थ्रू-सिलिकॉन वाया: Difference between revisions

From Vigyanwiki
No edit summary
No edit summary
 
(18 intermediate revisions by 4 users not shown)
Line 1: Line 1:
{{short description|Metal-plated holes used to vertically and electrically connect several dies that are atop each other}}
{{short description|Metal-plated holes used to vertically and electrically connect several dies that are atop each other}}
[[File:High Bandwidth Memory schematic.svg|thumb|[[उच्च बैंडविड्थ मेमोरी]] (HBM) इंटरफ़ेस के साथ संयोजन में स्टैक्ड [[डायनेमिक रैंडम-एक्सेस मेमोरी]]-डाइस द्वारा उपयोग किए जाने वाले TSV]][[ इलेक्ट्रॉनिक यन्त्रशास्त्र ]] में, थ्रू-सिलिकॉन थ्रू (TSV) या थ्रू-चिप थ्रू वर्टिकल [[ बिजली का संपर्क ]] (वाया (इलेक्ट्रॉनिक्स)) है जो पूरी तरह से [[ सिलिकॉन बिस्किट ]] या [[डाई (एकीकृत सर्किट)]] से होकर गुजरता है। TSV उच्च-प्रदर्शन इंटरकनेक्ट तकनीक हैं जिनका उपयोग 3D पैकेज और त्रि-आयामी एकीकृत सर्किट | 3D एकीकृत सर्किट बनाने के लिए [[ तार का बंधन ]] | वायर-बॉन्ड और [[ पलटें काटना ]]्स के विकल्प के रूप में किया जाता है। [[पैकेज पर पैकेज]] | पैकेज-ऑन-पैकेज जैसे विकल्पों की तुलना में, इंटरकनेक्ट और डिवाइस घनत्व अधिक  अधिक है, और कनेक्शन की लंबाई कम हो जाती है।
[[File:High Bandwidth Memory schematic.svg|thumb|[[उच्च बैंडविड्थ मेमोरी]] (एचबीएम) इंटरफ़ेस के साथ संयोजन में स्टैक्ड [[डायनेमिक रैंडम-एक्सेस मेमोरी]]-डाइस द्वारा उपयोग किए जाने वाले टीएसवी ]][[ इलेक्ट्रॉनिक यन्त्रशास्त्र |इलेक्ट्रॉनिक अभियांत्रिकी]] में, '''थ्रू-सिलिकॉन वाया''' (टीएसवी) या थ्रू-चिप वाया वर्टिकल [[ बिजली का संपर्क |विद्युतीय संपर्क]] (वाया) है जो पूर्ण रूप से [[ सिलिकॉन बिस्किट |सिलिकॉन वेफर]] या [[डाई (एकीकृत सर्किट)|डाई]] से होकर निकलता है। टीएसवी उच्च-प्रदर्शन इंटरकनेक्ट प्रौद्योगिकी हैं जिनका उपयोग 3डी पैकेज एवं 3डी एकीकृत परिपथ बनाने के लिए [[ तार का बंधन |वायर-बॉन्ड]] एवं [[ पलटें काटना |फ्लिप चिप्स]] के विकल्प के रूप में किया जाता है। [[पैकेज पर पैकेज|पैकेज-ऑन-पैकेज]] जैसे विकल्पों की तुलना में, इंटरकनेक्ट एवं डिवाइस घनत्व अधिक है, एवं कनेक्शन की लंबाई अल्प हो जाती है।


== वर्गीकरण ==
== वर्गीकरण ==
[[File: Through-Silicon Via Flavours.svg|thumb|upright=1.36|वाया-फर्स्ट, थ्रू-मिडिल और वाया-लास्ट TSVs को विज़ुअलाइज़ करना]]निर्माण प्रक्रिया द्वारा निर्धारित, तीन भिन्न-भिन्न प्रकार के TSV उपस्थित हैं: व्यक्तिगत घटक ([[अवरोध]], [[ संधारित्र ]], रेसिस्टर्स, आदि) से पहले थ्रू-फर्स्ट TSVs को गढ़ा जाता है (लाइन का फ्रंट एंड, FEOL), थ्रू-मिडल TSVs हैं भिन्न-भिन्न घटक के पैटर्न के बाद गढ़ा जाता है, किन्तुधातु की परतों से पहले (पंक्ति के पीछे का अंत | बैक-एंड-ऑफ-लाइन, बीईओएल), और बीईओएल प्रक्रिया के बाद (या उसके दौरान) थ्रू-लास्ट टीएसवी तैयार किए जाते हैं।<ref>{{cite book |title=2009 International Technology Roadmap for Semiconductors (ITRS) |date=5 September 2009 |url=https://www.semiconductors.org/resources/2009-international-technology-roadmap-for-semiconductors-itrs/ |pages=4–5 }}</ref><ref name=3D>{{cite journal |last1=Knechtel |first1=Johann |last2=Sinanoglu |first2=Ozgur |last3=Elfadel |first3=Ibrahim (Abe) M. |last4=Lienig |first4=Jens |last5=Sze |first5=Cliff C. N. |title=Large-Scale 3D Chips: Challenges and Solutions for Design Automation, Testing, and Trustworthy Integration |journal=IPSJ Transactions on System LSI Design Methodology |date=2017 |volume=10 |pages=45–62 |doi=10.2197/ipsjtsldm.10.45 |doi-access=free }}</ref> वाया-मिडल TSV वर्तमान में उन्नत [[3D IC]] के साथ-साथ [[ जड़ना ]] स्टैक के लिए लोकप्रिय विकल्प है।<ref name=3D /><ref>{{cite journal |last1=Beyne |first1=Eric |title=The 3-D Interconnect Technology Landscape |journal=IEEE Design & Test |date=June 2016 |volume=33 |issue=3 |pages=8–20 |doi=10.1109/mdat.2016.2544837 |s2cid=29564868 }}</ref>
