासायनिक तत्व]] की मूल इकाई है। यह सिद्धांत 18वीं शताब्दी में [[जॉन डाल्टन]] द्वारा विकसित किया गया था। इस स्तर पर, यह स्पष्ट नहीं था कि परमाणु क्या थे - चूँकि उनका वर्णन किया जा सकता था और अत्यधिक मात्रा में उनके अवलोकन योग्य गुणों द्वारा वर्गीकृत किया जा सकता था; लगभग 19वीं सदी के मध्य से अंत तक [[जॉन अलेक्जेंडर रीना न्यूलैंड्स]] और [[दिमित्री मेंडेलीव]] द्वारा विकासशील [[आवर्त सारणी]] द्वारा संक्षेपित किया गया है।<ref name="R.E. Dickerson, I. Geis 1976">{{Cite book|chapter=chapters 7, 8|title=रसायन विज्ञान, पदार्थ और ब्रह्मांड|author1=R. E. Dickerson |author2=I. Geis |year=1976|publisher=W.A. Benjamin Inc. (USA)|isbn=978-0-19-855148-5}}</ref> | |||
[[ | |||
<ref name= | |||
बाद में, परमाणु भौतिकी और प्रकाशिक भौतिकी के बीच संबंध स्पष्ट हो गया, [[वर्णक्रमीय रेखा]]ओं की खोज और घटना का वर्णन करने का प्रयास - विशेष रूप से 19वीं शताब्दी में [[जोसेफ वॉन फ्रौनहोफर]],[[ Fresnel | फ्रेसनेल]] और अन्य लोगों द्वारा किया गया है।<ref>{{Cite book|pages=4–11|title=Light and Matter: Electromagnetism, Optics, Spectroscopy and Lasers|author=Y.B. Band|year=2010|publisher=John Wiley & Sons|isbn=978-0-471-89931-0}}</ref> उस समय से 1920 के दशक तक, भौतिक विज्ञानी [[परमाणु स्पेक्ट्रा]] और कृष्ण वस्तु[[ श्याम पिंडों से उत्पन्न विकिरण | से उत्पन्न विकिरण]] की व्याख्या करने की कोशिश कर रहे थे। हाइड्रोजन वर्णक्रमीय रेखाओं की व्याख्या करने का प्रयास बोर परमाणु मॉडल था।<ref name="R.E. Dickerson, I. Geis 1976" /> | |||
विद्युत् चुंबकीय विकिरण और पदार्थ सहित प्रयोग - जैसे कि [[प्रकाश विद्युत प्रभाव]], [[कॉम्पटन प्रभाव]], और सूरज की रोशनी का स्पेक्ट्रा [[हीलियम]] के अज्ञात तत्व के कारण, बोह्र मॉडल की हाइड्रोजन तक सीमितता, और कई अन्य कारण, पदार्थ और प्रकाश के पूरी तरह से [[क्वांटम यांत्रिकी|क्वांटम यांत्रिकी के नए गणितीय मॉडल के नेतृत्व के होता है]]।<ref>{{Cite book|chapter=chapter 34|title=वैज्ञानिकों और इंजीनियरों के लिए भौतिकी - आधुनिक भौतिकी के साथ|author1=P. A. Tipler |author2=G. Mosca |year=2008|publisher=Freeman|isbn=978-0-7167-8964-2}}</ref> | |||
=== पदार्थ का विशेष दोलक मॉडल === | |||
[[अपवर्तक सूचकांक]] की उत्पत्ति की व्याख्या करने के लिए प्रारंभिक मॉडल ने [[पॉल ड्रूड]] और [[हेंड्रिक लोरेंत्ज़]] के मॉडल के अनुसार विशेष रूप से परमाणु प्रणाली में एक इलेक्ट्रॉन का उपयोग किया गया है। किसी पदार्थ के तरंग दैर्ध्य पर निर्भर अपवर्तक सूचकांक n के लिए मूल प्रदान करने का प्रयास करने के लिए सिद्धांत विकसित किया गया था। इस मॉडल में, घटना विद्युत चुम्बकीय तरंगों ने परमाणु से बंधे एक इलेक्ट्रॉन को बल पूर्वक दोलन किया गया था। दोलन के [[आयाम]] का घटना विद्युत चुम्बकीय तरंग की [[आवृत्ति]] और दोलक की अनुनाद आवृत्तियों से संबंध होगा। कई दोलक से इन उत्सर्जित तरंगों का अध्यारोपण प्रमेय [[सुपरपोज़िशन सिद्धांत|सिद्धांत]] तब एक लहर की ओर ले जाएगा जो अत्यधिक धीमी गति से चलती है।<ref name=Haken>{{cite book|last=Haken|first=H.|title=रोशनी|year=1981|publisher=North-Holland Physics Publ.|location=Amsterdam u.a.|isbn=978-0-444-86020-0|edition=Reprint.}}</ref>{{rp|4–8}} | |||
=== पदार्थ और प्रकाश का प्रारंभिक क्वांटम मॉडल === | === पदार्थ और प्रकाश का प्रारंभिक क्वांटम मॉडल === | ||
[[मैक्स प्लैंक]] ने 1900 में [[थर्मल संतुलन]] में | [[मैक्स प्लैंक]] ने 1900 में उष्मीय [[थर्मल संतुलन|संतुलन]] में बॉक्स के अंदर [[विद्युत चुम्बकीय]] क्षेत्र का वर्णन करने के लिए सूत्र निकाला था।<ref name=Haken />{{rp|8–9}} उनके मॉडल में खड़ी तरंगों का अध्यारोपण प्रमेय था। आयाम में, बॉक्स की लंबाई L होती है, और केवल तरंग संख्या की ज्यावक्रीय तरंगें होती हैं | ||
उनके मॉडल में खड़ी तरंगों का | |||
:<math> k = \frac{n\pi}{L} </math> | :<math> k = \frac{n\pi}{L} </math> | ||
बॉक्स में हो सकता है, जहां n | बॉक्स में हो सकता है, जहां n धनात्मक [[पूर्णांक]] है (गणितीय रूप से निरूपित <math>\scriptstyle n \in \mathbb{N}_1</math>). इन स्थायी तरंगों का वर्णन करने वाला समीकरण निम्न द्वारा दिया गया है: | ||
:<math>E=E_0 \sin\left(\frac{n\pi}{L}x\right)\,\!</math>. | :<math>E=E_0 \sin\left(\frac{n\pi}{L}x\right)\,\!</math>. | ||
जहां | जहां E<sub>0</sub> [[विद्युत क्षेत्र]] आयाम का परिमाण है, और E स्थिति x पर विद्युत क्षेत्र का परिमाण है। इस आधार से प्लांक का नियम व्युत्पन्न हुआ।<ref name=Haken />{{rp|4–8,51–52}} 1911 में, [[अर्नेस्ट रदरफोर्ड]] ने अल्फा कण फ़ैलाने के आधार पर निष्कर्ष निकाला कि परमाणु में केंद्रीय बिंदु जैसा प्रोटॉन होता है। उन्होंने यह भी सोचा कि कूलम्ब के नियम द्वारा इलेक्ट्रॉन अभी भी प्रोटॉन की ओर आकर्षित होगा, जिसे उन्होंने छोटे स्तर पर अभी भी सत्यापित किया था। नतीजतन, उनका मानना था कि इलेक्ट्रॉन प्रोटॉन के चारों ओर घूमते हैं। 1913 में [[नील्स बोह्र]] ने परमाणु के रदरफोर्ड मॉडल को प्लैंक के परिमाणीकरण विचारों के साथ जोड़ा गया है। इलेक्ट्रॉन की केवल विशिष्ट और अच्छी तरह से परिभाषित कक्षाएँ उपस्थित हो सकती हैं, जो प्रकाश का विकिरण भी नहीं करती हैं। जंपिंग कक्षा में इलेक्ट्रॉन कक्षाओं की ऊर्जा में अंतर के अनुरूप प्रकाश का उत्सर्जन या अवशोषण करेगा। ऊर्जा स्तरों की उनकी भविष्यवाणी तब अवलोकन के अनुरूप थी।<ref name=Haken />{{rp|9–10}} | ||
