फील्ड (भौतिकी): Difference between revisions
No edit summary |
|||
(4 intermediate revisions by the same user not shown) | |||
Line 67: | Line 67: | ||
: <math> \mathbf{B}(\mathbf{r}) = \boldsymbol{\nabla} \times \mathbf{A}(\mathbf{r}) </math> | : <math> \mathbf{B}(\mathbf{r}) = \boldsymbol{\nabla} \times \mathbf{A}(\mathbf{r}) </math> | ||
[[File:em dipoles.svg|thumb|right|250px| [[ विद्युत क्षेत्र | ''' ई ''' क्षेत्र ]] और [[ चुंबकीय क्षेत्र | ''' बी ''' क्षेत्र ]] [[ विद्युत आवेश ]](काला/सफेद) और [[ चुंबक | चुंबकीय ध्रुव ]] (लाल/नीला) के कारण<ref name="Mc Graw Hill">{{cite book|title=McGraw Hill Encyclopaedia of Physics|first1=C.B.|last1=Parker|edition=2nd|publisher=Mc Graw Hill|year=1994|isbn=0-07-051400-3|url=https://archive.org/details/mcgrawhillencycl1993park}}</ref><ref name="M. Mansfield, C. | [[File:em dipoles.svg|thumb|right|250px| [[ विद्युत क्षेत्र | ''' ई ''' क्षेत्र ]] और [[ चुंबकीय क्षेत्र | ''' बी ''' क्षेत्र ]] [[ विद्युत आवेश ]](काला/सफेद) और [[ चुंबक | चुंबकीय ध्रुव ]] (लाल/नीला) के कारण<ref name="Mc Graw Hill">{{cite book|title=McGraw Hill Encyclopaedia of Physics|first1=C.B.|last1=Parker|edition=2nd|publisher=Mc Graw Hill|year=1994|isbn=0-07-051400-3|url=https://archive.org/details/mcgrawhillencycl1993park}}</ref><ref name="M. Mansfield, C. O’Sullivan 2011">{{cite book |author1=M. Mansfield |author2=C. O’Sullivan |title= Understanding Physics|edition= 4th |year= 2011|publisher= John Wiley & Sons|isbn=978-0-47-0746370}}</ref> '''शीर्ष:''''''E''' एक [[ विद्युत द्विध्रुव आघूर्ण ]] '''d''' के कारण क्षेत्र। '''नीचे बाएँ:''''''B''' एक 'गणितीय'' [[ चुंबकीय द्विध्रुव ]] '''m''' के कारण दो चुंबकीय मोनोपोलों द्वारा निर्मित क्षेत्र। '''नीचे दाएं:''''''B''' क्षेत्र शुद्ध [[ चुंबकीय द्विध्रुवीय क्षण ]] '''m''' के कारण साधारण पदार्थ में पाया जाता है (मोनोपोल से ''नहीं'')। ]] | ||
==== विद्युतगतिकी ==== | ==== विद्युतगतिकी ==== | ||
Line 78: | Line 78: | ||
19वीं शताब्दी के अंत में, [[ विद्युत चुम्बकीय क्षेत्र |विद्युत चुम्बकीय क्षेत्र]] को अंतरिक्ष में दो वेक्टर क्षेत्रों के संग्रह के रूप में समझा गया था। आजकल, कोई इसे दिक्काल में एकल एंटीसिमेट्रिक 2nd-रैंक टेंसर फ़ील्ड के रूप में पहचानता है। | 19वीं शताब्दी के अंत में, [[ विद्युत चुम्बकीय क्षेत्र |विद्युत चुम्बकीय क्षेत्र]] को अंतरिक्ष में दो वेक्टर क्षेत्रों के संग्रह के रूप में समझा गया था। आजकल, कोई इसे दिक्काल में एकल एंटीसिमेट्रिक 2nd-रैंक टेंसर फ़ील्ड के रूप में पहचानता है। | ||
[[File:em monopoles.svg|thumb|right|250px| [[ विद्युत क्षेत्र | ''' ई ''' क्षेत्र ]] और [[ चुंबकीय क्षेत्र | ''' बी ''' क्षेत्र ]] [[ विद्युत आवेश ]] एस (काला/सफेद) और [[ चुंबक | चुंबकीय ध्रुव ]] (लाल/नीला) के कारण<ref name="Mc Graw Hill"/><ref name="M. Mansfield, C. | [[File:em monopoles.svg|thumb|right|250px| [[ विद्युत क्षेत्र | ''' ई ''' क्षेत्र ]] और [[ चुंबकीय क्षेत्र | ''' बी ''' क्षेत्र ]] [[ विद्युत आवेश ]] एस (काला/सफेद) और [[ चुंबक | चुंबकीय ध्रुव ]] (लाल/नीला) के कारण<ref name="Mc Graw Hill"/><ref name="M. Mansfield, C. O’Sullivan 2011" /> ''' ई ''' स्थिर विद्युत आवेशों के कारण और ''' बी ''' क्षेत्र स्थिर[[ चुंबकीय मोनोपोल | चुंबकीय आवेश ]] (प्रकृति में नोट एन और एस मोनोपोल मौजूद नहीं हैं) के कारण। गति में ( [[ वेग ]] '''v'''), एक ''विद्युत" आवेश एक '''B''' क्षेत्र को प्रेरित करता है जबकि एक ''चुंबकीय" आवेश (प्रकृति में नहीं पाया जाता) एक '''E''' क्षेत्र को प्रेरित करता है। [[ परम्परागत करंट |परम्परागत करंट]] का उपयोग किया जाता है। ]] | ||
==== इलेक्ट्रोस्टैटिक्स (स्थिर विद्युतिकी) ==== | ==== इलेक्ट्रोस्टैटिक्स (स्थिर विद्युतिकी) ==== | ||
Line 95: | Line 127: | ||
: <math> \mathbf{B}(\mathbf{r}) = \boldsymbol{\nabla} \times \mathbf{A}(\mathbf{r}) </math> | : <math> \mathbf{B}(\mathbf{r}) = \boldsymbol{\nabla} \times \mathbf{A}(\mathbf{r}) </math> | ||
[[File:em dipoles.svg|thumb|right|250px| [[ विद्युत क्षेत्र | ''' ई ''' क्षेत्र ]] और [[ चुंबकीय क्षेत्र | ''' बी ''' क्षेत्र ]] [[ विद्युत आवेश ]](काला/सफेद) और [[ चुंबक | चुंबकीय ध्रुव ]] (लाल/नीला) के कारण<ref name="Mc Graw Hill">{{cite book|title=McGraw Hill Encyclopaedia of Physics|first1=C.B.|last1=Parker|edition=2nd|publisher=Mc Graw Hill|year=1994|isbn=0-07-051400-3|url=https://archive.org/details/mcgrawhillencycl1993park}}</ref><ref name="M. Mansfield, C. | [[File:em dipoles.svg|thumb|right|250px| [[ विद्युत क्षेत्र | ''' ई ''' क्षेत्र ]] और [[ चुंबकीय क्षेत्र | ''' बी ''' क्षेत्र ]] [[ विद्युत आवेश ]](काला/सफेद) और [[ चुंबक | चुंबकीय ध्रुव ]] (लाल/नीला) के कारण<ref name="Mc Graw Hill">{{cite book|title=McGraw Hill Encyclopaedia of Physics|first1=C.B.|last1=Parker|edition=2nd|publisher=Mc Graw Hill|year=1994|isbn=0-07-051400-3|url=https://archive.org/details/mcgrawhillencycl1993park}}</ref><ref name="M. Mansfield, C. O’Sullivan 2011" />{{cite book |author1=M. Mansfield |author2=C. O’Sullivan |title= Understanding Physics|edition= 4th |year= 2011|publisher= John Wiley & Sons|isbn=978-0-47-0746370}}</ref> '''शीर्ष:''''''E''' एक[[ विद्युत द्विध्रुव आघूर्ण ]] '''d''' के कारण क्षेत्र। '''नीचे बाएँ:''''''B''' एक 'गणितीय'' [[ चुंबकीय द्विध्रुव ]] '''m''' के कारण दो चुंबकीय मोनोपोलों द्वारा निर्मित क्षेत्र। '''नीचे दाएं:''''''B''' क्षेत्र शुद्ध [[ चुंबकीय द्विध्रुवीय क्षण |चुंबकीय द्विध्रुवीय क्षण]] '''m''' के कारण साधारण पदार्थ में पाया जाता है (मोनोपोल से ''नहीं'')। ]] | ||
==== विद्युतगतिकी ==== | ==== विद्युतगतिकी ==== | ||