[[File: Through-Silicon Via Flavours.svg|thumb|upright=1.36|वाया-फर्स्ट, थ्रू-मिडिल एवं वाया-लास्ट टीएसवी को अनुमानित करना]]निर्माण प्रक्रिया द्वारा निर्धारित, तीन भिन्न-भिन्न प्रकार के टीएसवी उपस्थित हैं: व्यक्तिगत घटक ([[अवरोध]],[[ संधारित्र | संधारित्र]], प्रतिरोधक, आदि) से पूर्व थ्रू-फर्स्ट टीएसवी को बनाया जाता है (लाइन का फ्रंट एंड, फेओल ), थ्रू-मिडल टीएसवी हैं व्यक्तिगत घटक के प्रारूप के पश्चात निर्मित किन्तु धातु की परतों (बैक-एंड-ऑफ-लाइन, बीईओएल) से पूर्व, एवं वाया-लास्ट टीएसवी बीईओएल प्रक्रिया के पश्चात (या उस समय) निर्मित किए जाते हैं।<ref>{{cite book |title=2009 International Technology Roadmap for Semiconductors (ITRS) |date=5 September 2009 |url=https://www.semiconductors.org/resources/2009-international-technology-roadmap-for-semiconductors-itrs/ |pages=4–5 }}</ref><ref name=3D>{{cite journal |last1=Knechtel |first1=Johann |last2=Sinanoglu |first2=Ozgur |last3=Elfadel |first3=Ibrahim (Abe) M. |last4=Lienig |first4=Jens |last5=Sze |first5=Cliff C. N. |title=Large-Scale 3D Chips: Challenges and Solutions for Design Automation, Testing, and Trustworthy Integration |journal=IPSJ Transactions on System LSI Design Methodology |date=2017 |volume=10 |pages=45–62 |doi=10.2197/ipsjtsldm.10.45 |doi-access=free }}</ref> वाया-मिडल टीएसवी वर्तमान में उन्नत [[3D IC|3डी आईसी]] के साथ-साथ[[ जड़ना | इंटरपोजर]] स्टैक के लिए लोकप्रिय विकल्प है।<ref name=3D /><ref>{{cite journal |last1=Beyne |first1=Eric |title=The 3-D Interconnect Technology Landscape |journal=IEEE Design & Test |date=June 2016 |volume=33 |issue=3 |pages=8–20 |doi=10.1109/mdat.2016.2544837 |s2cid=29564868 }}</ref>
फ्रंट एंड ऑफ लाइन (एफईओएल) के माध्यम से टीएसवी को [[ इलेक्ट्रॉनिक डिजाइन स्वचालन ]] और मैन्युफैक्चरिंग चरणों के समय सावधानीपूर्वक हिसाब देना होगा। ऐसा इसलिए है क्योंकि TSV [[तनाव (यांत्रिकी)]] को प्रेरित करते हैं। FEOL परत में थर्मो-मैकेनिकल तनाव, जिससे ट्रांजिस्टर-ट्रांजिस्टर तर्क व्यवहार प्रभावित होता है।<ref>{{cite book |doi=10.1007/978-1-4419-9542-1 |title=Design for High Performance, Low Power, and Reliable 3D Integrated Circuits |year=2013 |last1=Lim |first1=Sung Kyu |isbn=978-1-4419-9541-4 }}</ref>
[[ इलेक्ट्रॉनिक डिजाइन स्वचालन |ईडीए]] एवं विनिर्माण चरणों के समय [[ इलेक्ट्रॉनिक डिजाइन स्वचालन |फ्रंट एंड ऑफ लाइन]] (एफईओएल) के माध्यम से टीएसवी का सावधानीपूर्वक लेखा-जोखा रखा जाना चाहिए। ऐसा इसलिए है क्योंकि टीएसवी [[तनाव (यांत्रिकी)|एफईओएल]] परत में थर्मो-यांत्रिक तनाव उत्पन्न करते हैं, जिससे ट्रांजिस्टर व्यवहार प्रभावित होता है।<ref>{{cite book |doi=10.1007/978-1-4419-9542-1 |title=Design for High Performance, Low Power, and Reliable 3D Integrated Circuits |year=2013 |last1=Lim |first1=Sung Kyu |isbn=978-1-4419-9541-4 }}</ref>
 
 
== अनुप्रयोग ==
== अनुप्रयोग ==


=== [[छवि संवेदक]] ===
=== [[छवि संवेदक]] ===
[[ सीएमओएस छवि संवेदक ]] (सीआईएस) वॉल्यूम निर्माण में टीएसवी (एस) को अपनाने वाले पहले अनुप्रयोगों में से थे। प्रारंभिक सीआईएस अनुप्रयोगों में, टीएसवी इमेज सेंसर वेफर के पीछे इंटरकनेक्ट बनाने, वायर बॉन्ड को खत्म करने और कम फॉर्म फैक्टर और उच्च-घनत्व इंटरकनेक्ट की अनुमति देने के लिए बनाए गए थे। चिप स्टैकिंग केवल [[बैक-इलुमिनेटेड सेंसर]] | बैकसाइड इल्युमिनेटेड (BSI) CIS के आगमन के साथ आया, और इसमें पारंपरिक फ्रंट-साइड रोशनी से लेंस, सर्किटरी और फोटोडायोड के क्रम को उलटना सम्मिलित था जिससे कि लेंस के माध्यम से आने वाली रोशनी पहले हिट हो फोटोडायोड और फिर सर्किटरी। यह फोटोडायोड वेफर को फ्लिप करके, बैकसाइड को पतला करके, और फिर परिधि के चारों ओर इंटरकनेक्ट के रूप में TSVs के साथ डायरेक्ट ऑक्साइड बॉन्ड का उपयोग करके रीडआउट लेयर के शीर्ष पर बॉन्डिंग करके पूरा किया गया था।<ref>F. von Trapp, The Future Of Image Sensors is Chip Stacking http://www.3dincites.com/2014/09/future-image-sensors-chip-stacking</ref>
[[ सीएमओएस छवि संवेदक ]](सीआईएस) आयतन निर्माण में टीएसवी (एस) को अपनाने वाले पूर्व अनुप्रयोगों में से थे। प्रारंभिक सीआईएस अनुप्रयोगों में, टीएसवी छवि संवेदक वेफर के पीछे इंटरकनेक्ट बनाने, वायर बॉन्ड को समाप्त करने एवं अल्प फॉर्म फैक्टर एवं उच्च-घनत्व इंटरकनेक्ट की अनुमति देने के लिए निर्मित किये गए थे। चिप स्टैकिंग केवल [[बैक-इलुमिनेटेड सेंसर|बैकसाइड इलुमिनेटेड]] (बीएसआई) सीआईएस के आगमन के साथ ही आया, एवं इसमें पारंपरिक फ्रंट-साइड प्रकाश से लेंस, सर्किट्री एवं फोटोडायोड के क्रम को विपरीत करना सम्मिलित था जिससे कि लेंस के माध्यम से आने वाला प्रकाश पूर्व फोटोडायोड से एवं तत्पश्चात सर्किट्री टकराता है। यह फोटोडायोड वेफर को फ्लिप करके, बैकसाइड को पतला करके, एवं तत्पश्चात इसे डायरेक्ट ऑक्साइड बॉन्ड का उपयोग करके रीडआउट लेयर के शीर्ष पर जोड़कर, टीएसवी के साथ परिधि के चारों ओर इंटरकनेक्ट करके पूर्ण किया गया था।<ref>F. von Trapp, The Future Of Image Sensors is Chip Stacking http://www.3dincites.com/2014/09/future-image-sensors-chip-stacking</ref>
 
 