1911 में, [[अर्नेस्ट रदरफोर्ड]] ने अल्फा कण | |||
विशिष्ट स्थायी तरंगों के असतत | विशिष्ट स्थायी तरंगों के असतत समूह के आधार पर ये परिणाम निरंतर विशेष दोलन मॉडल के साथ असंगत थे।<ref name=Haken />{{rp|8}} | ||
प्रकाश विद्युत् प्रभाव पर 1905 में [[अल्बर्ट आइंस्टीन]] द्वारा किए गए कार्य ने आवृत्ति की प्रकाश तरंग के जुड़ाव को जन्म दिया <math>\nu</math> ऊर्जा के <math>h\nu</math> फोटॉन के साथ है। 1917 में आइंस्टीन ने उत्तेजित उत्सर्जन, सहज उत्सर्जन और अवशोषण (विद्युत चुम्बकीय विकिरण) की तीन प्रक्रियाओं की प्रारम्भ करके बोहर्स मॉडल का विस्तार किया है।<ref name=Haken />{{rp|11}} | |||
== आधुनिक उपचार == | == आधुनिक उपचार == | ||
[[वर्नर हाइजेनबर्ग]] द्वारा [[मैट्रिक्स यांत्रिकी]] दृष्टिकोण के साथ क्वांटम यांत्रिकी का सूत्रीकरण और इरविन श्रोडिंगर द्वारा श्रोडिंगर समीकरण की खोज आधुनिक उपचार की दिशा में सबसे बड़ा कदम था।<ref name=Haken />{{rp|12}} | [[वर्नर हाइजेनबर्ग]] द्वारा आव्यूह [[मैट्रिक्स यांत्रिकी|यांत्रिकी]] दृष्टिकोण के साथ क्वांटम यांत्रिकी का सूत्रीकरण और इरविन श्रोडिंगर द्वारा श्रोडिंगर समीकरण की खोज आधुनिक उपचार की दिशा में सबसे बड़ा कदम था।<ref name=Haken />{{rp|12}} | ||
एएमओ के भीतर विभिन्न प्रकार के | एएमओ के भीतर विभिन्न प्रकार के व्युत्पन्न प्रारूप उपचार हैं। समस्या के किन कथनों को क्वांटम यांत्रिक रूप से व्यवहार किया जाता है और जिन्हें विशेष रूप से व्यवहार किया जाता है, यह विशिष्ट समस्या पर निर्भर करता है। अर्ध- दृष्टिकोण एएमओ के भीतर कम्प्यूटेशनल काम में सर्वव्यापी है, मोटे तौर पर कम्प्यूटेशनल लागत और इससे जुड़ी जटिलता में बड़ी कमी के कारण। | ||
एक लेजर की कार्रवाई के तहत पदार्थ के लिए, परमाणु या आणविक प्रणाली का एक पूरी तरह से क्वांटम यांत्रिक उपचार शास्त्रीय विद्युत चुम्बकीय क्षेत्र की कार्रवाई के तहत प्रणाली के साथ जोड़ा जाता है।<ref name=Haken />{{rp|14}} चूंकि क्षेत्र को शास्त्रीय रूप से व्यवहार किया जाता है, यह सहज उत्सर्जन से नहीं निपट सकता।<ref name=Haken />{{rp|16}} यह | एक लेजर की कार्रवाई के तहत पदार्थ के लिए, परमाणु या आणविक प्रणाली का एक पूरी तरह से क्वांटम यांत्रिक उपचार शास्त्रीय विद्युत चुम्बकीय क्षेत्र की कार्रवाई के तहत प्रणाली के साथ जोड़ा जाता है।<ref name=Haken />{{rp|14}} चूंकि क्षेत्र को शास्त्रीय रूप से व्यवहार किया जाता है, यह सहज उत्सर्जन से नहीं निपट सकता।<ref name=Haken />{{rp|16}} यह व्युत्पन्न प्रारूप उपचार अधिकांश प्रणालियों के लिए मान्य है,<ref name=Drake />{{rp|997}} विशेष रूप से उच्च तीव्रता वाले लेजर क्षेत्रों की कार्रवाई के अंतर्गत होता है।<ref name=Drake />{{rp|724}} प्रकाशिक भौतिकी और क्वांटम प्रकाशिकी के बीच का अंतर क्रमशः व्युत्पन्न प्रारूप और पूरी तरह से क्वांटम उपचार का उपयोग है।<ref name=Drake />{{rp|997}} | ||
टकराव की गतिशीलता के भीतर और | टकराव की गतिशीलता के भीतर और व्युत्पन्न प्रारूप उपचार का उपयोग करते हुए, स्वतंत्रता की आंतरिक डिग्री को क्वांटम यांत्रिक रूप से व्यवहार किया जा सकता है, जबकि विचाराधीन क्वांटम प्रणाली की सापेक्ष गति को शास्त्रीय रूप से व्यवहार किया जाता है।<ref name=Drake />{{rp|556}} जब मध्यम से उच्च गति की टक्करों पर विचार किया जाता है, तो नाभिक को विशेष रूप से व्यवहार किया जा सकता है जबकि इलेक्ट्रॉन को यंत्रवत् रूप से संसाधित किया जाता है। कम गति की टक्करों में अनुप्रयोग विफल हो जाता है।<ref name=Drake />{{rp|754}} | ||
इलेक्ट्रॉनों की गतिशीलता के लिए | |||
इलेक्ट्रॉनों की गतिशीलता के लिए विशेष मोंटे-कार्लो विधियों को व्युत्पन्न प्रारूपों के रूप में वर्णित किया जा सकता है जिसमें प्रारंभिक स्थितियों की गणना पूरी तरह से क्वांटम उपचार का उपयोग करके की जाती है, परन्तु आगे के सभी उपचार विशेष हैं।<ref name="Drake" />{{rp|871}} | |||
== पृथक परमाणु और अणु == | == पृथक परमाणु और अणु == | ||
परमाणु, आणविक और | परमाणु, आणविक और प्रकाशिक भौतिकी अधिकांशतः परमाणुओं और अणुओं को दूरी में मानती है| परमाणु मॉडल में एकल नाभिक सम्मिलित होगा जो एक या अत्यधिक बंधे हुए इलेक्ट्रॉनों से घिरा हो सकता है, जबकि आणविक मॉडल सामान्यतौर पर आणविक हाइड्रोजन और इसके [[आणविक हाइड्रोजन आयन]] से संबंधित होते हैं। यह [[आयनीकरण]] सिमा आयनीकरण से ऊपर और फोटॉनों द्वारा उत्तेजित अवस्था या परमाणु कणों के साथ टकराव जैसी प्रक्रियाओं से संबंधित है। | ||