Line 106: | Line 138: | ||
19वीं शताब्दी के अंत में, [[:hi:विद्युतचुम्बकीय क्षेत्र|विद्युत चुम्बकीय क्षेत्र]] को अंतरिक्ष में दो वेक्टर क्षेत्रों के संग्रह के रूप में समझा गया था। आजकल, कोई इसे दिक्काल में एकल एंटीसिमेट्रिक 2nd-रैंक टेंसर फ़ील्ड के रूप में पहचानता है। | 19वीं शताब्दी के अंत में, [[:hi:विद्युतचुम्बकीय क्षेत्र|विद्युत चुम्बकीय क्षेत्र]] को अंतरिक्ष में दो वेक्टर क्षेत्रों के संग्रह के रूप में समझा गया था। आजकल, कोई इसे दिक्काल में एकल एंटीसिमेट्रिक 2nd-रैंक टेंसर फ़ील्ड के रूप में पहचानता है। | ||
[[File:em monopoles.svg|thumb|right|250px| [[ विद्युत क्षेत्र | ''' ई ''' क्षेत्र ]] और [[ चुंबकीय क्षेत्र | ''' बी ''' क्षेत्र ]] [[ विद्युत आवेश | विद्युत आवेश]] (काला/सफेद) और [[ चुंबक | चुंबकीय ध्रुव ]] (लाल/नीला) के कारण<ref name="Mc Graw Hill"/><ref name="M. Mansfield, C. | [[File:em monopoles.svg|thumb|right|250px| [[ विद्युत क्षेत्र | ''' ई ''' क्षेत्र ]] और [[ चुंबकीय क्षेत्र | ''' बी ''' क्षेत्र ]] [[ विद्युत आवेश | विद्युत आवेश]] (काला/सफेद) और [[ चुंबक | चुंबकीय ध्रुव ]] (लाल/नीला) के कारण<ref name="Mc Graw Hill"/><ref name="M. Mansfield, C. O’Sullivan 2011" /> ''' E ''' स्थिर विद्युत आवेशों के कारण और ''' B ''' क्षेत्र स्थिर [[ चुंबकीय मोनोपोल | चुंबकीय आवेश ]] (प्रकृति में नोट एन और एस मोनोपोल मौजूद नहीं हैं) के कारण। गति में ( [[ वेग ]] '''v'''), एक ''विद्युत" आवेश एक '''B''' क्षेत्र को प्रेरित करता है जबकि एक "चुंबकीय" आवेश (प्रकृति में नहीं पाया जाता) एक '''E''' क्षेत्र को प्रेरित करता है। [[ परम्परागत करंट ]] का उपयोग किया जाता है। ]] | ||
=== सामान्य सापेक्षता में गुरुत्वाकर्षण === | === सामान्य सापेक्षता में गुरुत्वाकर्षण === | ||
Line 120: | Line 152: | ||
अब यह माना जाता है कि [[:hi:प्रमात्रा यान्त्रिकी|क्वांटम यांत्रिकी]] को सभी भौतिक घटनाओं का आधार होना चाहिए, ताकि एक शास्त्रीय क्षेत्र सिद्धांत, कम से कम सिद्धांत के रूप में, क्वांटम यांत्रिक शब्दों में पुनर्रचना की अनुमति दे, सफलता इसी [[:hi:प्रमात्रा क्षेत्र सिद्धान्त|क्वांटम क्षेत्र सिद्धांत]] को जन्म देती है। उदाहरण के लिए, [[:hi:चिरसम्मत विद्युत् चुम्बकीकी|शास्त्रीय इलेक्ट्रोडायनामिक्स(वैद्युतगतिकी)]] को [[:hi:क्वांटीकरण (भौतिकी)|परिमाणित करना]] [[:hi:क्वाण्टम विद्युत्गतिकी|क्वांटम इलेक्ट्रोडायनामिक्स]] देता है। क्वांटम इलेक्ट्रोडायनामिक्स यकीनन सबसे सफल वैज्ञानिक सिद्धांत है, | अब यह माना जाता है कि [[:hi:प्रमात्रा यान्त्रिकी|क्वांटम यांत्रिकी]] को सभी भौतिक घटनाओं का आधार होना चाहिए, ताकि एक शास्त्रीय क्षेत्र सिद्धांत, कम से कम सिद्धांत के रूप में, क्वांटम यांत्रिक शब्दों में पुनर्रचना की अनुमति दे, सफलता इसी [[:hi:प्रमात्रा क्षेत्र सिद्धान्त|क्वांटम क्षेत्र सिद्धांत]] को जन्म देती है। उदाहरण के लिए, [[:hi:चिरसम्मत विद्युत् चुम्बकीकी|शास्त्रीय इलेक्ट्रोडायनामिक्स(वैद्युतगतिकी)]] को [[:hi:क्वांटीकरण (भौतिकी)|परिमाणित करना]] [[:hi:क्वाण्टम विद्युत्गतिकी|क्वांटम इलेक्ट्रोडायनामिक्स]] देता है। क्वांटम इलेक्ट्रोडायनामिक्स यकीनन सबसे सफल वैज्ञानिक सिद्धांत है, | ||
[[:hi:प्रयोग|प्रयोगात्मक]] [[:hi:आँकड़ा|डेटा]] किसी भी अन्य सिद्धांत की तुलना में इसकी भविष्यवाणियों की उच्च [[:hi:यथार्थता एवं परिशुद्धता|परिशुद्धता]] (अधिक [[:hi:सार्थक अंक|महत्वपूर्ण अंकों]] तक) की पुष्टि करता है। <ref>{{Cite book|last=Peskin|first=Michael E.|last2=Schroeder|first2=Daniel V.|title=An Introduction to Quantum Fields|page=[https://archive.org/details/introductiontoqu0000pesk/page/198 198]|year=1995|publisher=Westview Press|isbn=0-201-50397-2|url=https://archive.org/details/introductiontoqu0000pesk/page/198}}. Also see [[QED . के सटीक परीक्षण|precision tests of QED]].</ref> दो अन्य मौलिक क्वांटम क्षेत्र सिद्धांत [[:hi:क्वांटम क्रोमोडायनामिक्स|क्वांटम क्रोमोडायनामिक्स]] और [[:hi:विद्युत-चुम्बकीय-दुर्बल अन्योन्य क्रिया|इलेक्ट्रोवीक सिद्धांत हैं]] ।[[File:Qcd fields field (physics).svg|400px|right|thumb| [[ कलर चार्ज | कलर चार्ज]] के कारण फ़ील्ड, जैसे [[ क्वार्क | क्वार्क]](''' G''' [[ ग्लूऑन फील्ड स्ट्रेंथ टेंसर ]] है)। ये रंगहीन संयोजन हैं। '''टॉप:''' कलर चार्ज में टर्नरी न्यूट्रल स्टेट्स के साथ-साथ बाइनरी न्यूट्रलिटी ( [[ इलेक्ट्रिक चार्ज ]] के अनुरूप) होती है। '''नीचे:''' क्वार्क/एंटीक्वार्क संयोजन<ref name="Mc Graw Hill"/><ref name="M. Mansfield, C. | [[:hi:प्रयोग|प्रयोगात्मक]] [[:hi:आँकड़ा|डेटा]] किसी भी अन्य सिद्धांत की तुलना में इसकी भविष्यवाणियों की उच्च [[:hi:यथार्थता एवं परिशुद्धता|परिशुद्धता]] (अधिक [[:hi:सार्थक अंक|महत्वपूर्ण अंकों]] तक) की पुष्टि करता है। <ref>{{Cite book|last=Peskin|first=Michael E.|last2=Schroeder|first2=Daniel V.|title=An Introduction to Quantum Fields|page=[https://archive.org/details/introductiontoqu0000pesk/page/198 198]|year=1995|publisher=Westview Press|isbn=0-201-50397-2|url=https://archive.org/details/introductiontoqu0000pesk/page/198}}. Also see [[QED . के सटीक परीक्षण|precision tests of QED]].</ref> दो अन्य मौलिक क्वांटम क्षेत्र सिद्धांत [[:hi:क्वांटम क्रोमोडायनामिक्स|क्वांटम क्रोमोडायनामिक्स]] और [[:hi:विद्युत-चुम्बकीय-दुर्बल अन्योन्य क्रिया|इलेक्ट्रोवीक सिद्धांत हैं]] ।[[File:Qcd fields field (physics).svg|400px|right|thumb| [[ कलर चार्ज | कलर चार्ज]] के कारण फ़ील्ड, जैसे [[ क्वार्क | क्वार्क]](''' G''' [[ ग्लूऑन फील्ड स्ट्रेंथ टेंसर ]] है)। ये रंगहीन संयोजन हैं। '''टॉप:''' कलर चार्ज में टर्नरी न्यूट्रल स्टेट्स के साथ-साथ बाइनरी न्यूट्रलिटी ( [[ इलेक्ट्रिक चार्ज ]] के अनुरूप) होती है। '''नीचे:''' क्वार्क/एंटीक्वार्क संयोजन<ref name="Mc Graw Hill"/><ref name="M. Mansfield, C. O’Sullivan 2011" />]] | ||