===3डी पैकेज===
===3डी पैकेज===
3डी पैकेज ([[पैकेज में सिस्टम]], [[मल्टी-चिप मॉड्यूल]], आदि) में दो या अधिक चिप्स ([[एकीकृत सर्किट]]) होते हैं जो लंबवत रूप से ढेर होते हैं जिससे कि वे कम जगह घेरें और/या अधिक कनेक्टिविटी हो। आईबीएम की सिलिकॉन कैरियर पैकेजिंग टेक्नोलॉजी में वैकल्पिक प्रकार का 3डी पैकेज पाया जा सकता है, जहां आईसी को ढेर नहीं किया जाता है, किन्तुपैकेज में कई आईसी को साथ जोड़ने के लिए टीएसवी युक्त वाहक सब्सट्रेट का उपयोग किया जाता है। अधिकांश 3डी पैकेजों में, स्टैक्ड चिप्स को उनके किनारों के साथ साथ तारित किया जाता है; यह एज वायरिंग पैकेज की लंबाई और चौड़ाई को थोड़ा बढ़ा देती है और सामान्यतःचिप्स के बीच अतिरिक्त "इंटरपोजर" परत की आवश्यकता होती है। कुछ नए 3D पैकेजों में, TSV चिप्स की बॉडी के माध्यम से वर्टिकल कनेक्शन बनाकर एज वायरिंग को प्रतिस्थापित करते हैं। परिणामी पैकेज में कोई अतिरिक्त लंबाई या चौड़ाई नहीं है। क्योंकि किसी इंटरपोजर की आवश्यकता नहीं है, TSV 3D पैकेज एज-वायर्ड 3D पैकेज की तुलना में चापलूसी भी कर सकता है। इस TSV तकनीक को कभी-कभी TSS (थ्रू-सिलिकॉन स्टैकिंग या थ्रू-सिलिकॉन स्टैकिंग) भी कहा जाता है।
3डी पैकेज ([[पैकेज में सिस्टम|पैकेज में प्रणाली]], [[मल्टी-चिप मॉड्यूल]], आदि) में दो या अधिक चिप्स ([[एकीकृत सर्किट|एकीकृत परिपथ]]) लंबवत रूप से स्टैक्ड होते हैं जिससे कि वे अल्प स्थान घेरते हैं या अधिक कनेक्टिविटी रखते हैं। आईबीएम की सिलिकॉन कैरियर पैकेजिंग टेक्नोलॉजी में वैकल्पिक प्रकार का 3डी पैकेज पाया जा सकता है, जहां आईसी को स्टैक नहीं किया जाता है, किन्तु पैकेज में कई आईसी को एक साथ जोड़ने के लिए टीएसवी युक्त वाहक सब्सट्रेट का उपयोग किया जाता है। अधिकांश 3डी पैकेजों में, स्टैक्ड चिप्स को उनके किनारों के साथ साथ तारित किया जाता है; यह एज वायरिंग पैकेज की लंबाई एवं चौड़ाई को थोड़ा बढ़ा देती है एवं सामान्यतःचिप्स के मध्य अतिरिक्त "इंटरपोजर" परत की आवश्यकता होती है। कुछ नए 3डी पैकेजों में, टीएसवी चिप्स की बॉडी के माध्यम से वर्टिकल कनेक्शन बनाकर एज वायरिंग को प्रतिस्थापित करते हैं। परिणामी पैकेज में कोई अतिरिक्त लंबाई या चौड़ाई नहीं है। क्योंकि किसी इंटरपोजर की आवश्यकता नहीं है, टीएसवी 3डी पैकेज एज-वायर्ड 3डी पैकेज की तुलना में अनुनय भी कर सकता है। इस टीएसवी प्रौद्योगिकी को कभी-कभी टीएसएस (थ्रू-सिलिकॉन स्टैकिंग या थ्रू-सिलिकॉन स्टैकिंग) भी कहा जाता है।
 
===3डी इंटीग्रेटेड सर्किट ===
तीन आयामी एकीकृत परिपथ (3डी आईसी) एकल एकीकृत परिपथ है जिसे सिलिकन वेफर्स और/या डाइज को स्टैक करके बनाया गया है और उन्हें लंबवत रूप से आपस में जोड़ा जाता है जिससे कि वे एकल उपकरण के रूप में व्यवहार करें। TSV तकनीक का उपयोग करके, 3D IC छोटे से "पदचिह्न" में बहुत अधिक कार्यक्षमता पैक कर सकते हैं। ढेर में विभिन्न उपकरण विषम हो सकते हैं, उदा। [[CMOS]] लॉजिक, डायनेमिक रैंडम-एक्सेस मेमोरी और III-V सामग्री को ही IC में संयोजित करना। इसके अतिरिक्त, डिवाइस के माध्यम से महत्वपूर्ण विद्युत पथों को अधिक  छोटा किया जा सकता है, जिससे तीव्रता से संचालन हो सकता है। वाइड I/O 3D [[DRAM]] मेमोरी मानक ([[JEDEC]] JESD229) में डिज़ाइन में TSV सम्मिलित है।<ref>{{cite web|last1=Desjardins|first1=E.|title=JEDEC Publishes Breakthrough Standard for Wide I/O Mobile DRAM|url=http://www.jedec.org/news/pressreleases/jedec-publishes-breakthrough-standard-wide-io-mobile-dram|website=JEDEC|publisher=JEDEC|accessdate=1 December 2014}}</ref>
 


===3डी इंटीग्रेटेड परिपथ ===