जबकि | जबकि दूरी में परमाणुओं को मॉडलिंग करना वास्तविक प्रतीत नहीं हो सकता है, यदि कोई [[गैस]] या [[प्लाज्मा (भौतिकी)]] में अणुओं पर विचार करता है तो अणु-अणु परस्पर क्रिया के लिए समय-मान उन परमाणु और आणविक प्रक्रियाओं की तुलना में बहुत बड़ा है जिनसे हम सबंधित हैं। इसका अर्थ यह है कि भिन्न-भिन्न अणुओं के साथ ऐसा व्यवहार किया जा सकता है जैसे कि प्रत्येक समय के विशाल बहुसंख्या के लिए दूरी थी। इस विचार से परमाणु और आणविक भौतिकी प्लाज्मा (भौतिकी) और [[वायुमंडलीय भौतिकी]] में अंतर्निहित सिद्धांत प्रदान करती है, चूँकि दोनों बड़ी संख्या में अणुओं से पूर्ण होते हैं। | ||
== इलेक्ट्रॉनिक | == इलेक्ट्रॉनिक विन्यास == | ||
इलेक्ट्रॉन नाभिक के चारों ओर | इलेक्ट्रॉन नाभिक के चारों ओर सांकेतिक [[इलेक्ट्रॉन कवच|इलेक्ट्रॉन आवरण]] बनाते हैं। ये स्वाभाविक रूप से जमीनी अवस्था में होते हैं परन्तु प्रकाश (फोटॉन), चुंबकीय क्षेत्र, या टकराने वाले कण (सामान्यतौर पर अन्य इलेक्ट्रॉनों) के साथ ऊर्जा के अवशोषण से उत्साहित हो सकते हैं। | ||
आवरण के स्थान करने वाले इलेक्ट्रॉनों को [[बाध्य अवस्था]] में कहा जाता है। इलेक्ट्रॉन को उसके आवरण से निकालने (इसे अनंत तक ले जाने) के लिए आवश्यक ऊर्जा को बाध्यकारी ऊर्जा कहा जाता है। इस मात्रा से अत्यधिक इलेक्ट्रॉन द्वारा अवशोषित ऊर्जा की कोई भी मात्रा ऊर्जा के संरक्षण के अनुसार [[गतिज ऊर्जा]] में परिवर्तित हो जाती है। कहा जाता है कि परमाणु आयनीकरण की प्रक्रिया से गुजरा है। | |||
इस घटना में कि इलेक्ट्रॉन बाध्यकारी ऊर्जा से कम ऊर्जा की मात्रा को अवशोषित करता है, यह उत्तेजित अवस्था या आभासी अवस्था (भौतिकी) में | इस घटना में कि इलेक्ट्रॉन बाध्यकारी ऊर्जा से कम ऊर्जा की मात्रा को अवशोषित करता है, यह उत्तेजित अवस्था या आभासी अवस्था (भौतिकी) में ग्रसित कर सकता है। सांख्यिकीय रूप से पर्याप्त मात्रा में समय के बाद, उत्तेजित अवस्था में इलेक्ट्रॉन सहज उत्सर्जन के माध्यम से निम्न अवस्था में ग्रसित होकर जाता है। दो ऊर्जा स्तरों के बीच ऊर्जा में परिवर्तन (ऊर्जा का संरक्षण) के कारण होना चाहिए। तटस्थ परमाणु में, प्रणाली ऊर्जा के अंतर का फोटॉन उत्सर्जित करेगा। चूँकि, यदि निचली अवस्था आंतरिक आवरण में है, तो ऑगर प्रभाव के रूप में जानी जाने वाली घटना हो सकती है, जहाँ ऊर्जा को दूसरे बंधे हुए इलेक्ट्रॉनों में स्थानांतरित किया जाता है, जिससे यह सतत में चला जाता है। यह परमाणु को फोटॉन के साथ गुणा करने की अनुमति देता है। | ||
इलेक्ट्रॉनिक | इलेक्ट्रॉनिक विन्यास के लिए कठोर [[चयन नियम]] हैं जो प्रकाश द्वारा उत्तेजना से पहुंचा जा सकता है- चूँकि टक्कर प्रक्रियाओं द्वारा उत्तेजना के लिए ऐसे कोई नियम नहीं हैं। | ||
== यह भी देखें == | == यह भी देखें == | ||
{{portal|Physics}} | {{portal|Physics}} | ||
{{col div|colwidth=20em}} | {{col div|colwidth=20em}} | ||
* | * बोर्न ओपेनहाइमर सन्निकटन | ||
* [[ | * [[दोहरीकरण आवृति]] | ||
* [[विवर्तन]] | * [[विवर्तन]] | ||
* [[हाइपरफाइन संरचना]] | * [[हाइपरफाइन संरचना]] | ||
Line 104: | Line 74: | ||
* [[आइसोमेरिक शिफ्ट]] | * [[आइसोमेरिक शिफ्ट]] | ||
* [[मेटामेट्री क्लोकिंग]] | * [[मेटामेट्री क्लोकिंग]] | ||
* आणविक ऊर्जा | * आणविक ऊर्जा क्षेत्र | ||
* [[आणविक मॉडलिंग]] | * [[आणविक मॉडलिंग]] | ||
* [[नैनो]] टेक्नोलॉजी | * [[नैनो]] टेक्नोलॉजी | ||
* [[ | * [[ऋणात्मक सूचकांक मेटामटेरियल्स]] | ||
* | * अरैखिक प्रकाशिकी | ||
* | * प्रकाशिक इंजीनियरिंग | ||
* [[फोटॉन ध्रुवीकरण]] | * [[फोटॉन ध्रुवीकरण]] | ||
* क्वांटम रसायन | * क्वांटम रसायन | ||
Line 117: | Line 87: | ||
* [[सुपरलेंस]] | * [[सुपरलेंस]] | ||
*[[स्थिर अवस्था]] | *[[स्थिर अवस्था]] | ||
* [[ | * [[ग्रसित अवस्था]] | ||
* [[परमाणु का वेक्टर मॉडल]] | * [[परमाणु का वेक्टर मॉडल]] | ||
{{colend}} | {{colend}} | ||
Line 123: | Line 93: | ||
== टिप्पणियाँ == | == टिप्पणियाँ == | ||
{{Reflist}} | {{Reflist}} | ||
==संदर्भ== | ==संदर्भ== | ||
{{refbegin}} | {{refbegin}} | ||
Line 156: | Line 124: | ||
*{{cite book | last=Fox | first=Mark | title=Optical properties of solids | publisher=Oxford University Press | location=Oxford New York | year=2010 | isbn=978-0-19-957336-3 }} | *{{cite book | last=Fox | first=Mark | title=Optical properties of solids | publisher=Oxford University Press | location=Oxford New York | year=2010 | isbn=978-0-19-957336-3 }} | ||
{{refend}} | {{refend}} | ||
==बाहरी संबंध== | ==बाहरी संबंध== | ||
*[http://www.sciencedirect.com/science/bookseries/1049250X ScienceDirect - Advances In Atomic, Molecular, and Optical Physics] | *[http://www.sciencedirect.com/science/bookseries/1049250X ScienceDirect - Advances In Atomic, Molecular, and Optical Physics] | ||
*[http://iopscience.iop.org/0953-4075/ Journal of Physics B: Atomic, Molecular and Optical Physics] | *[http://iopscience.iop.org/0953-4075/ Journal of Physics B: Atomic, Molecular and Optical Physics] | ||
=== संस्थान === | === संस्थान === | ||
Line 181: | Line 141: | ||
{{Physics-footer}} | {{Physics-footer}} | ||
[[Category:CS1 errors]] | |||