क्वांटम क्रोमोडायनामिक्स में, रंग क्षेत्र रेखाओं को [[:hi:ग्लुओन|ग्लून्स]](पार्टिकल) द्वारा कम दूरी पर युग्मित किया जाता है, जो क्षेत्र द्वारा ध्रुवीकृत होते हैं और इसके साथ पंक्तिबद्ध होते हैं। यह प्रभाव थोड़ी दूरी (क्वार्क के आसपास से लगभग 1 [[:hi:फ़ैम्टोमान|fm]] ) के भीतर बढ़ जाता है, जिससे थोड़ी दूरी के भीतर रंग बल बढ़ जाता है, क्वार्क को [[:hi:हैड्रॉन|हैड्रोन]] के भीतर [[:hi:रंग कारावास|सीमित कर देता]] है। चूंकि क्षेत्र रेखाएं ग्लून्स(पार्टिकल) द्वारा कसकर एक साथ खींची जाती हैं, इसलिए वे बाहर की ओर झुक नहीं पाती हैं, जितना कि विद्युत आवेशों के बीच एक विद्युत क्षेत्र। <ref>{{Cite book|title=Quantum Physics of Atoms, Molecules, Solids, Nuclei and Particles|edition=2nd|last=R. Resnick|last2=R. Eisberg|publisher=John Wiley & Sons|year=1985|page=[https://archive.org/details/quantumphysicsof00eisb/page/684 684]|isbn=978-0-471-87373-0|url=https://archive.org/details/quantumphysicsof00eisb/page/684}}</ref> | क्वांटम क्रोमोडायनामिक्स में, रंग क्षेत्र रेखाओं को [[:hi:ग्लुओन|ग्लून्स]](पार्टिकल) द्वारा कम दूरी पर युग्मित किया जाता है, जो क्षेत्र द्वारा ध्रुवीकृत होते हैं और इसके साथ पंक्तिबद्ध होते हैं। यह प्रभाव थोड़ी दूरी (क्वार्क के आसपास से लगभग 1 [[:hi:फ़ैम्टोमान|fm]] ) के भीतर बढ़ जाता है, जिससे थोड़ी दूरी के भीतर रंग बल बढ़ जाता है, क्वार्क को [[:hi:हैड्रॉन|हैड्रोन]] के भीतर [[:hi:रंग कारावास|सीमित कर देता]] है। चूंकि क्षेत्र रेखाएं ग्लून्स(पार्टिकल) द्वारा कसकर एक साथ खींची जाती हैं, इसलिए वे बाहर की ओर झुक नहीं पाती हैं, जितना कि विद्युत आवेशों के बीच एक विद्युत क्षेत्र। <ref>{{Cite book|title=Quantum Physics of Atoms, Molecules, Solids, Nuclei and Particles|edition=2nd|last=R. Resnick|last2=R. Eisberg|publisher=John Wiley & Sons|year=1985|page=[https://archive.org/details/quantumphysicsof00eisb/page/684 684]|isbn=978-0-471-87373-0|url=https://archive.org/details/quantumphysicsof00eisb/page/684}}</ref> | ||
Line 193: | Line 225: | ||
<references /> | <references /> | ||
{{Reflist|group=note}} | |||
[[Category:Articles with short description|Field (Physics)]] | [[Category:Articles with short description|Field (Physics)]] | ||
[[Category:CS1 English-language sources (en)|Field (Physics)]] | [[Category:CS1 English-language sources (en)|Field (Physics)]] | ||
[[Category:CS1 maint|Field (Physics)]] | [[Category:CS1 maint|Field (Physics)]] | ||
[[Category:Collapse templates|Field (Physics)]] | |||
[[Category:Commons category link is locally defined|Field (Physics)]] | |||
[[Category:Environment navigational boxes|Field (Physics)]] | |||
[[Category:Exclude in print|Field (Physics)]] | [[Category:Exclude in print|Field (Physics)]] | ||
[[Category:Interwiki category linking templates|Field (Physics)]] | [[Category:Interwiki category linking templates|Field (Physics)]] | ||
[[Category:Interwiki link templates|Field (Physics)]] | [[Category:Interwiki link templates|Field (Physics)]] | ||
[[Category:Lua-based templates|Field (Physics)]] | |||
[[Category:Machine Translated Page|Field (Physics)]] | [[Category:Machine Translated Page|Field (Physics)]] | ||
[[Category:Navigational boxes| ]] | |||
[[Category:Navigational boxes without horizontal lists|Field (Physics)]] | |||
[[Category:Pages with reference errors|Field (Physics)]] | [[Category:Pages with reference errors|Field (Physics)]] | ||
[[Category:Pages with script errors|Field (Physics)]] | [[Category:Pages with script errors|Field (Physics)]] | ||
[[Category:Science and nature navigational boxes|Field (Physics)]] | |||
[[Category:Short description with empty Wikidata description|Field (Physics)]] | [[Category:Short description with empty Wikidata description|Field (Physics)]] | ||
[[Category:Sidebars with styles needing conversion|Field (Physics)]] | |||
[[Category:Template documentation pages|Documentation/doc]] | [[Category:Template documentation pages|Documentation/doc]] | ||
[[Category:Templates Vigyan Ready|Field (Physics)]] | |||
[[Category:Templates generating microformats|Field (Physics)]] | |||
[[Category:Templates that add a tracking category|Field (Physics)]] | [[Category:Templates that add a tracking category|Field (Physics)]] | ||
[[Category:Templates that are not mobile friendly|Field (Physics)]] | |||
[[Category:Templates that generate short descriptions|Field (Physics)]] | |||
[[Category:Templates used by AutoWikiBrowser|Cite web]] | [[Category:Templates used by AutoWikiBrowser|Cite web]] | ||
[[Category:Templates using TemplateData|Field (Physics)]] | [[Category:Templates using TemplateData|Field (Physics)]] | ||
[[Category:Wikimedia Commons templates|Field (Physics)]] | [[Category:Wikimedia Commons templates|Field (Physics)]] | ||
[[Category:Wikipedia metatemplates|Field (Physics)]] | |||
[[Category:गणितीय भौतिकी|Field (Physics)]] | [[Category:गणितीय भौतिकी|Field (Physics)]] | ||
[[Category:भौतिक मात्रा|Field (Physics)]] | [[Category:भौतिक मात्रा|Field (Physics)]] | ||
[[Category:सैद्धांतिक भौतिकी|Field (Physics)]] | [[Category:सैद्धांतिक भौतिकी|Field (Physics)]] |
Latest revision as of 15:25, 31 August 2023