तीन आयामी एकीकृत परिपथ (3डी आईसी) एकल एकीकृत परिपथ है जिसे सिलिकन वेफर्स एवं डाइज को स्टैक करके बनाया गया है एवं उन्हें लंबवत रूप से आपस में जोड़ा जाता है जिससे कि वे एकल उपकरण के रूप में व्यवहार करें। टीएसवी प्रौद्योगिकी का उपयोग करके, 3डी आईसी छोटे से "पदचिह्न" में अधिक कार्य क्षमता पैक कर सकते हैं। स्टैक में विभिन्न उपकरण विषम हो सकते हैं, उदा, [[CMOS|सीएमओएस]] तर्क, डायनेमिक रैंडम-एक्सेस मेमोरी एवं III-V सामग्री को एक ही आईसी में संयोजित किया जाता है। इसके अतिरिक्त, डिवाइस के माध्यम से महत्वपूर्ण विद्युत पथों को अधिक छोटा किया जा सकता है, जिससे तीव्रता से संचालन हो सकता है। वाइड आई/ओ 3डी [[DRAM|डीरैम]] मेमोरी मानक ([[JEDEC|जेडईसी]] जेईएसडी229) में डिज़ाइन में टीएसवी सम्मिलित है।<ref>{{cite web|last1=Desjardins|first1=E.|title=JEDEC Publishes Breakthrough Standard for Wide I/O Mobile DRAM|url=http://www.jedec.org/news/pressreleases/jedec-publishes-breakthrough-standard-wide-io-mobile-dram|website=JEDEC|publisher=JEDEC|accessdate=1 December 2014}}</ref>
== इतिहास ==
== इतिहास ==
{{See|Three-dimensional integrated circuit#History}}
{{See|त्रि-आयामी एकीकृत परिपथ इतिहास}}


TSV अवधारणा की उत्पत्ति का पता [[विलियम शॉक्ले]] के पेटेंट सेमीकंडक्टिव वेफर और 1958 में फाइल करने की विधि से लगाया जा सकता है और 1962 में प्रदान किया गया था।<ref>J.H. Lau, [http://www.3dincites.com/2010/04/who-invented-the-through-silicon-via-tsv-and-when/ Who Invented the Through Silicon Via (TSV) and When?] 3D InCites, 2010</ref><ref>{{US patent|3044909}}</ref> जिसे [[आईबीएम]] के शोधकर्ताओं मर्लिन स्मिथ और इमानुएल स्टर्न द्वारा 1964 में दायर किए गए और 1967 में प्रदान किए गए सेमीकंडक्टर वेफर्स में थ्रू-कनेक्शन बनाने के अपने पेटेंट तरीकों के साथ विकसित किया गया था।<ref name="Kada6">{{cite book |doi=10.1007/978-3-319-18675-7_1 |chapter=Research and Development History of Three-Dimensional Integration Technology |title=सेमीकंडक्टर का त्रि-आयामी एकीकरण|year=2015 |last1=Kada |first1=Morihiro |pages=1–23 |isbn=978-3-319-18674-0 }}</ref><ref>{{US patent|3343256}}</ref> उत्तरार्द्ध सिलिकॉन के माध्यम से छेद नक़्क़ाशी के लिए विधि का वर्णन करता है।<ref>{{cite book |last1=Pavlidis |first1=Vasilis F. |last2=Savidis |first2=Ioannis |last3=Friedman |first3=Eby G. |title=त्रि-आयामी एकीकृत सर्किट डिजाइन|date=2017 |publisher=Newnes |isbn=978-0-12-410484-6 |page=68 |url=https://books.google.com/books?id=WR9VAQAAQBAJ&pg=PA68}}</ref> TSV को मूल रूप से 3D एकीकरण के लिए डिज़ाइन नहीं किया गया था, किन्तुTSV पर आधारित पहले 3D चिप्स का आविष्कार बाद में 1980 के दशक में किया गया था।<ref>{{cite book |last1=Lau |first1=John H. |title=Reliability of RoHS-Compliant 2D and 3D IC Interconnects |date=2010 |publisher=[[McGraw Hill Professional]] |isbn=978-0-07-175380-7 |page=1 |quote=TSV is the heart of 3-D IC/Si integration and is a more-than-26-year-old technology. Even the TSV (for electrical feed-through) was invented by William Shockley in 1962 (the patent was filed on October 23, 1958), but it was not originally designed for 3-D integration.}}</ref>
टीएसवी अवधारणा की उत्पत्ति 1958 में प्रस्तावित [[विलियम शॉक्ले]] के पेटेंट "सेमीकंडक्टिव एंड मेथड ऑफ मेकिंग द सेम" में देखी जा सकती है, जिसे 1962 में प्रदान किया गया था।<ref>J.H. Lau, [http://www.3dincites.com/2010/04/who-invented-the-through-silicon-via-tsv-and-when/ Who Invented the Through Silicon Via (TSV) and When?] 3D InCites, 2010</ref><ref>{{US patent|3044909}}</ref> जिसे आगे [[आईबीएम]] के शोधकर्ताओं मर्लिन स्मिथ एवं इमानुएल स्टर्न द्वारा विकसित किया गया था। उनके पेटेंट के साथ "सेमीकंडक्टर वेफर्स में थ्रू-कनेक्शन बनाने के प्रकार" 1964 में प्रस्तुत किए गए एवं 1967 में प्रदान किए गए,<ref name="Kada6">{{cite book |doi=10.1007/978-3-319-18675-7_1 |chapter=Research and Development History of Three-Dimensional Integration Technology |title=सेमीकंडक्टर का त्रि-आयामी एकीकरण|year=2015 |last1=Kada |first1=Morihiro |pages=1–23 |isbn=978-3-319-18674-0 }}</ref><ref>{{US patent|3343256}}</ref> उत्तरार्द्ध सिलिकॉन के माध्यम से छिद्र बनाने के लिए एक विधि का वर्णन करता है।<ref>{{cite book |last1=Pavlidis |first1=Vasilis F. |last2=Savidis |first2=Ioannis |last3=Friedman |first3=Eby G. |title=त्रि-आयामी एकीकृत सर्किट डिजाइन|date=2017 |publisher=Newnes |isbn=978-0-12-410484-6 |page=68 |url=https://books.google.com/books?id=WR9VAQAAQBAJ&pg=PA68}}</ref> टीएसवी को मूल रूप से 3डी एकीकरण के लिए डिज़ाइन नहीं किया गया था, किन्तु टीएसवी पर आधारित पूर्व 3डी चिप्स का आविष्कार पश्चात में 1980 के दशक में किया गया था।