[[Category:Collapse templates]] | |||
[[Category: | |||
[[Category:Created On 27/03/2023]] | [[Category:Created On 27/03/2023]] | ||
[[Category:Lua-based templates]] | |||
[[Category:Machine Translated Page]] | |||
[[Category:Multi-column templates]] | |||
[[Category:Navigational boxes| ]] | |||
[[Category:Navigational boxes without horizontal lists]] | |||
[[Category:Pages using div col with small parameter]] | |||
[[Category:Pages with empty portal template]] | |||
[[Category:Pages with script errors]] | |||
[[Category:Portal templates with redlinked portals]] | |||
[[Category:Short description with empty Wikidata description]] | |||
[[Category:Sidebars with styles needing conversion]] | |||
[[Category:Template documentation pages|Documentation/doc]] | |||
[[Category:Templates Translated in Hindi]] | |||
[[Category:Templates Vigyan Ready]] | |||
[[Category:Templates generating microformats]] | |||
[[Category:Templates that add a tracking category]] | |||
[[Category:Templates that are not mobile friendly]] | |||
[[Category:Templates that generate short descriptions]] | |||
[[Category:Templates using TemplateData]] | |||
[[Category:Templates using under-protected Lua modules]] | |||
[[Category:Wikipedia fully protected templates|Div col]] | |||
[[Category:Wikipedia metatemplates]] |
Latest revision as of 17:23, 29 August 2023
के बारे में लेखों की एक श्रृंखला का हिस्सा |
क्वांटम यांत्रिकी |
---|
परमाणु, आणविक और प्रकाशिक भौतिकी (एएमओ) पदार्थ-पदार्थ और प्रकाश-पदार्थ के बिच का अध्ययन है; कई इलेक्ट्रॉन वाल्ट के चारों ओर[1] एक या कुछ परमाणुओं और ऊर्जा के स्तर पर होता है।[2]: 1356 [3] तीनों क्षेत्र आपस में घनिष्ठ रूप से जुड़े हुए हैं। एएमओ सिद्धांत में प्राचीन, अर्धश्रेण्य भौतिकी और क्वांटम भौतिकी उपचार सम्मिलित हैं। सामान्यतौर पर, उत्सर्जन वर्णक्रम के सिद्धांत और अनुप्रयोग, अवशोषण (विद्युत चुम्बकीय विकिरण), उत्तेजित अवस्था परमाणुओं और अणुओं से विद्युत चुम्बकीय विकिरण (प्रकाश) का फैलाव, स्पेक्ट्रोस्कोपी का विश्लेषण, लेसर और मेसर की पीढ़ी, और सामान्य रूप से पदार्थ के प्रकाशिकी गुणों के श्रेणियों में कमी आती है।
परमाणु और आणविक भौतिकी
Main article: परमाणु भौतिकी और आणविक भौतिकी
परमाणु भौतिकी एएमओ का उपक्षेत्र है जो परमाणुओं को इलेक्ट्रानों की पृथक प्रणाली और परमाणु नाभिक के रूप में अध्ययन करता है, जबकि आणविक भौतिकी अणुओं के भौतिक गुणों का अध्ययन है। मानक अंग्रेजी में 'परमाणु' और 'परमाणु' के पर्यायवाची उपयोग के कारण 'परमाणु भौतिकी' शब्द अधिकांशतः परमाणु ऊर्जा और परमाणु बमों से जुड़ा होता है। चूँकि, भौतिक विज्ञानी परमाणु भौतिकी के बीच अंतर करते हैं - जो परमाणु के साथ नाभिक और इलेक्ट्रॉनों वाली प्रणाली के रूप में व्यवहार करता है - और परमाणु भौतिकी, जो केवल परमाणु नाभिक को मानता है। महत्वपूर्ण प्रायोगिक तकनीकें विभिन्न प्रकार की स्पेक्ट्रोस्कोपी हैं। आणविक भौतिकी, जबकि परमाणु भौतिकी से निकटता से संबंधित है, सैद्धांतिक रसायन विज्ञान, भौतिक रसायन विज्ञान और रासायनिक भौतिकी के साथ भी बहुत अत्यधिक है।[4] दोनों उपक्षेत्र मुख्य रूप से इलेक्ट्रॉनिक संरचना और गतिशील प्रक्रियाओं से संबंधित हैं जिनके द्वारा ये व्यवस्थाएं बदलती हैं। सामान्यतौर पर इस कार्य में क्वांटम यांत्रिकी का उपयोग करना सम्मिलित होता है। आण्विक भौतिकी के लिए, इस दृष्टिकोण को क्वांटम रसायन शास्त्र के रूप में जाना जाता है। आणविक भौतिकी का एक महत्वपूर्ण कथन यह है कि परमाणु भौतिकी के क्षेत्र में आवश्यक परमाणु कक्षीय सिद्धांत का विस्तार आणविक कक्षीय सिद्धांत तक होता है।[5] आणविक भौतिकी अणुओं में परमाणु प्रक्रियाओं से संबंधित है, परन्तु यह आणविक संरचना के कारण होने वाले प्रभावों से भी संबंधित है। इसके अतिरिक्त इलेक्ट्रॉनिक उत्तेजना क्षेत्रों के लिए जो परमाणुओं से ज्ञात होते हैं, अणु घूमने और कंपन करने में सक्षम होते हैं। ये घुमाव और कंपन परिमाणित होते हैं; असतत ऊर्जा स्तर हैं। विभिन्न घूर्णी अवस्थाओं के बीच सबसे छोटे ऊर्जा अंतर उपस्थित होते हैं, इसलिए शुद्ध घूर्णी स्पेक्ट्रम विद्युत चुम्बकीय स्पेक्ट्रम के दूर अवरक्त क्षेत्र (लगभग 30 - 150 माइक्रोन तरंग दैर्ध्य) में होते हैं। रैखिक अणुओं की कंपन स्पेक्ट्रोस्कोपी निकट अवरक्त (लगभग 1 - 5 माइक्रोमीटर) में होती है और इलेक्ट्रॉनिक संक्रमण से उत्पन्न स्पेक्ट्रा ज्यादातर दृश्य और पराबैंगनी क्षेत्रों में होते हैं। अणुओं के घूर्णी और कंपन स्पेक्ट्रा गुणों को मापने से नाभिक के बीच की दूरी की गणना की जा सकती है।[6] जैसा कि कई वैज्ञानिक क्षेत्रों के साथ होता है, कठोर रेखांकन अत्यधिक काल्पनिक हो सकता है और परमाणु भौतिकी को अधिकांशतः परमाणु, आणविक और प्रकाशिक भौतिकी के व्यापक संदर्भ में माना जाता है। भौतिकी अनुसंधान समूह सामान्यतौर पर वर्गीकृत होते हैं।
प्रकाशिकी भौतिकी
See also: प्रकाशिकी