भौतिकी में, फील्ड(क्षेत्र) एक भौतिक मात्रा है, जो अदिश, सदिश, या टेंसर द्वारा दर्शाया जाता है, जिसका स्थान और समय में प्रत्येक बिंदु के लिए निश्चित मान होता है।[1] [2] [3] उदाहरण के लिए मौसम मानचित्र पर, प्रत्येक बिंदु को एक संख्या निर्दिष्ट करके सतह के तापमान का वर्णन किया जाता है। तापमान परिवर्तन की गतिशीलता का अध्ययन करने के लिए तापमान को एक निश्चित समय पर या समय के कुछ अंतराल पर माना जा सकता है। एक पृष्ठ हवा का मानचित्र, [4] प्रत्येक बिंदु पर एक तीर निर्दिष्ट करता है जो उस बिंदु पर हवा की गति और दिशा का वर्णन करता है, यह सदिश क्षेत्र (वेक्टर क्षेत्र) का उदाहरण है, यानी एक 1-आयामी (रैंक -1) टेंसर फ़ील्ड। क्षेत्र सिद्धांत, अंतरिक्ष और समय में क्षेत्र के मूल्यों में परिवर्तन के गणितीय विवरण, भौतिकी में सर्वव्यापी हैं। उदाहरण के लिए, विद्युत क्षेत्र एक और रैंक -1 प्रदिश क्षेत्र (टेंसर क्षेत्र) है, जबकि वैद्युतगतिकी(इलेक्ट्रोडायनामिक्स) को दिक्काल में प्रत्येक बिंदु पर दो अन्योन्यक्रिया सदिश क्षेत्र (दो इंटरेक्टिंग वेक्टर फ़ील्ड) के रूप में या एकल-रैंक 2-टेंसर फ़ील्ड के रूप में तैयार किया जा सकता है। [5] [6] [7]
क्षेत्र के क्वांटम सिद्धांत के आधुनिक ढांचे में, यहां तक कि एक परीक्षण कण का उल्लेख किए बिना, एक क्षेत्र स्थान घेरता है, इसमें ऊर्जा होती है, और इसकी उपस्थिति एक पारम्परिक निर्वात को रोकती है। [8] इसने भौतिकविदों को विद्युत चुम्बकीय क्षेत्रों को एक भौतिक इकाई मानने के लिए प्रेरित किया है, जिससे क्षेत्र की अवधारणा आधुनिक भौतिकी के भवन का एक सहायक प्रतिमान बन गई है। तथ्य यह है कि विद्युत चुम्बकीय क्षेत्र में गति हो सकती है और ऊर्जा इसे बहुत वास्तविक बनाती है ... एक कण क्षेत्र बनाता है, और एक क्षेत्र दूसरे कण पर कार्य करता है, और क्षेत्र में ऊर्जा सामग्री और गति जैसे परिचित गुण होते हैं, जैसे कण कर सकते हैं। [9] व्यवहार में, अधिकांश क्षेत्रों की शक्ति दूरी के साथ कम हो जाती है, अंततः पता लगाने योग्य नहीं होती है। उदाहरण के लिए, कई प्रासंगिक चिरसम्मत क्षेत्रों की शक्ति, जैसे न्यूटन के गुरुत्वाकर्षण के सिद्धांत में गुरुत्वाकर्षण क्षेत्र या चिरसम्मत विद्युत चुंबकत्व में स्थिर वैद्युत् क्षेत्र (इलेक्ट्रोस्टैटिक क्षेत्र), स्रोत से दूरी के वर्ग के व्युत्क्रमानुपाती होता है (यानी, वे गॉस के नियम का पालन करते हैं)।
फ़ील्ड(क्षेत्र) को एक अदिश क्षेत्र (स्केलर फ़ील्ड), सदिश क्षेत्र(वेक्टर फ़ील्ड),घूर्णक फ़ील्ड (स्पिनर फ़ील्ड) या प्रदिश क्षेत्र (टेंसर फ़ील्ड) के रूप में वर्गीकृत किया जा सकता है, चाहे प्रतिनिधित्व भौतिक मात्रा क्रमशः अदिश(स्केलर),सदिश(वेक्टर), घूर्णक(स्पिनर) या प्रदिश(टेंसर) हो। एक फ़ील्ड में एक सुसंगत टेंसोरियल वर्ण होता है जहाँ भी इसे परिभाषित किया जाता है: यानी कोई फ़ील्ड कहीं अदिश क्षेत्र और कहीं और सदिश क्षेत्र नहीं हो सकता है। उदाहरण के लिए, न्यूटोनियन गुरुत्वाकर्षण क्षेत्र एक वेक्टर क्षेत्र है: दिक्काल में एक बिंदु पर इसके मूल्य को निर्दिष्ट करने के लिए तीन संख्याओं की आवश्यकता होती है, उस बिंदु पर गुरुत्वाकर्षण क्षेत्र वेक्टर के घटक है। इसके अलावा प्रत्येक श्रेणी (स्केलर, वेक्टर, टेंसर) के भीतर, एक क्षेत्र या तो चिरसम्मत क्षेत्र या क्वांटम क्षेत्र हो सकता है, यह इस बात पर निर्भर करता है कि यह क्रमशः संख्याओं या क्वांटम ऑपरेटरों द्वारा विशेषता है या नहीं। इस सिद्धांत में क्षेत्र का एक समकक्ष प्रतिनिधित्व क्षेत्र कण है, उदाहरण के लिए एक बोसॉन कण। [10]
इतिहास
आइजैक न्यूटन के लिए, उनके सार्वभौमिक गुरुत्वाकर्षण के नियम ने गुरुत्वाकर्षण बल को व्यक्त किया जो कि बड़े पैमाने पर वस्तुओं के किसी भी जोड़े के बीच कार्य करता है। कई पिंडों की गति को देखते हुए सभी एक दूसरे के साथ बातचीत करते हैं,जैसे कि सौर मंडल में ग्रह, प्रत्येक जोड़े के बीच के बल को अलग-अलग तेजी से निपटना अभिकलनीय रूप से असुविधाजनक हो जाता है। अठारहवीं शताब्दी में, इन सभी गुरुत्वाकर्षण बलों की बहीखाता पद्धति को सरल बनाने के लिए एक नई मात्रा का आविष्कार किया गया था। इस मात्रा द्वारा गुरुत्वाकर्षण क्षेत्र ने अंतरिक्ष में प्रत्येक बिंदु पर कुल गुरुत्वाकर्षण त्वरण दिया जो उस बिंदु पर एक छोटी वस्तु द्वारा महसूस किया जाएगा। इसने भौतिकी को किसी भी तरह से नहीं बदला इससे कोई फर्क नहीं पड़ता कि किसी वस्तु पर सभी गुरुत्वाकर्षण बलों की व्यक्तिगत रूप से गणना की जाती है और फिर एक साथ जोड़ा जाता है या सभी योगदानों को पहले एक गुरुत्वाकर्षण क्षेत्र के रूप में जोड़ा जाता है और फिर किसी वस्तु पर लागू किया जाता है। [11]
एक क्षेत्र की स्वतंत्र अवधारणा का विकास वास्तव में उन्नीसवीं शताब्दी में विद्युत चुंबकत्व के सिद्धांत के विकास के साथ शुरू हुआ। प्रारंभिक चरणों में, आंद्रे-मैरी एम्पीयर और चार्ल्स-ऑगस्टिन डी कूलम्ब न्यूटन-शैली के कानूनों के साथ प्रबंधन कर सकते थे जो विद्युत आवेशों या विद्युत धाराओं के जोड़े के बीच बलों को व्यक्त करते थे। हालांकि, क्षेत्र दृष्टिकोण लेना और विद्युत और चुंबकीय क्षेत्रों के संदर्भ में इन कानूनों को व्यक्त करना अधिक स्वाभाविक हो गया, 1849 में माइकल फैराडे "फ़ील्ड" शब्द गढ़ने वाले पहले व्यक्ति बने। [12]
क्षेत्र की स्वतंत्र प्रकृति जेम्स क्लर्क मैक्सवेल की खोज के साथ और अधिक स्पष्ट हो गई कि इन क्षेत्रों में तरंगे एक सीमित गति से फैलती हैं। नतीजतन, आवेशों और धाराओं पर बल अब न केवल एक ही समय में अन्य आवेशों और धाराओं की स्थिति और वेग पर निर्भर करते हैं, बल्कि अतीत में उनकी स्थिति और वेगों पर भी निर्भर करते हैं। [13]
मैक्सवेल ने सबसे पहले एक क्षेत्र की आधुनिक अवधारणा को एक मूल राशि के रूप में नहीं अपनाया जो स्वतंत्र रूप से मौजूद हो सकती है। इसके बजाय, उनका मानना था कि विद्युत चुम्बकीय क्षेत्र कुछ अंतर्निहित माध्यम के विरूपण को व्यक्त करता है - चमकदार ईथर - एक रबर झिल्ली में तनाव की तरह। यदि ऐसा होता, तो विद्युत चुम्बकीय तरंगों का प्रेक्षित वेग ईथर के संबंध में प्रेक्षक के वेग पर निर्भर होना चाहिए। बहुत प्रयास के बावजूद, इस तरह के प्रभाव का कोई प्रायोगिक प्रमाण कभी नहीं मिला, 1905 में अल्बर्ट आइंस्टीन द्वारा सापेक्षता के विशेष सिद्धांत की शुरुआत द्वारा स्थिति को हल किया गया था। इस सिद्धांत ने गतिमान पर्यवेक्षकों के दृष्टिकोण को एक दूसरे से संबंधित करने के तरीके को बदल दिया। वे एक-दूसरे से इस प्रकार संबंधित हो गए कि मैक्सवेल के सिद्धांत में विद्युत चुम्बकीय तरंगों का वेग सभी पर्यवेक्षकों के लिए समान होगा। एक पृष्ठभूमि माध्यम की आवश्यकता को समाप्त करके, इस विकास ने भौतिकविदों के लिए क्षेत्रों के बारे में वास्तव में स्वतंत्र संस्थाओं के रूप में शुरू करने का मार्ग खोल दिया। [14]