<ref>{{cite book |last1=Lau |first1=John H. |title=Reliability of RoHS-Compliant 2D and 3D IC Interconnects |date=2010 |publisher=[[McGraw Hill Professional]] |isbn=978-0-07-175380-7 |page=1 |quote=TSV is the heart of 3-D IC/Si integration and is a more-than-26-year-old technology. Even the TSV (for electrical feed-through) was invented by William Shockley in 1962 (the patent was filed on October 23, 1958), but it was not originally designed for 3-D integration.}}</ref>
[[1980 के दशक में जापान में]] TSV प्रक्रिया के साथ पहले [[त्रि-आयामी एकीकृत सर्किट]] (3D IC) स्टैक्ड चिप्स [[ सेमीकंडक्टर डिवाइस का निर्माण ]] का आविष्कार किया गया था। [[ Hitachi ]] ने 1983 में जापानी पेटेंट दायर किया, उसके बाद 1984 में [[ द्रोह ]] ने। 1986 में, फुजित्सु ने टीएसवी का उपयोग करके स्टैक्ड चिप संरचना का वर्णन करते हुए जापानी पेटेंट दायर किया।<ref name="Kada8">{{cite book |last1=Kada |first1=Morihiro |title=Three-Dimensional Integration of Semiconductors: Processing, Materials, and Applications |date=2015 |publisher=Springer |isbn=978-3-319-18675-7 |chapter=Research and Development History of Three-Dimensional Integration Technology |pages=8–9 |chapter-url=https://onecellonelightradio.files.wordpress.com/2018/11/three-dimensional-integration-of-semiconductors-2015.pdf}}</ref> 1989 में, [[तोहोकू विश्वविद्यालय]] के मित्सुमसा कोयोनागी ने टीएसवी के साथ वेफर-टू-वेफर बॉन्डिंग की तकनीक का बीड़ा उठाया, जिसका उपयोग उन्होंने 1989 में 3डी [[बड़े पैमाने पर एकीकरण]] चिप बनाने के लिए किया।<ref name="Kada8"/><ref name="Fukushima">{{cite web |last1=Fukushima |first1=T. |last2=Tanaka |first2=T. |last3=Koyanagi |first3=Mitsumasa |title=Thermal Issues of 3D ICs |url=http://sematech.org/meetings/archives/3d/8334/pres/Fukushima.pdf |archive-url=https://web.archive.org/web/20170516221221/http://sematech.org/meetings/archives/3d/8334/pres/Fukushima.pdf |url-status=dead |archive-date=16 May 2017 |website=[[SEMATECH]] |publisher=[[Tohoku University]] |year=2007 |accessdate=16 May 2017}}</ref><ref>{{cite journal |last1=Tanaka |first1=Tetsu |last2=Lee |first2=Kang Wook |last3=Fukushima |first3=Takafumi |last4=Koyanagi |first4=Mitsumasa |title=3D Integration Technology and Heterogeneous Integration |date=2011 |s2cid=62780117 }}</ref> 1999 में, जापान में एसोसिएशन ऑफ़ सुपर-एडवांस्ड इलेक्ट्रॉनिक्स टेक्नोलॉजीज (ASET) ने TSV तकनीक का उपयोग करके 3D IC चिप्स के विकास का वित्तपोषण प्रारंभ किया, जिसे उच्च घनत्व इलेक्ट्रॉनिक सिस्टम इंटीग्रेशन टेक्नोलॉजी प्रोजेक्ट पर R & D कहा जाता है।<ref name="Kada8"/><ref name="Takahashi">{{cite book |last1=Takahashi |first1=Kenji |last2=Tanida |first2=Kazumasa |chapter=Vertical Interconnection by ASET |title=Handbook of 3D Integration, Volume 1: Technology and Applications of 3D Integrated Circuits |date=2011 |publisher=John Wiley & Sons |isbn=978-3-527-62306-8 |page=339 |chapter-url=https://books.google.com/books?id=jtp_oFKsChgC&pg=PA339}}</ref> तोहोकू विश्वविद्यालय में कोयनागी समूह ने 1999 में तीन-परत स्टैक्ड इमेज सेंसर चिप, 2000 में तीन-परत [[मेमोरी चिप]], 2001 में तीन-परत कृत्रिम रेटिना चिप, 2002 में तीन-परत [[माइक्रोप्रोसेसर]] बनाने के लिए TSV तकनीक का उपयोग किया। 2005 में दस-परत मेमोरी चिप।<ref name="Fukushima"/>