प्रकाशिकी भौतिकी विद्युत चुम्बकीय विकिरण की पीढ़ी, उस विकिरण के गुणों और पदार्थ के साथ उस विकिरण के बिच का अध्ययन है,[7] विशेष रूप से इसका कार्य करने का प्रकार और नियंत्रण होता है।[8] यह सामान्य प्रकाशिकी और प्रकाशिक इंजीनियरिंग से भिन्न है क्योंकि यह नई घटनाओं की खोज और अनुप्रयोग पर केंद्रित है। चूँकि, प्रकाशिकी भौतिकी, क्रियान्वित प्रकाशिकी और प्रकाशिकी इंजीनियरिंग के बीच कोई बहुत अंतर नहीं है, क्योंकि प्रकाशिकी इंजीनियरिंग के उपकरण और क्रियान्वित प्रकाशिकी के अनुप्रयोग प्रकाशिकी भौतिकी में आरंभिक शोध के लिए आवश्यक हैं, और यह शोध नए उपकरणों के विकास की ओर ले जाता है। अधिकांशतः वही लोग आरंभिक अनुसंधान और अनुप्रयुक्त प्रौद्योगिकी विकास दोनों में सम्मिलित होते हैं, उदाहरण के लिए एसई हैरिस द्वारा विद्युत् चुंबकीय रूप से प्रेरित पारदर्शिता और हैरिस और लेने वेस्टरगार्ड हाऊ द्वारा धीमी रोशनी का प्रायोगिक प्रदर्शन करता है।[9][10] प्रकाशिक भौतिकी के शोधकर्ता प्रकाश स्रोतों का उपयोग और विकास करते हैं जो माइक्रोवेव से एक्स-रे तक विद्युत चुम्बकीय वर्णक्रम फैलाते हैं। क्षेत्र में प्रकाश, रैखिक और अरैखिक प्रकाशिकी प्रक्रियाओं और स्पेक्ट्रोस्कोपी की पीढ़ी और पहचान सम्मिलित है। लेजर और लेजर स्पेक्ट्रोस्कोपी ने प्रकाशिक विज्ञान को बदल दिया है। प्रकाशिक भौतिकी में प्रमुख अध्ययन भी क्वांटम प्रकाशिकी और ससंजन (भौतिकी) और प्रकाशिकी से गुजरने के लिए समर्पित है।[1] प्रकाशिक भौतिकी में, तीव्र, अतिलघु विद्युत चुम्बकीय क्षेत्रों के लिए पृथक परमाणुओं की प्रतिक्रिया, उच्च क्षेत्रों में परमाणु-गुहा के बिच, और विद्युत चुम्बकीय क्षेत्र के क्वांटम गुण जैसे क्षेत्रों में भी समर्थन प्रदान किया जाता है।[11] अनुसंधान के अन्य महत्वपूर्ण क्षेत्रों में नैनो-प्रकाशिक मापन, विवर्तनिक प्रकाशिकी, इंटरफेरोमेट्री निम्न-ससंजन इंटरफेरोमेट्री, प्रकाशिक ससंजन टोमोग्राफी, और निकट-क्षेत्र अवलोकन प्रकाशिक सूक्ष्मदर्शी निकट-क्षेत्र सूक्ष्मदर्शी के लिए नवीन प्रकाशिक तकनीकों का विकास सम्मिलित है। प्रकाशिक भौतिकी में अनुसंधान अतितीव्र प्रकाशिक विज्ञान और प्रौद्योगिकी पर जोर देता है। प्रकाशिक भौतिकी के अनुप्रयोग दूरसंचार, चिकित्सा, निर्माण और यहां तक कि मनोरंजन में भी प्रगति करते हैं।[12]
इतिहास
Main article: परमाणु सिद्धांत और क्वांटम यांत्रिकी के मूल
परमाणु भौतिकी की दिशा में प्रारंभिक कदमों में से यह मान्यता थी कि पदार्थ परमाणुओं से बना है, आधुनिक शब्दों में रासायनिक तत्व की मूल इकाई है। यह सिद्धांत 18वीं शताब्दी में जॉन डाल्टन द्वारा विकसित किया गया था। इस स्तर पर, यह स्पष्ट नहीं था कि परमाणु क्या थे - चूँकि उनका वर्णन किया जा सकता था और अत्यधिक मात्रा में उनके अवलोकन योग्य गुणों द्वारा वर्गीकृत किया जा सकता था; लगभग 19वीं सदी के मध्य से अंत तक जॉन अलेक्जेंडर रीना न्यूलैंड्स और दिमित्री मेंडेलीव द्वारा विकासशील आवर्त सारणी द्वारा संक्षेपित किया गया है।[13]
बाद में, परमाणु भौतिकी और प्रकाशिक भौतिकी के बीच संबंध स्पष्ट हो गया, वर्णक्रमीय रेखाओं की खोज और घटना का वर्णन करने का प्रयास - विशेष रूप से 19वीं शताब्दी में जोसेफ वॉन फ्रौनहोफर, फ्रेसनेल और अन्य लोगों द्वारा किया गया है।[14] उस समय से 1920 के दशक तक, भौतिक विज्ञानी परमाणु स्पेक्ट्रा और कृष्ण वस्तु से उत्पन्न विकिरण की व्याख्या करने की कोशिश कर रहे थे। हाइड्रोजन वर्णक्रमीय रेखाओं की व्याख्या करने का प्रयास बोर परमाणु मॉडल था।[13]
विद्युत् चुंबकीय विकिरण और पदार्थ सहित प्रयोग - जैसे कि प्रकाश विद्युत प्रभाव, कॉम्पटन प्रभाव, और सूरज की रोशनी का स्पेक्ट्रा हीलियम के अज्ञात तत्व के कारण, बोह्र मॉडल की हाइड्रोजन तक सीमितता, और कई अन्य कारण, पदार्थ और प्रकाश के पूरी तरह से क्वांटम यांत्रिकी के नए गणितीय मॉडल के नेतृत्व के होता है।[15]
पदार्थ का विशेष दोलक मॉडल
अपवर्तक सूचकांक की उत्पत्ति की व्याख्या करने के लिए प्रारंभिक मॉडल ने पॉल ड्रूड और हेंड्रिक लोरेंत्ज़ के मॉडल के अनुसार विशेष रूप से परमाणु प्रणाली में एक इलेक्ट्रॉन का उपयोग किया गया है। किसी पदार्थ के तरंग दैर्ध्य पर निर्भर अपवर्तक सूचकांक n के लिए मूल प्रदान करने का प्रयास करने के लिए सिद्धांत विकसित किया गया था। इस मॉडल में, घटना विद्युत चुम्बकीय तरंगों ने परमाणु से बंधे एक इलेक्ट्रॉन को बल पूर्वक दोलन किया गया था। दोलन के आयाम का घटना विद्युत चुम्बकीय तरंग की आवृत्ति और दोलक की अनुनाद आवृत्तियों से संबंध होगा। कई दोलक से इन उत्सर्जित तरंगों का अध्यारोपण प्रमेय सिद्धांत तब एक लहर की ओर ले जाएगा जो अत्यधिक धीमी गति से चलती है।[16]: 4–8
पदार्थ और प्रकाश का प्रारंभिक क्वांटम मॉडल
मैक्स प्लैंक ने 1900 में उष्मीय संतुलन में बॉक्स के अंदर विद्युत चुम्बकीय क्षेत्र का वर्णन करने के लिए सूत्र निकाला था।[16]: 8–9 उनके मॉडल में खड़ी तरंगों का अध्यारोपण प्रमेय था। आयाम में, बॉक्स की लंबाई L होती है, और केवल तरंग संख्या की ज्यावक्रीय तरंगें होती हैं
बॉक्स में हो सकता है, जहां n धनात्मक पूर्णांक है (गणितीय रूप से निरूपित ). इन स्थायी तरंगों का वर्णन करने वाला समीकरण निम्न द्वारा दिया गया है:
- .