1920 के दशक के अंत में, क्वांटम यांत्रिकी के नए नियमों को पहली बार विद्युत चुम्बकीय क्षेत्र पर लागू किया गया था। 1927 में, पॉल डिराक ने क्वांटम क्षेत्रों का उपयोग सफलतापूर्वक यह समझाने के लिए किया कि विद्युत चुम्बकीय क्षेत्र की मात्रा कैसे एक कम क्वांटम अवस्था में एक परमाणु के क्षय ने एक फोटॉन के सहज उत्सर्जन को जन्म दिया। इसके बाद जल्द ही यह अहसास हुआ ( पास्कुअल जॉर्डन, यूजीन विग्नर, वर्नर हाइजेनबर्ग और वोल्फगैंग पॉली के काम के बाद) कि इलेक्ट्रॉनों और प्रोटॉन सहित सभी कणों को कुछ क्वांटम क्षेत्र के क्वांटा के रूप में समझा जा सकता है, जो क्षेत्र को स्थिति तक बढ़ा सकते हैं। प्रकृति में सबसे मौलिक वस्तुओं में से। [15] उसने कहा, जॉन व्हीलर और रिचर्ड फेनमैन ने दूरी पर न्यूटन की पूर्व-क्षेत्रीय कार्रवाई की अवधारणा पर गंभीरता से विचार किया (हालांकि सामान्य सापेक्षता और क्वांटम इलेक्ट्रोडायनामिक्स में अनुसंधान के लिए क्षेत्र अवधारणा की चल रही उपयोगिता के कारण उन्होंने इसे अलग रखा)।
शास्त्रीय क्षेत्र
शास्त्रीय क्षेत्रों के कई उदाहरण हैं। जहां क्वांटम गुण उत्पन्न नहीं होते हैं, वहां शास्त्रीय क्षेत्र सिद्धांत उपयोगी रहते हैं और अनुसंधान के सक्रिय क्षेत्र हो सकते हैं। सामग्री की लोच,द्रव गतिकी और मैक्सवेल के समीकरण इसके उदाहरण हैं।
कुछ सबसे सरल भौतिक क्षेत्र सदिश (वेक्टर) बल क्षेत्र हैं। ऐतिहासिक रूप से, पहली बार जब क्षेत्रों को गंभीरता से लिया गया था, विद्युत क्षेत्र का वर्णन करते समय फैराडे के बल की रेखाओं के साथ था। गुरुत्वाकर्षण क्षेत्र को तब इसी तरह वर्णित किया गया था।
न्यूटनियन गुरुत्वाकर्षण
गुरुत्वाकर्षण का वर्णन करने वाला एक शास्त्रीय क्षेत्र सिद्धांत न्यूटनियन गुरुत्वाकर्षण है, जो गुरुत्वाकर्षण बल को दो द्रव्यमानों के बीच पारस्परिक संपर्क के रूप में वर्णित करता है।
द्रव्यमान M वाला कोई भी पिंड गुरुत्वाकर्षण क्षेत्र g से जुड़ा होता है जो द्रव्यमान वाले अन्य पिंडों पर इसके प्रभाव का वर्णन करता है। अंतरिक्ष में एक बिंदु r पर M का गुरुत्वाकर्षण क्षेत्र, r पर स्थित एक छोटे या नगण्य परीक्षण द्रव्यमान m और स्वयं परीक्षण द्रव्यमान पर M द्वारा लगाए गए बल F के बीच के अनुपात से मेल खाता है [16]
यह निर्धारित करना कि m, M से बहुत छोटा है, यह सुनिश्चित करता है कि m की उपस्थिति का M के व्यवहार पर नगण्य प्रभाव पड़ता है।
न्यूटन के सार्वत्रिक गुरुत्वाकर्षण के नियम के अनुसार, F(r) द्वारा दिया जाता है [17]
जहाँ पर [18]
एक इकाई सदिश है जो M और m को मिलाने वाली रेखा के अनुदिश स्थित है और M से m की ओर इंगित करता है। इसलिए, M का गुरुत्वीय क्षेत्र है
प्रायोगिक अवलोकन कि जड़त्वीय द्रव्यमान और गुरुत्वाकर्षण द्रव्यमान सटीकता के अभूतपूर्व स्तर के बराबर हैं, इस पहचान की ओर ले जाता है कि गुरुत्वाकर्षण क्षेत्र की ताकत एक कण द्वारा अनुभव किए गए त्वरण के समान है। यह तुल्यता सिद्धांत का प्रारंभिक बिंदु है, जो सामान्य सापेक्षता की ओर ले जाता है।
क्योंकि गुरुत्वाकर्षण बल F संरक्षी है, गुरुत्वाकर्षण क्षेत्र g को एक अदिश फलन की प्रवणता, गुरुत्वाकर्षण क्षमता Φ( r ) के संदर्भ में फिर से लिखा जा सकता है:
विद्युत चुंबकत्व
माइकल फैराडे ने चुंबकत्व में अपनी जांच के दौरान पहली बार भौतिक मात्रा के रूप में एक क्षेत्र के महत्व को महसूस किया। उन्होंने महसूस किया कि विद्युत और चुंबकीय क्षेत्र न केवल बल के क्षेत्र हैं जो कणों की गति को निर्धारित करते हैं, बल्कि एक स्वतंत्र भौतिक वास्तविकता भी है क्योंकि वे ऊर्जा ले जाते हैं।
इन विचारों ने अंततः जेम्स क्लर्क मैक्सवेल द्वारा, विद्युत चुम्बकीय क्षेत्र के लिए समीकरणों की शुरूआत के साथ भौतिकी में पहले एकीकृत क्षेत्र सिद्धांत के निर्माण का नेतृत्व किया। इन समीकरणों के आधुनिक संस्करण को मैक्सवेल समीकरण कहा जाता है।
स्थिर विद्युतिकी (इलेक्ट्रोस्टैटिक्स)
आवेश q वाला एक आवेशित परीक्षण कण केवल अपने आवेश पर आधारित बल F का अनुभव करता है। हम इसी प्रकार विद्युत क्षेत्र E का वर्णन इस प्रकार कर सकते हैं कि F = qE । इसके और कूलम्ब के नियम का उपयोग करने से हमें पता चलता है कि एक आवेशित कण के कारण विद्युत क्षेत्र उत्पन्न होता है
विद्युत क्षेत्र संरक्षी है, और इसलिए एक अदिश क्षमता, V(r) द्वारा वर्णित किया जा सकता है:
स्थिर चुम्बकत्व (मैग्नेटोस्टैटिक्स)
ℓ पथ के साथ बहने वाली एक स्थिर धारा I एक क्षेत्र B बनाएगी, जो पास के गतिमान आवेशित कणों पर एक बल लगाता है जो ऊपर वर्णित विद्युत क्षेत्र बल से मात्रात्मक रूप से भिन्न होता है। I द्वारा पास के आवेश q पर वेग v के साथ लगाया गया बल है
जहाँ B(r) चुंबकीय क्षेत्र है, जो बायोट-सावर्ट नियम द्वारा I से निर्धारित होता है:
चुंबकीय क्षेत्र सामान्य रूप से रूढ़िवादी नहीं है, और इसलिए आमतौर पर एक अदिश क्षमता के संदर्भ में नहीं लिखा जा सकता है। हालांकि, इसे वेक्टर क्षमता , A(r) के रूप में लिखा जा सकता है:
विद्युतगतिकी
सामान्य तौर पर आवेश घनत्व ρ(r, t) और धारा घनत्व J(r, t) दोनों की उपस्थिति में, विद्युत और चुंबकीय क्षेत्र दोनों होंगे, और दोनों समय के साथ अलग-अलग होंगे। वेमैक्सवेल के समीकरण द्वारा निर्धारित होते हैं, अंतर समीकरणों का एक सेट जो सीधे E और B से ρ और J से संबंधित है[21]
वैकल्पिक रूप से, कोई प्रणाली का वर्णन उसके अदिश और सदिश विभव V और A के रूप में कर सकता है। समाकलन समीकरण का एक सेट मंद विभव s के रूप में जाना जाता है जो किसी को और J से V और A की गणना करने की अनुमति देता है[note 1] और वहां से संबंध के माध्यम से विद्युत और चुंबकीय क्षेत्र निर्धारित किए जाते हैं[22]
19वीं शताब्दी के अंत में, विद्युत चुम्बकीय क्षेत्र को अंतरिक्ष में दो वेक्टर क्षेत्रों के संग्रह के रूप में समझा गया था। आजकल, कोई इसे दिक्काल में एकल एंटीसिमेट्रिक 2nd-रैंक टेंसर फ़ील्ड के रूप में पहचानता है।
इलेक्ट्रोस्टैटिक्स (स्थिर विद्युतिकी)