इंटर-चिप थ्रू (आईसीवी) विधि 1997 में [[फ्राउनहोफर सोसायटी]] द्वारा विकसित की गई थी{{ndash}}पीटर रेम, डी बोलमैन, आर ब्रौन, आर बुचनर, यू काओ-मिन्ह, मैनफ्रेड एंजेलहार्ट और अर्मिन क्लम्प सहित [[सीमेंस]] अनुसंधान दल।<ref>{{cite journal |last1=Ramm |first1=P. |last2=Bollmann |first2=D. |last3=Braun |first3=R. |last4=Buchner |first4=R. |last5=Cao-Minh |first5=U. |last6=Engelhardt |first6=M. |last7=Errmann |first7=G. |last8=Graßl |first8=T. |last9=Hieber |first9=K. |last10=Hübner |first10=H. |last11=Kawala |first11=G. |last12=Kleiner |first12=M. |last13=Klumpp |first13=A. |last14=Kühn |first14=S. |last15=Landesberger |first15=C. |last16=Lezec |first16=H. |last17=Muth |first17=W. |last18=Pamler |first18=W. |last19=Popp |first19=R. |last20=Renner |first20=E. |last21=Ruhl |first21=G. |last22=Sänger |first22=A. |last23=Scheler |first23=U. |last24=Schertel |first24=A. |last25=Schmidt |first25=C. |last26=Schwarzl |first26=S. |last27=Weber |first27=J. |last28=Weber |first28=W. |display-authors=5 |title=लंबवत एकीकृत सर्किट के लिए तीन आयामी धातुकरण|journal=Microelectronic Engineering |date=November 1997 |volume=37-38 |pages=39–47 |doi=10.1016/S0167-9317(97)00092-0|s2cid=22232571 }}</ref> यह TSV प्रक्रिया का रूपांतर था, और बाद में इसे SLID (ठोस तरल अंतर-प्रसार) तकनीक कहा गया।<ref>{{cite journal |last1=Macchiolo |first1=A. |last2=Andricek |first2=L. |last3=Moser |first3=H. G. |last4=Nisius |first4=R. |last5=Richter |first5=R. H. |last6=Weigell |first6=P. |title=ATLAS पिक्सेल अपग्रेड के लिए SLID-ICV वर्टिकल इंटीग्रेशन टेक्नोलॉजी|journal=Physics Procedia |date=1 January 2012 |volume=37 |pages=1009–1015 |doi=10.1016/j.phpro.2012.02.444 |arxiv=1202.6497 |bibcode=2012PhPro..37.1009M |s2cid=91179768 }}</ref>
[[1980 के दशक में जापान में]] टीएसवी प्रक्रिया निर्मित पूर्व [[त्रि-आयामी एकीकृत सर्किट|त्रि-आयामी एकीकृत परिपथ]] (3डी आईसी) स्टैक्ड चिप्स का आविष्कार किया गया था। [[ Hitachi |हिताची]] ने 1983 में जापानी पेटेंट प्रस्तुत किया, उसके पश्चात 1984 में [[ द्रोह |फुजित्सु]] ने प्रस्तुत किया। 1986 में, फुजित्सु ने टीएसवी का उपयोग करके स्टैक्ड चिप संरचना का वर्णन करते हुए जापानी पेटेंट प्रस्तुत किया।<ref name="Kada8">{{cite book |last1=Kada |first1=Morihiro |title=Three-Dimensional Integration of Semiconductors: Processing, Materials, and Applications |date=2015 |publisher=Springer |isbn=978-3-319-18675-7 |chapter=Research and Development History of Three-Dimensional Integration Technology |pages=8–9 |chapter-url=https://onecellonelightradio.files.wordpress.com/2018/11/three-dimensional-integration-of-semiconductors-2015.pdf}}</ref> 1989 में, [[तोहोकू विश्वविद्यालय]] के मित्सुमसा कोयोनागी ने टीएसवी के साथ वेफर-टू-वेफर बॉन्डिंग की प्रौद्योगिकी का प्रयास किया, जिसका उपयोग उन्होंने 1989 में 3डी [[बड़े पैमाने पर एकीकरण|एलएसआई]] चिप बनाने के लिए किया।<ref name="Kada8" /><ref name="Fukushima">{{cite web |last1=Fukushima |first1=T. |last2=Tanaka |first2=T. |last3=Koyanagi |first3=Mitsumasa |title=Thermal Issues of 3D ICs |url=http://sematech.org/meetings/archives/3d/8334/pres/Fukushima.pdf |archive-url=https://web.archive.org/web/20170516221221/http://sematech.org/meetings/archives/3d/8334/pres/Fukushima.pdf |url-status=dead |archive-date=16 May 2017 |website=[[SEMATECH]] |publisher=[[Tohoku University]] |year=2007 |accessdate=16 May 2017}}</ref><ref>{{cite journal |last1=Tanaka |first1=Tetsu |last2=Lee |first2=Kang Wook |last3=Fukushima |first3=Takafumi |last4=Koyanagi |first4=Mitsumasa |title=3D Integration Technology and Heterogeneous Integration |date=2011 |s2cid=62780117 }}</ref> 1999 में, जापान में एसोसिएशन ऑफ़ सुपर-एडवांस्ड इलेक्ट्रॉनिक्स टेक्नोलॉजीज (एएसईटी) ने टीएसवी प्रौद्योगिकी का उपयोग करके 3डी आईसी चिप्स के विकास का वित्तपोषण प्रारंभ किया, जिसे "उच्च घनत्व इलेक्ट्रॉनिक सिस्टम एकीकरण प्रौद्योगिकी पर आर एंड डी" परियोजना कहा जाता है।<ref name="Kada8" /><ref name="Takahashi">{{cite book |last1=Takahashi |first1=Kenji |last2=Tanida |first2=Kazumasa |chapter=Vertical Interconnection by ASET |title=Handbook of 3D Integration, Volume 1: Technology and Applications of 3D Integrated Circuits |date=2011 |publisher=John Wiley & Sons |isbn=978-3-527-62306-8 |page=339 |chapter-url=https://books.google.com/books?id=jtp_oFKsChgC&pg=PA339}}</ref> तोहोकू विश्वविद्यालय में कोयनागी समूह ने 1999 में तीन-परत स्टैक्ड छवि संवेदक चिप, 2000 में तीन-परत [[मेमोरी चिप]], 2001 में तीन-परत कृत्रिम रेटिना चिप, 2002 में तीन-परत [[माइक्रोप्रोसेसर]], 2005 में दस-परत मेमोरी चिप बनाने के लिए टीएसवी प्रौद्योगिकी का उपयोग किया।<ref name="Fukushima" />