जहां E0 विद्युत क्षेत्र आयाम का परिमाण है, और E स्थिति x पर विद्युत क्षेत्र का परिमाण है। इस आधार से प्लांक का नियम व्युत्पन्न हुआ।[16]: 4–8, 51–52 1911 में, अर्नेस्ट रदरफोर्ड ने अल्फा कण फ़ैलाने के आधार पर निष्कर्ष निकाला कि परमाणु में केंद्रीय बिंदु जैसा प्रोटॉन होता है। उन्होंने यह भी सोचा कि कूलम्ब के नियम द्वारा इलेक्ट्रॉन अभी भी प्रोटॉन की ओर आकर्षित होगा, जिसे उन्होंने छोटे स्तर पर अभी भी सत्यापित किया था। नतीजतन, उनका मानना था कि इलेक्ट्रॉन प्रोटॉन के चारों ओर घूमते हैं। 1913 में नील्स बोह्र ने परमाणु के रदरफोर्ड मॉडल को प्लैंक के परिमाणीकरण विचारों के साथ जोड़ा गया है। इलेक्ट्रॉन की केवल विशिष्ट और अच्छी तरह से परिभाषित कक्षाएँ उपस्थित हो सकती हैं, जो प्रकाश का विकिरण भी नहीं करती हैं। जंपिंग कक्षा में इलेक्ट्रॉन कक्षाओं की ऊर्जा में अंतर के अनुरूप प्रकाश का उत्सर्जन या अवशोषण करेगा। ऊर्जा स्तरों की उनकी भविष्यवाणी तब अवलोकन के अनुरूप थी।[16]: 9–10
विशिष्ट स्थायी तरंगों के असतत समूह के आधार पर ये परिणाम निरंतर विशेष दोलन मॉडल के साथ असंगत थे।[16]: 8
प्रकाश विद्युत् प्रभाव पर 1905 में अल्बर्ट आइंस्टीन द्वारा किए गए कार्य ने आवृत्ति की प्रकाश तरंग के जुड़ाव को जन्म दिया ऊर्जा के फोटॉन के साथ है। 1917 में आइंस्टीन ने उत्तेजित उत्सर्जन, सहज उत्सर्जन और अवशोषण (विद्युत चुम्बकीय विकिरण) की तीन प्रक्रियाओं की प्रारम्भ करके बोहर्स मॉडल का विस्तार किया है।[16]: 11
आधुनिक उपचार
वर्नर हाइजेनबर्ग द्वारा आव्यूह यांत्रिकी दृष्टिकोण के साथ क्वांटम यांत्रिकी का सूत्रीकरण और इरविन श्रोडिंगर द्वारा श्रोडिंगर समीकरण की खोज आधुनिक उपचार की दिशा में सबसे बड़ा कदम था।[16]: 12
एएमओ के भीतर विभिन्न प्रकार के व्युत्पन्न प्रारूप उपचार हैं। समस्या के किन कथनों को क्वांटम यांत्रिक रूप से व्यवहार किया जाता है और जिन्हें विशेष रूप से व्यवहार किया जाता है, यह विशिष्ट समस्या पर निर्भर करता है। अर्ध- दृष्टिकोण एएमओ के भीतर कम्प्यूटेशनल काम में सर्वव्यापी है, मोटे तौर पर कम्प्यूटेशनल लागत और इससे जुड़ी जटिलता में बड़ी कमी के कारण।
एक लेजर की कार्रवाई के तहत पदार्थ के लिए, परमाणु या आणविक प्रणाली का एक पूरी तरह से क्वांटम यांत्रिक उपचार शास्त्रीय विद्युत चुम्बकीय क्षेत्र की कार्रवाई के तहत प्रणाली के साथ जोड़ा जाता है।[16]: 14 चूंकि क्षेत्र को शास्त्रीय रूप से व्यवहार किया जाता है, यह सहज उत्सर्जन से नहीं निपट सकता।[16]: 16 यह व्युत्पन्न प्रारूप उपचार अधिकांश प्रणालियों के लिए मान्य है,[2]: 997 विशेष रूप से उच्च तीव्रता वाले लेजर क्षेत्रों की कार्रवाई के अंतर्गत होता है।[2]: 724 प्रकाशिक भौतिकी और क्वांटम प्रकाशिकी के बीच का अंतर क्रमशः व्युत्पन्न प्रारूप और पूरी तरह से क्वांटम उपचार का उपयोग है।[2]: 997
टकराव की गतिशीलता के भीतर और व्युत्पन्न प्रारूप उपचार का उपयोग करते हुए, स्वतंत्रता की आंतरिक डिग्री को क्वांटम यांत्रिक रूप से व्यवहार किया जा सकता है, जबकि विचाराधीन क्वांटम प्रणाली की सापेक्ष गति को शास्त्रीय रूप से व्यवहार किया जाता है।[2]: 556 जब मध्यम से उच्च गति की टक्करों पर विचार किया जाता है, तो नाभिक को विशेष रूप से व्यवहार किया जा सकता है जबकि इलेक्ट्रॉन को यंत्रवत् रूप से संसाधित किया जाता है। कम गति की टक्करों में अनुप्रयोग विफल हो जाता है।[2]: 754
इलेक्ट्रॉनों की गतिशीलता के लिए विशेष मोंटे-कार्लो विधियों को व्युत्पन्न प्रारूपों के रूप में वर्णित किया जा सकता है जिसमें प्रारंभिक स्थितियों की गणना पूरी तरह से क्वांटम उपचार का उपयोग करके की जाती है, परन्तु आगे के सभी उपचार विशेष हैं।[2]: 871
पृथक परमाणु और अणु
परमाणु, आणविक और प्रकाशिक भौतिकी अधिकांशतः परमाणुओं और अणुओं को दूरी में मानती है| परमाणु मॉडल में एकल नाभिक सम्मिलित होगा जो एक या अत्यधिक बंधे हुए इलेक्ट्रॉनों से घिरा हो सकता है, जबकि आणविक मॉडल सामान्यतौर पर आणविक हाइड्रोजन और इसके आणविक हाइड्रोजन आयन से संबंधित होते हैं। यह आयनीकरण सिमा आयनीकरण से ऊपर और फोटॉनों द्वारा उत्तेजित अवस्था या परमाणु कणों के साथ टकराव जैसी प्रक्रियाओं से संबंधित है।