आवेश q वाला एक आवेशित परीक्षण कण केवल अपने आवेश पर आधारित बल F का अनुभव करता है। हम इसी प्रकार विद्युत क्षेत्र E का वर्णन इस प्रकार कर सकते हैं कि F = qE । इसके और कूलम्ब के नियम का उपयोग करने से हमें पता चलता है कि एक आवेशित कण के कारण विद्युत क्षेत्र है
विद्युत क्षेत्र संरक्षी है, और इसलिए एक अदिश क्षमता, V(r) द्वारा वर्णित किया जा सकता है:
मैग्नेटोस्टैटिक्स (स्थिर चुम्बकत्व)
पथ ℓ के साथ बहने वाली एक स्थिर धारा I एक क्षेत्र B बनाएगी, जो पास के गतिमान आवेशित कणों पर एक बल लगाता है जो ऊपर वर्णित विद्युत क्षेत्र बल से मात्रात्मक रूप से भिन्न है। I द्वारा पास के आवेश q पर v वेग से आरोपित बल है
जहां बी ( आर ) चुंबकीय क्षेत्र है, जो बायोट-सावर्ट कानून द्वारा I से निर्धारित होता है:
चुंबकीय क्षेत्र सामान्य रूप से रूढ़िवादी नहीं है, और इसलिए आमतौर पर एक अदिश क्षमता के संदर्भ में नहीं लिखा जा सकता है। हालांकि, इसे एक वेक्टर क्षमता, A(r) के संदर्भ में लिखा जा सकता है:
विद्युतगतिकी
सामान्य तौर पर, चार्ज घनत्व ρ (r,t) और वर्तमान घनत्व J(r,t) दोनों की उपस्थिति में, एक विद्युत और चुंबकीय क्षेत्र दोनों होंगे, और दोनों समय में भिन्न होंगे। वे मैक्सवेल के समीकरणों द्वारा निर्धारित होते हैं, अंतर समीकरणों का एक सेट जो सीधे E और B को ρ और J से जोड़ता है। [23]
वैकल्पिक रूप से, कोई प्रणाली का वर्णन उसके अदिश और सदिश विभव V और A के रूप में कर सकता है। मंद क्षमता या मंदित विभव के रूप में ज्ञात समाकल समीकरणों का एक सेट व्यक्ति को ρ और J से V और A की गणना करने की अनुमति देता है, [note 1] और वहां से विद्युत और चुंबकीय क्षेत्र संबंधों के माध्यम से निर्धारित होते हैं [24]
19वीं शताब्दी के अंत में, विद्युत चुम्बकीय क्षेत्र को अंतरिक्ष में दो वेक्टर क्षेत्रों के संग्रह के रूप में समझा गया था। आजकल, कोई इसे दिक्काल में एकल एंटीसिमेट्रिक 2nd-रैंक टेंसर फ़ील्ड के रूप में पहचानता है।
सामान्य सापेक्षता में गुरुत्वाकर्षण
आइंस्टीन का गुरुत्वाकर्षण का सिद्धांत, जिसे सामान्य सापेक्षता कहा जाता है, क्षेत्र सिद्धांत का एक और उदाहरण है। यहां मुख्य क्षेत्र मीट्रिक टेंसर है, जो स्पेसटाइम में एक सममित द्वितीय-रैंक टेंसर फ़ील्ड है। यह न्यूटन के सार्वभौमिक गुरुत्वाकर्षण के नियम को प्रतिस्थापित करता है।
तरंगे क्षेत्रों के रूप में
तरंगों का निर्माण भौतिक क्षेत्रों के रूप में किया जा सकता है, उनकी परिमित प्रसार गति और प्रकृति के कारण जब एक पृथक संवृत प्रणाली का सरलीकृत भौतिक आकार सेट किया जाता है । वे व्युत्क्रम-वर्ग नियम के अधीन भी हैं।
विद्युत चुम्बकीय तरंगों के लिए, प्रकाशीय क्षेत्र हैं और विवर्तन के लिए निकट और दूर-क्षेत्र की सीमा जैसे शब्द हैं। हालांकि व्यवहार में प्रकाशिकी के क्षेत्र सिद्धांत मैक्सवेल के विद्युत चुम्बकीय क्षेत्र सिद्धांत द्वारा प्रतिस्थापित किए जाते हैं।
क्वांटम क्षेत्र
अब यह माना जाता है कि क्वांटम यांत्रिकी को सभी भौतिक घटनाओं का आधार होना चाहिए, ताकि एक शास्त्रीय क्षेत्र सिद्धांत, कम से कम सिद्धांत के रूप में, क्वांटम यांत्रिक शब्दों में पुनर्रचना की अनुमति दे, सफलता इसी क्वांटम क्षेत्र सिद्धांत को जन्म देती है। उदाहरण के लिए, शास्त्रीय इलेक्ट्रोडायनामिक्स(वैद्युतगतिकी) को परिमाणित करना क्वांटम इलेक्ट्रोडायनामिक्स देता है। क्वांटम इलेक्ट्रोडायनामिक्स यकीनन सबसे सफल वैज्ञानिक सिद्धांत है,
प्रयोगात्मक डेटा किसी भी अन्य सिद्धांत की तुलना में इसकी भविष्यवाणियों की उच्च परिशुद्धता (अधिक महत्वपूर्ण अंकों तक) की पुष्टि करता है। [27] दो अन्य मौलिक क्वांटम क्षेत्र सिद्धांत क्वांटम क्रोमोडायनामिक्स और इलेक्ट्रोवीक सिद्धांत हैं ।
क्वांटम क्रोमोडायनामिक्स में, रंग क्षेत्र रेखाओं को ग्लून्स(पार्टिकल) द्वारा कम दूरी पर युग्मित किया जाता है, जो क्षेत्र द्वारा ध्रुवीकृत होते हैं और इसके साथ पंक्तिबद्ध होते हैं। यह प्रभाव थोड़ी दूरी (क्वार्क के आसपास से लगभग 1 fm ) के भीतर बढ़ जाता है, जिससे थोड़ी दूरी के भीतर रंग बल बढ़ जाता है, क्वार्क को हैड्रोन के भीतर सीमित कर देता है। चूंकि क्षेत्र रेखाएं ग्लून्स(पार्टिकल) द्वारा कसकर एक साथ खींची जाती हैं, इसलिए वे बाहर की ओर झुक नहीं पाती हैं, जितना कि विद्युत आवेशों के बीच एक विद्युत क्षेत्र। [28]
इन तीन क्वांटम क्षेत्र सिद्धांतों को कण भौतिकी के तथाकथित मानक मॉडल के विशेष मामलों के रूप में प्राप्त किया जा सकता है। सामान्य सापेक्षता, गुरुत्वाकर्षण के आइंस्टीनियन क्षेत्र सिद्धांत, को अभी तक सफलतापूर्वक परिमाणित नहीं किया गया है। हालांकि एक विस्तार, थर्मल फील्ड सिद्धांत, सीमित तापमान पर क्वांटम फील्ड सिद्धांत से संबंधित है, जिसे शायद ही कभी क्वांटम फील्ड सिद्धांत में माना जाता है।
BRST सिद्धांत में कोई व्यक्ति विषम क्षेत्रों से संबंधित है, जैसे फद्दीव-पोपोव भूत । ग्रेडेड मैनिफोल्ड और सुपरमैनिफोल्ड दोनों में विषम शास्त्रीय क्षेत्रों के अलग-अलग विवरण हैं।
जैसा कि शास्त्रीय क्षेत्रों के साथ ऊपर, पहले की तरह समान तकनीकों का उपयोग करके विशुद्ध रूप से गणितीय दृष्टिकोण से उनके क्वांटम समकक्षों से संपर्क करना संभव है। क्वांटम क्षेत्रों को नियंत्रित करने वाले समीकरण वास्तव में PDEs (विशेष रूप से, सापेक्षतावादी तरंग समीकरण (RWEs)) हैं। इस प्रकार कोई भी यांग-मिल्स, डिराक, क्लेन-गॉर्डन और श्रोडिंगर क्षेत्रों को उनके संबंधित समीकरणों के समाधान के रूप में बोल सकता है। एक संभावित समस्या यह है कि ये आरडब्ल्यूई(RWEs) विदेशी बीजगणितीय गुणों के साथ जटिल गणितीय वस्तुओं से निपट सकते हैं (उदाहरण के लिए घूर्णक टेंसर (स्पिनर टेंसर) नहीं हैं, इसलिए घूर्णक क्षेत्रों (स्पिनर क्षेत्रों) के लिए कैलकुलस की आवश्यकता हो सकती है), लेकिन सिद्धांत रूप में ये अभी भी उपयुक्त गणितीय सामान्यीकरण दिए गए विश्लेषणात्मक तरीकों के अधीन हो सकते हैं।
क्षेत्र सिद्धांत