थ्रू-सिलिकॉन थ्रू (TSV) शब्द को Tru-Si Technologies के शोधकर्ताओं सर्गेई सवास्तिओक, ओ. सिनियाग्यूइन और ई. कोर्कज़िन्स्की द्वारा गढ़ा गया था, जिन्होंने 2000 में 3D [[ वेफर-स्तरीय पैकेजिंग ]] (WLP) समाधान के लिए TSV विधि प्रस्तावित की थी।<ref>{{cite book |doi=10.1109/ISAPM.2000.869271 |chapter=Thru-silicon vias for 3D WLP |title=Proceedings International Symposium on Advanced Packaging Materials Processes, Properties and Interfaces (Cat. No.00TH8507) |year=2000 |last1=Savastionk |first1=S. |last2=Siniaguine |first2=O. |last3=Korczynski |first3=E. |pages=206–207 |isbn=0-930815-59-9 |s2cid=110397071 }}</ref> Savastiouk बाद में [http://www.allvia.com/news/0406_facility_opens.html ALLVIA] Inc. के सह-संस्थापक और सीईओ बने। शुरुआत से ही, व्यवसाय योजना के बारे में उनकी दृष्टि सिलिकॉन इंटरकनेक्ट बनाने की थी क्योंकि ये वायर बॉन्ड पर महत्वपूर्ण प्रदर्शन सुधार प्रदान करते हैं। Savastiouk ने सॉलिड स्टेट टेक्नोलॉजी में विषय पर दो लेख प्रकाशित किए, पहले जनवरी 2000 में और फिर 2010 में। पहला लेख "मूर का नियम - द जेड डायमेंशन" जनवरी 2000 में सॉलिड स्टेट टेक्नोलॉजी पत्रिका में प्रकाशित हुआ था।<ref>{{cite journal |last1=Savastiouk |first1=Sergey |title=Z- दिशा में मूर का नियम|journal=Solid State Technology |date=January 2000 |volume=43 |issue=1 |page=84 }}</ref> इस लेख ने भविष्य में 2डी चिप स्टैकिंग से वेफर लेवल स्टैकिंग में संक्रमण के रूप में टीएसवी विकास के रोडमैप को रेखांकित किया। सिलिकॉन वायस के माध्यम से शीर्षक वाले वर्गों में से में, डॉ। सर्गेई सवास्तियौक ने लिखा, "प्रौद्योगिकियों में निवेश जो वेफर-लेवल वर्टिकल मिनिएचराइजेशन (वेफर थिनिंग) और वर्टिकल इंटीग्रेशन (सिलिकॉन वायस के माध्यम से) दोनों प्रदान करता है, अच्छी समझ में आता है।" उन्होंने जारी रखा, "मूर के नियम से जुड़े मनमाने 2डी वैचारिक अवरोध को हटाकर, हम आईसी पैकेजों के डिजाइन, परीक्षण और निर्माण में आसानी से नया आयाम खोल सकते हैं। जब हमें इसकी सबसे अधिक आवश्यकता होती है - पोर्टेबल कंप्यूटिंग, मेमोरी कार्ड, स्मार्ट कार्ड, सेलुलर फोन और अन्य उपयोगों के लिए - हम मूर के नियम का Z आयाम में पालन कर सकते हैं। यह पहली बार था जब किसी तकनीकी प्रकाशन में थ्रू-सिलिकॉन वाया शब्द का प्रयोग किया गया था।


2007 के समय [[Toshiba]], [[Aptina]] और [[STMicroelectronics]] सहित कंपनियों द्वारा TSV का उपयोग करने वाले CMOS इमेज सेंसर का व्यावसायीकरण किया गया था।{{ndash}}2008, तोशिबा ने चिप वाया (टीसीवी) के माध्यम से अपनी तकनीक का नामकरण किया। 3डी-स्टैक्ड [[ रैंडम एक्सेस मेमोरी ]] (रैम) का व्यवसायीकरण [[एल्पिडा मेमोरी]] द्वारा किया गया, जिसने पहले 8{{nbsp}सितंबर 2009 में [[गिबिबाइट]] [[गतिशील रैम]] चिप (चार [[डीडीआर3]] [[एसडीआरएएम]] डाइस के साथ ढेर) और जून 2011 में इसे जारी किया। [[टीएसएमसी]] ने जनवरी 2010 में टीएसवी तकनीक के साथ 3डी आईसी उत्पादन की योजना की घोषणा की।<ref name="Kada15">{{cite book |last1=Kada |first1=Morihiro |title=Three-Dimensional Integration of Semiconductors: Processing, Materials, and Applications |date=2015 |publisher=Springer |isbn=978-3-319-18675-7 |chapter=Research and Development History of Three-Dimensional Integration Technology |pages=15–8 |chapter-url=https://books.google.com/books?id=JaUvCwAAQBAJ&pg=PA15}}</ref> 2011 में, [[SK Hynix]]<nowiki> ने 16 प्रस्तुत किए{{nbsp}जीबी डीडीआर3 एसडीआरएएम (40 नैनोमीटर|40</nowiki>{{nbsp}}nm क्लास) TSV तकनीक का उपयोग करके,<ref name="hynix">{{cite web |title=History: 2010s |url=https://www.skhynix.com/eng/about/history2010.jsp |website=[[SK Hynix]] |accessdate=19 July 2019}}</ref> [[सैमसंग इलेक्ट्रॉनिक्स]]<nowiki> ने 3डी-स्टैक्ड 32 प्रस्तुत किया{{nbsp}जीबी डीडीआर3 (32 नैनोमीटर|30</nowiki>{{nbsp}}nm क्लास) सितंबर में TSV पर आधारित थी, और फिर सैमसंग और [[ माइक्रोन प्रौद्योगिकी ]] ने अक्टूबर में TSV-आधारित [[हाइब्रिड मेमोरी क्यूब]] (HMC) तकनीक की घोषणा की।<ref name="Kada15"/>SK Hynix ने 2013 में TSV तकनीक पर आधारित पहली हाई बैंडविड्थ मेमोरी (HBM) चिप का निर्माण किया।<ref name="hynix"/>