जबकि दूरी में परमाणुओं को मॉडलिंग करना वास्तविक प्रतीत नहीं हो सकता है, यदि कोई गैस या प्लाज्मा (भौतिकी) में अणुओं पर विचार करता है तो अणु-अणु परस्पर क्रिया के लिए समय-मान उन परमाणु और आणविक प्रक्रियाओं की तुलना में बहुत बड़ा है जिनसे हम सबंधित हैं। इसका अर्थ यह है कि भिन्न-भिन्न अणुओं के साथ ऐसा व्यवहार किया जा सकता है जैसे कि प्रत्येक समय के विशाल बहुसंख्या के लिए दूरी थी। इस विचार से परमाणु और आणविक भौतिकी प्लाज्मा (भौतिकी) और वायुमंडलीय भौतिकी में अंतर्निहित सिद्धांत प्रदान करती है, चूँकि दोनों बड़ी संख्या में अणुओं से पूर्ण होते हैं।
इलेक्ट्रॉनिक विन्यास
इलेक्ट्रॉन नाभिक के चारों ओर सांकेतिक इलेक्ट्रॉन आवरण बनाते हैं। ये स्वाभाविक रूप से जमीनी अवस्था में होते हैं परन्तु प्रकाश (फोटॉन), चुंबकीय क्षेत्र, या टकराने वाले कण (सामान्यतौर पर अन्य इलेक्ट्रॉनों) के साथ ऊर्जा के अवशोषण से उत्साहित हो सकते हैं।
आवरण के स्थान करने वाले इलेक्ट्रॉनों को बाध्य अवस्था में कहा जाता है। इलेक्ट्रॉन को उसके आवरण से निकालने (इसे अनंत तक ले जाने) के लिए आवश्यक ऊर्जा को बाध्यकारी ऊर्जा कहा जाता है। इस मात्रा से अत्यधिक इलेक्ट्रॉन द्वारा अवशोषित ऊर्जा की कोई भी मात्रा ऊर्जा के संरक्षण के अनुसार गतिज ऊर्जा में परिवर्तित हो जाती है। कहा जाता है कि परमाणु आयनीकरण की प्रक्रिया से गुजरा है।
इस घटना में कि इलेक्ट्रॉन बाध्यकारी ऊर्जा से कम ऊर्जा की मात्रा को अवशोषित करता है, यह उत्तेजित अवस्था या आभासी अवस्था (भौतिकी) में ग्रसित कर सकता है। सांख्यिकीय रूप से पर्याप्त मात्रा में समय के बाद, उत्तेजित अवस्था में इलेक्ट्रॉन सहज उत्सर्जन के माध्यम से निम्न अवस्था में ग्रसित होकर जाता है। दो ऊर्जा स्तरों के बीच ऊर्जा में परिवर्तन (ऊर्जा का संरक्षण) के कारण होना चाहिए। तटस्थ परमाणु में, प्रणाली ऊर्जा के अंतर का फोटॉन उत्सर्जित करेगा। चूँकि, यदि निचली अवस्था आंतरिक आवरण में है, तो ऑगर प्रभाव के रूप में जानी जाने वाली घटना हो सकती है, जहाँ ऊर्जा को दूसरे बंधे हुए इलेक्ट्रॉनों में स्थानांतरित किया जाता है, जिससे यह सतत में चला जाता है। यह परमाणु को फोटॉन के साथ गुणा करने की अनुमति देता है।
इलेक्ट्रॉनिक विन्यास के लिए कठोर चयन नियम हैं जो प्रकाश द्वारा उत्तेजना से पहुंचा जा सकता है- चूँकि टक्कर प्रक्रियाओं द्वारा उत्तेजना के लिए ऐसे कोई नियम नहीं हैं।
यह भी देखें
- बोर्न ओपेनहाइमर सन्निकटन
- दोहरीकरण आवृति
- विवर्तन
- हाइपरफाइन संरचना
- इंटरफेरोमेट्री
- आइसोमेरिक शिफ्ट
- मेटामेट्री क्लोकिंग
- आणविक ऊर्जा क्षेत्र
- आणविक मॉडलिंग
- नैनो टेक्नोलॉजी
- ऋणात्मक सूचकांक मेटामटेरियल्स
- अरैखिक प्रकाशिकी
- प्रकाशिक इंजीनियरिंग
- फोटॉन ध्रुवीकरण
- क्वांटम रसायन
- क्वांटम प्रकाशिकी
- कठोर रोटर
- स्पेक्ट्रोस्कोपी
- सुपरलेंस
- स्थिर अवस्था
- ग्रसित अवस्था
- परमाणु का वेक्टर मॉडल
टिप्पणियाँ
- ↑ 1.0 1.1 परमाणु, आणविक और ऑप्टिकल भौतिकी. National Academy Press. 1986. ISBN 978-0-309-03575-0.
- ↑ 2.0 2.1 2.2 2.3 2.4 2.5 2.6 Editor: Gordon Drake (Various authors) (1996). परमाणु, आणविक और ऑप्टिकल भौतिकी की पुस्तिका. Springer. ISBN 978-0-387-20802-2.
{{cite book}}
:|author=
has generic name (help) - ↑ Chen, L. T., ed. (2009). Atomic, Molecular and Optical Physics: New Research. Nova Science Publishers. ISBN 978-1-60456-907-0.
- ↑ C.B. Parker (1994). मैकग्रा हिल एनसाइक्लोपीडिया ऑफ फिजिक्स (2nd ed.). McGraw Hill. p. 803. ISBN 978-0-07-051400-3.
- ↑ R. E. Dickerson; I. Geis (1976). "chapter 9". रसायन विज्ञान, पदार्थ और ब्रह्मांड. W.A. Benjamin Inc. (USA). ISBN 978-0-19-855148-5.