क्षेत्र सिद्धांत आमतौर पर एक क्षेत्र की गतिशीलता के निर्माण को संदर्भित करता है, अर्थात एक क्षेत्र समय के साथ या अन्य स्वतंत्र भौतिक चर के संबंध में कैसे बदलता है, जिस पर क्षेत्र निर्भर करता है। आम तौर पर यह एक लैग्रैंजियन या एक हैमिल्टनियन क्षेत्र को लिखकर किया जाता है, और इसे शास्त्रीय या क्वांटम यांत्रिक प्रणाली के रूप में माना जाता है। जिसमें अनंत संख्या में स्वतंत्रता होती है। परिणामी क्षेत्र सिद्धांतों को शास्त्रीय या क्वांटम क्षेत्र सिद्धांत कहा जाता है।
शास्त्रीय क्षेत्र की गतिशीलता आमतौर पर क्षेत्र के घटकों के संदर्भ में लैग्रैन्जियन घनत्व द्वारा निर्दिष्ट की जाती है, क्रिया सिद्धांत का उपयोग करके गतिशीलता प्राप्त की जा सकती है।
कई चर कलन, संभावित सिद्धांत और आंशिक अंतर समीकरण (पीडीई) से केवल गणित का उपयोग करके भौतिकी के किसी भी पूर्व ज्ञान के बिना सरल क्षेत्रों का निर्माण करना संभव है। उदाहरण के लिए, स्केलर पीडीई तरंग समीकरण और द्रव गतिकी के लिए आयाम, घनत्व और दबाव क्षेत्रों जैसी मात्राओं पर विचार कर सकते हैं, ताप / प्रसार समीकरणों के लिए तापमान/एकाग्रता क्षेत्र। भौतिकी के बाहर उचित (जैसे, रेडियोमेट्री और कंप्यूटर ग्राफिक्स), यहां तक कि प्रकाश क्षेत्र भी हैं। ये सभी पिछले उदाहरण अदिश क्षेत्र के हैं । इसी तरह, वैक्टर के लिए (लागू गणितीय) द्रव गतिकी में विस्थापन, वेग और भंवर क्षेत्रों के लिए वेक्टर पीडीई हैं, लेकिन वेक्टर कैलकुलस की अब इसके अलावा आवश्यकता हो सकती है, सदिश क्षेत्र (वेक्टर फ़ील्ड) के लिए कैलकुलस होने के नाते (जैसा कि ये तीन मात्राएं हैं, और वे वेक्टर पीडीई के लिए हैं) सामान्य रूप में)। सातत्य यांत्रिकी में आमतौर पर समस्याओं में शामिल हो सकते हैं, उदाहरण के लिए, दिशात्मक लोच (जिससे शब्द टेंसर आता है, खिंचाव के लिए लैटिन शब्द से लिया गया है), जटिल द्रव प्रवाह या अनिसोट्रोपिक प्रसार, जिसे मैट्रिक्स-टेंसर पीडीई के रूप में तैयार किया जाता है, और फिर मैट्रिक्स की आवश्यकता होती है या टेंसर फ़ील्ड, इसलिए मैट्रिक्स या टेंसर कैलकुलस । स्केलर (और इसलिए वैक्टर, मैट्रिसेस और टेंसर) वास्तविक या जटिल हो सकते हैं क्योंकि दोनों अमूर्त-बीजगणितीय/रिंग-सैद्धांतिक अर्थों में क्षेत्र हैं।
एक सामान्य सेटिंग में, शास्त्रीय क्षेत्रों को फाइबर बंडलों के वर्गों द्वारा वर्णित किया जाता है और उनकी गतिशीलता जेट मैनिफोल्ड ( सहसंयोजक शास्त्रीय क्षेत्र सिद्धांत ) के संदर्भ में तैयार की जाती है। [29]
आधुनिक भौतिकी में, सबसे अधिक अध्ययन किए जाने वाले क्षेत्र वे हैं जो चार मूलभूत बलों का मॉडल बनाते हैं जो एक दिन एकीकृत क्षेत्र सिद्धांत की ओर ले जा सकते हैं।
क्षेत्रों की समरूपता
किसी क्षेत्र (शास्त्रीय या क्वांटम) को वर्गीकृत करने का एक सुविधाजनक तरीका उसके पास मौजूद समरूपता है। भौतिक समरूपता आमतौर पर दो प्रकार की होती है:
स्पेसटाइम (दिक्काल) समरूपता
स्पेसटाइम(दिक्काल) के परिवर्तनों के तहत क्षेत्रों(फ़ील्ड्स) को अक्सर उनके व्यवहार द्वारा वर्गीकृत किया जाता है। इस वर्गीकरण में प्रयुक्त शब्द हैं:
- अदिश क्षेत्र (जैसे तापमान ) जिसका मान अंतरिक्ष के प्रत्येक बिंदु पर एक चर द्वारा दिया जाता है। अंतरिक्ष के परिवर्तन के तहत यह मान नहीं बदलता है।
- सदिश क्षेत्र (जैसे चुंबकीय क्षेत्र में प्रत्येक बिंदु पर बल का परिमाण और दिशा) जो अंतरिक्ष के प्रत्येक बिंदु पर एक वेक्टर संलग्न करके निर्दिष्ट किया जाता है। इस वेक्टर के घटक अंतरिक्ष में घूर्णन के तहत आपस में विपरीत रूप से बदलते हैं। इसी तरह, एक दोहरी (या सह-) वेक्टर क्षेत्र अंतरिक्ष के प्रत्येक बिंदु पर एक दोहरी वेक्टर जोड़ता है, और प्रत्येक दोहरे वेक्टर के घटक सहसंयोजक रूप से बदलते हैं।
- टेंसर फ़ील्ड, (जैसे कि क्रिस्टल का स्ट्रेस टेंसर ) अंतरिक्ष के प्रत्येक बिंदु पर एक टेंसर द्वारा निर्दिष्ट किया जाता है। अंतरिक्ष में घुमाव के तहत, टेंसर के घटक अधिक सामान्य तरीके से बदलते हैं जो कि सहसंयोजक सूचकांकों और कंट्रावेरिएंट सूचकांकों की संख्या पर निर्भर करता है।
- स्पिन के साथ कणों का वर्णन करने के लिए घूर्णक क्षेत्र (स्पिनर फ़ील्ड) (जैसे डीराक स्पिनर ) क्वांटम फील्ड सिद्धांत में उत्पन्न होते हैं जो उनके घटकों में से एक को छोड़कर वैक्टर की तरह बदलते हैं। दूसरे शब्दों में, जब कोई सदिश क्षेत्र को एक विशिष्ट अक्ष के चारों ओर 360 डिग्री घुमाता है, तो सदिश क्षेत्र स्वयं की ओर मुड़ जाता है, हालांकि स्पिनर उसी मामले में अपने नकारात्मक पक्ष की ओर रुख करेंगे।
आंतरिक समरूपता
दिक्काल(स्पेसटाइम) समरूपता के अलावा फ़ील्ड में आंतरिक समरूपता हो सकती है। कई स्थितियों में, किसी को ऐसे क्षेत्रों की आवश्यकता होती है जो दिक्काल सदिश की एक सूची है: (φ 1, φ 2, . . . φN )। उदाहरण के लिए, मौसम की भविष्यवाणी में ये तापमान, दबाव, आर्द्रता आदि हो सकते हैं। कण भौतिकी में, क्वार्क की परस्पर क्रिया की रंग समरूपता एक आंतरिक समरूपता का एक उदाहरण है, जो कि मजबूत अंतःक्रिया का है। अन्य उदाहरण आइसोस्पिनकमजोर आइसोस्पिन, विचित्रता और कोई अन्य स्वाद समरूपता हैं।
यदि समस्या की समरूपता है, जिसमें दिक्काल (स्पेसटाइम) शामिल नहीं है, जिसके तहत ये घटक एक दूसरे में परिवर्तित हो जाते हैं, तो समरूपता के इस सेट को आंतरिक समरूपता कहा जाता है। कोई भी आंतरिक समरूपता के तहत क्षेत्रों के आरोपों का वर्गीकरण भी कर सकता है।
सांख्यिकीय क्षेत्र सिद्धांत
सांख्यिकीय क्षेत्र सिद्धांत कई-तत्व प्रणालियों और सांख्यिकीय यांत्रिकी की ओर क्षेत्र-सैद्धांतिक प्रतिमान का विस्तार करने का प्रयास करता है। ऊपर के रूप में, यह स्वतंत्रता तर्क की सामान्य अनंत संख्या की डिग्री से संपर्क किया जा सकता है।
सांख्यिकीय यांत्रिकी की तरह क्वांटम और शास्त्रीय यांत्रिकी के बीच कुछ ओवरलैप(अतिव्यापन) होता है, सांख्यिकीय क्षेत्र सिद्धांत में क्वांटम और शास्त्रीय क्षेत्र सिद्धांतों दोनों के संबंध होते हैं, विशेष रूप से पूर्व जिसके साथ यह कई तरीकों को साझा करता है। एक महत्वपूर्ण उदाहरण माध्य क्षेत्र सिद्धांत है ।
निरंतर यादृच्छिक क्षेत्र