- ↑ I.R. Kenyon (2008). "chapters 12, 13, 17". The Light Fantastic – Introduction to Classic and Quantum Optics. Oxford University Press. ISBN 978-0-19-856646-5.
- ↑ Y. B. Band (2010). "chapters 3". Light and Matter: Electromagnetism, Optics, Spectroscopy and Lasers. John Wiley & Sons. ISBN 978-0-471-89931-0.
- ↑ "Optical Physics". University of Arizona. Retrieved Apr 23, 2014.
- ↑ "धीमी रोशनी". Science Watch. Retrieved Jan 22, 2013.
- ↑ Y.B. Band (2010). "chapters 9,10". Light and Matter: Electromagnetism, Optics, Spectroscopy and Lasers. John Wiley & Sons. ISBN 978-0-471-89931-0.
- ↑ C.B. Parker (1994). मैकग्रा हिल एनसाइक्लोपीडिया ऑफ फिजिक्स (2nd ed.). McGraw Hill. pp. 933–934. ISBN 978-0-07-051400-3.
- ↑ I. R. Kenyon (2008). "5, 6, 10, 16". The Light Fantastic – Introduction to Classic and Quantum Optics (2nd ed.). Oxford University Press. ISBN 978-0-19-856646-5.
- ↑ 13.0 13.1 R. E. Dickerson; I. Geis (1976). "chapters 7, 8". रसायन विज्ञान, पदार्थ और ब्रह्मांड. W.A. Benjamin Inc. (USA). ISBN 978-0-19-855148-5.
- ↑ Y.B. Band (2010). Light and Matter: Electromagnetism, Optics, Spectroscopy and Lasers. John Wiley & Sons. pp. 4–11. ISBN 978-0-471-89931-0.
- ↑ P. A. Tipler; G. Mosca (2008). "chapter 34". वैज्ञानिकों और इंजीनियरों के लिए भौतिकी - आधुनिक भौतिकी के साथ. Freeman. ISBN 978-0-7167-8964-2.
- ↑ 16.0 16.1 16.2 16.3 16.4 16.5 16.6 16.7 16.8 Haken, H. (1981). रोशनी (Reprint. ed.). Amsterdam u.a.: North-Holland Physics Publ. ISBN 978-0-444-86020-0.
संदर्भ
- Bransden, B. H.; Joachain, CJ (2002). Physics of Atoms and Molecules (2nd ed.). Prentice Hall. ISBN 978-0-582-35692-4.
- Foot, C. J. (2004). Atomic Physics. Oxford University Press. ISBN 978-0-19-850696-6.
- Herzberg, G. (1979) [1945]. Atomic Spectra and Atomic Structure. Dover. ISBN 978-0-486-60115-1.
- Condon, E. U. & Shortley, G. H. (1935). The Theory of Atomic Spectra. Cambridge University Press. ISBN 978-0-521-09209-8.
- Cowan, Robert D. (1981). The Theory of Atomic Structure and Spectra. University of California Press. ISBN 978-0-520-03821-9.
- Lindgren, I. & Morrison, J. (1986). Atomic Many-Body Theory (Second ed.). Springer-Verlag. ISBN 978-0-387-16649-0.
- J. R. Hook; H. E. Hall (2010). Solid State Physics (2nd ed.). Manchester Physics Series, John Wiley & Sons. ISBN 978-0-471-92804-1.
- P. W. Atkins (1978). Physical chemistry. Oxford University Press. ISBN 978-0-19-855148-5.
- Y. B. Band (2010). Light and Matter: Electromagnetism, Optics, Spectroscopy and Lasers. John Wiley & Sons. ISBN 978-0-471-89931-0.
- I. R. Kenyon (2008). The Light Fantastic – Introduction to Classic and Quantum Optics. Oxford University Press. ISBN 978-0-19-856646-5.
- T.Hey, P.Walters (2009). The New Quantum Universe. Cambridge University Press. ISBN 978-0-521-56457-1.
- R. Loudon (1996). The Quantum Theory of Light. Oxford University Press (Oxford Science Publications). ISBN 978-0-19-850177-0.
- R. Eisberg; R. Resnick (1985). Quantum Physics of Atoms, Molecules, Solids, Nuclei, and Particles (2nd ed.). John Wiley & Sons. ISBN 978-0-471-87373-0.
- P.W. Atkins (1974). Quanta: A handbook of concepts. Oxford University Press. ISBN 978-0-19-855493-6.
- E. Abers (2004). Quantum Mechanics. Pearson Ed., Addison Wesley, Prentice Hall Inc. ISBN 978-0-13-146100-0.
- P.W. Atkins (1977). Molecular Quantum Mechanics Parts I and II: An Introduction to QUANTUM CHEMISTRY (Volume 1). Oxford University Press. ISBN 978-0-19-855129-4.
- P.W. Atkins (1977). Molecular Quantum Mechanics Part III: An Introduction to QUANTUM CHEMISTRY (Volume 2). Oxford University Press. ISBN 978-0-19-855129-4.
- Solid State Physics (2nd Edition), J.R. Hook, H.E. Hall, Manchester Physics Series, John Wiley & Sons, 2010, ISBN 978 0 471 92804 1
- Light and Matter: Electromagnetism, Optics, Spectroscopy and Lasers, Y.B. Band, John Wiley & Sons, 2010, ISBN 978-0471-89931-0
- The Light Fantastic – Introduction to Classic and Quantum Optics, I.R. Kenyon, Oxford University Press, 2008, ISBN 978-0-19-856646-5
- Handbook of atomic, molecular, and optical physics, Editor: Gordon Drake, Springer, Various authors, 1996, ISBN 0-387-20802-X
- Fox, Mark (2010). Optical properties of solids. Oxford New York: Oxford University Press. ISBN 978-0-19-957336-3.
बाहरी संबंध
- ScienceDirect - Advances In Atomic, Molecular, and Optical Physics
- Journal of Physics B: Atomic, Molecular and Optical Physics
संस्थान
- अमेरिकन फिजिकल सोसाइटी - परमाणु, आणविक और ऑप्टिकल भौतिकी का विभाजन
- यूरोपीय भौतिक समाज - परमाणु, आणविक और ऑप्टिकल भौतिकी प्रभाग
- नेशनल साइंस फाउंडेशन - परमाणु, आणविक और ऑप्टिकल भौतिकी
- MIT-Harvard Centre for Ultracold Atoms
- स्टैनफोर्ड QFARM पहल क्वांटम विज्ञान और इंजीनियरिंग के लिए
- JILA - परमाणु और आणविक भौतिकी
- मैरीलैंड विश्वविद्यालय और एनआईएसटी में संयुक्त क्वांटम संस्थान
- ओआरएनएल फिजिक्स डिवीजन
- क्वींस यूनिवर्सिटी बेलफास्ट - सैद्धांतिक, परमाणु, आणविक और ऑप्टिकल भौतिकी केंद्र,
- यूनिवर्सिटी ऑफ कैलिफोर्निया, बर्कले - परमाणु, आणविक और ऑप्टिकल भौतिकी