ऊपर के रूप में शास्त्रीय क्षेत्र जैसे विद्युत चुम्बकीय क्षेत्र आमतौर पर असीम रूप से भिन्न कार्य होते हैं, लेकिन वे किसी भी मामले में लगभग हमेशा दो बार भिन्न होते हैं। इसके विपरीत, सामान्यीकृत कार्य निरंतर नहीं होते हैं। परिमित तापमान पर शास्त्रीय क्षेत्रों के साथ सावधानीपूर्वक व्यवहार करते समय, निरंतर यादृच्छिक क्षेत्रों के गणितीय तरीकों का उपयोग किया जाता है, क्योंकि ऊष्मीय रूप से उतार-चढ़ाव वाले शास्त्रीय क्षेत्र कहीं भी भिन्न नहीं होते हैं। यादृच्छिक क्षेत्र यादृच्छिक चर के अनुक्रमित सेट हैं, एक सतत यादृच्छिक क्षेत्र यादृच्छिक क्षेत्र है जिसमें इसके सूचकांक सेट के रूप में कार्यों का एक सेट होता है। विशेष रूप से, एक सतत यादृच्छिक क्षेत्र लेने के लिए अक्सर गणितीय रूप से सुविधाजनक होता है ताकि इसके सूचकांक सेट के रूप में कार्यों का एक श्वार्ट्ज स्थान हो, इस मामले में निरंतर यादृच्छिक क्षेत्र एक टेम्पर्ड वितरण है ।
हम एक सतत यादृच्छिक क्षेत्र के बारे में सोच सकते हैं, एक (बहुत) मोटे तौर पर, एक सामान्य कार्य के रूप में जो लगभग हर जगह है, लेकिन ऐसा है कि जब हम किसी भी परिमित क्षेत्र में सभी अनंत का भारित औसत लेते हैं, तो हमें एक परिमित परिणाम मिलता है। अनंत अच्छी तरह से परिभाषित नहीं हैं, लेकिन परिमित मूल्यों को परिमित मान प्राप्त करने के लिए भार कार्यों के रूप में उपयोग किए जाने वाले कार्यों से जोड़ा जा सकता है, और इसे अच्छी तरह से परिभाषित किया जा सकता है। हम एक निरंतर यादृच्छिक क्षेत्र को फ़ंक्शन के स्थान से वास्तविक संख्याओं में एक रैखिक मानचित्र के रूप में अच्छी तरह से परिभाषित कर सकते हैं।
यह सभी देखें
- Conformal field theory (अनुरूप क्षेत्र सिद्धांत)
- Covariant Hamiltonian field theory (सहसंयोजक हैमिल्टनियन क्षेत्र सिद्धांत)
- Field strength (फील्ड की क्षमता)
- History of the philosophy of field theory (क्षेत्र सिद्धांत के दर्शन का इतिहास)
- Lagrangian and Eulerian specification of a field (एक क्षेत्र के लैग्रेन्जियन और यूलेरियन विनिर्देशन)
- Scalar field theory (अदिश क्षेत्र सिद्धांत)
- Velocity field (वेग क्षेत्र)
External links
- ↑ John Gribbin (1998). Q is for Quantum: Particle Physics from A to Z. London: Weidenfeld & Nicolson. p. 138. ISBN 0-297-81752-3.
- ↑ Richard Feynman (1970). The Feynman Lectures on Physics Vol II. Addison Wesley Longman. ISBN 978-0-201-02115-8.
A 'field' is any physical quantity which takes on different values at different points in space.
- ↑ Ernan McMullin (2002). "The Origins of the Field Concept in Physics" (PDF). Phys. Perspect. 4 (1): 13–39. Bibcode:2002PhP.....4...13M. doi:10.1007/s00016-002-8357-5.
- ↑ SE, Windyty. "Windy as forecasted". Windy.com/ (in English). Retrieved 2021-06-25.
- ↑ Lecture 1 | Quantum Entanglements, Part 1 (Stanford), Leonard Susskind, Stanford, Video, 2006-09-25.
- ↑ Richard P. Feynman (1970). The Feynman Lectures on Physics Vol I. Addison Wesley Longman.
- ↑ Richard P. Feynman (1970). The Feynman Lectures on Physics Vol II. Addison Wesley Longman.
- ↑ John Archibald Wheeler (1998). Geons, Black Holes, and Quantum Foam: A Life in Physics. London: Norton. p. 163. ISBN 9780393046427.
- ↑ Richard P. Feynman (1970). The Feynman Lectures on Physics Vol I. Addison Wesley Longman.
- ↑ Steven Weinberg (November 7, 2013). "Physics: What We Do and Don't Know". New York Review of Books.
- ↑ Weinberg, Steven (1977). "The Search for Unity: Notes for a History of Quantum Field Theory". Daedalus. 106: 17–35. JSTOR 20024506.
- ↑ Weinberg, Steven (1977). "The Search for Unity: Notes for a History of Quantum Field Theory". Daedalus. 106: 17–35. JSTOR 20024506.
- ↑ Weinberg, Steven (1977). "The Search for Unity: Notes for a History of Quantum Field Theory". Daedalus. 106: 17–35. JSTOR 20024506.
- ↑ Weinberg, Steven (1977). "The Search for Unity: Notes for a History of Quantum Field Theory". Daedalus. 106: 17–35. JSTOR 20024506.
- ↑ Weinberg, Steven (1977). "The Search for Unity: Notes for a History of Quantum Field Theory". Daedalus. 106: 17–35. JSTOR 20024506.
- ↑ Kleppner, Daniel; Kolenkow, Robert. An Introduction to Mechanics. p. 85.
- ↑ Kleppner, Daniel; Kolenkow, Robert. An Introduction to Mechanics. p. 85.
- ↑ Kleppner, Daniel; Kolenkow, Robert. An Introduction to Mechanics. p. 85.
- ↑ 19.0 19.1 19.2 19.3 19.4 Parker, C.B. (1994). McGraw Hill Encyclopaedia of Physics (2nd ed.). Mc Graw Hill. ISBN 0-07-051400-3.
- ↑ 20.0 20.1 20.2 20.3 20.4 M. Mansfield; C. O’Sullivan (2011). Understanding Physics (4th ed.). John Wiley & Sons. ISBN 978-0-47-0746370.
- ↑ Griffiths, David. Introduction to Electrodynamics (3rd ed.). p. 326.
- ↑ Wangsness, Roald. Electromagnetic Fields (2nd ed.). p. 469.
- ↑ Griffiths, David. Introduction to Electrodynamics (3rd ed.). p. 326.
- ↑ Wangsness, Roald. Electromagnetic Fields (2nd ed.). p. 469.
- ↑ J.A. Wheeler; C. Misner; K.S. Thorne (1973). Gravitation. W.H. Freeman & Co. ISBN 0-7167-0344-0.
- ↑ I. Ciufolini; J.A. Wheeler (1995). Gravitation and Inertia. Princeton Physics Series. ISBN 0-691-03323-4.
- ↑ Peskin, Michael E.; Schroeder, Daniel V. (1995). An Introduction to Quantum Fields. Westview Press. p. 198. ISBN 0-201-50397-2.. Also see precision tests of QED.
- ↑ R. Resnick; R. Eisberg (1985). Quantum Physics of Atoms, Molecules, Solids, Nuclei and Particles (2nd ed.). John Wiley & Sons. p. 684. ISBN 978-0-471-87373-0.
- ↑ Giachetta, G., Mangiarotti, L., Sardanashvily, G. (2009) Advanced Classical Field Theory. Singapore: World Scientific, ISBN 978-981-283-895-7 (arXiv:0811.0331)
- ↑ This is contingent on the correct choice of gauge. V and A are not completely determined by ρ and J; rather, they are only determined up to some scalar function f(r, t) known as the gauge. The retarded potential formalism requires one to choose the Lorenz gauge.