इंटर-चिप वाया (आईसीवी) विधि 1997 में [[फ्राउनहोफर सोसायटी|फ्रौनहोफर-सीमेंस अनुसंधान सोसायटी]] द्वारा विकसित की गई थी{{ndash}} जिसमें पीटर रैम, डी बोलमैन, आर ब्रौन, आर बुचनर, यू काओ-मिन्ह, मैनफ्रेड एंजेलहार्ट एवं अर्मिन क्लुम्प सम्मिलित थे।<ref>{{cite journal |last1=Ramm |first1=P. |last2=Bollmann |first2=D. |last3=Braun |first3=R. |last4=Buchner |first4=R. |last5=Cao-Minh |first5=U. |last6=Engelhardt |first6=M. |last7=Errmann |first7=G. |last8=Graßl |first8=T. |last9=Hieber |first9=K. |last10=Hübner |first10=H. |last11=Kawala |first11=G. |last12=Kleiner |first12=M. |last13=Klumpp |first13=A. |last14=Kühn |first14=S. |last15=Landesberger |first15=C. |last16=Lezec |first16=H. |last17=Muth |first17=W. |last18=Pamler |first18=W. |last19=Popp |first19=R. |last20=Renner |first20=E. |last21=Ruhl |first21=G. |last22=Sänger |first22=A. |last23=Scheler |first23=U. |last24=Schertel |first24=A. |last25=Schmidt |first25=C. |last26=Schwarzl |first26=S. |last27=Weber |first27=J. |last28=Weber |first28=W. |display-authors=5 |title=लंबवत एकीकृत सर्किट के लिए तीन आयामी धातुकरण|journal=Microelectronic Engineering |date=November 1997 |volume=37-38 |pages=39–47 |doi=10.1016/S0167-9317(97)00092-0|s2cid=22232571 }}</ref> यह टीएसवी प्रक्रिया का रूपांतर था, एवं पश्चात में इसे एसएलआईडी (ठोस तरल अंतर-प्रसार) प्रौद्योगिकी कहा गया।<ref>{{cite journal |last1=Macchiolo |first1=A. |last2=Andricek |first2=L. |last3=Moser |first3=H. G. |last4=Nisius |first4=R. |last5=Richter |first5=R. H. |last6=Weigell |first6=P. |title=ATLAS पिक्सेल अपग्रेड के लिए SLID-ICV वर्टिकल इंटीग्रेशन टेक्नोलॉजी|journal=Physics Procedia |date=1 January 2012 |volume=37 |pages=1009–1015 |doi=10.1016/j.phpro.2012.02.444 |arxiv=1202.6497 |bibcode=2012PhPro..37.1009M |s2cid=91179768 }}</ref>


शब्द "थ्रू-सिलिकॉन वाया" (टीएसवी) को ट्रू-सी टेक्नोलॉजीज के शोधकर्ताओं सर्गेई सवास्तिओक, ओ सिनियाग्यूइन एवं ई कोर्कज़िन्स्की द्वारा निर्मित किया गया था, जिन्होंने 2000 में 3डी [[ वेफर-स्तरीय पैकेजिंग |वेफर-स्तरीय पैकेजिंग]] (डब्ल्यूएलपी) समाधान के लिए टीएसवी विधि प्रस्तावित की थी।<ref>{{cite book |doi=10.1109/ISAPM.2000.869271 |chapter=Thru-silicon vias for 3D WLP |title=Proceedings International Symposium on Advanced Packaging Materials Processes, Properties and Interfaces (Cat. No.00TH8507) |year=2000 |last1=Savastionk |first1=S. |last2=Siniaguine |first2=O. |last3=Korczynski |first3=E. |pages=206–207 |isbn=0-930815-59-9 |s2cid=110397071 }}</ref> सावास्तिओक पश्चात में [http://www.allvia.com/news/0406_facility_opens.html अल्विया]इंक. के सह-संस्थापक एवं सीईओ बन गए। प्रारम्भ से, व्यवसाय योजना के विषय में उनकी दृष्टि सिलिकॉन इंटरकनेक्ट के माध्यम से बनाने की थी क्योंकि ये वायर बॉन्ड पर महत्वपूर्ण प्रदर्शन सुधार प्रदान करते हैं। सावास्तिओक ने सॉलिड स्टेट टेक्नोलॉजी में विषय पर दो लेख प्रथम जनवरी 2000 में एवं तत्पश्चात 2010 में प्रकाशित किए। प्रथम लेख "मूर का नियम - द जेड डायमेंशन" जनवरी 2000 में सॉलिड स्टेट टेक्नोलॉजी पत्रिका में प्रकाशित हुआ था।<ref>{{cite journal |last1=Savastiouk |first1=Sergey |title=Z- दिशा में मूर का नियम|journal=Solid State Technology |date=January 2000 |volume=43 |issue=1 |page=84 }}</ref> इस लेख ने भविष्य में 2डी चिप स्टैकिंग से वेफर लेवल स्टैकिंग में संक्रमण के रूप में टीएसवी विकास के रोडमैप को रेखांकित किया। सिलिकॉन वायस के माध्यम से शीर्षक वाले वर्गों में से में, डॉ सर्गेई सवास्तियौक ने लिखा, "प्रौद्योगिकियों में निवेश जो वेफर-लेवल वर्टिकल मिनिएचराइजेशन (वेफर थिनिंग) एवं वर्टिकल इंटीग्रेशन (सिलिकॉन वायस के माध्यम से) दोनों प्रदान करता है, उत्तम समझ में आता है।" उन्होंने प्रस्तावित किया, "मूर के नियम से जुड़े इच्छानुसार 2डी वैचारिक अवरोध को विस्थापित करके, हम आईसी पैकेजों के डिजाइन, परीक्षण एवं निर्माण में सरलता से नया आयाम खोल सकते हैं। जब हमें इसकी सबसे अधिक आवश्यकता होती है - पोर्टेबल कंप्यूटिंग, मेमोरी कार्ड, स्मार्ट कार्ड, सेलुलर फोन एवं अन्य उपयोगों के लिए - हम मूर के नियम का जेड आयाम में पालन कर सकते हैं। यह प्रथम बार था जब किसी प्रौद्योगिकी प्रकाशन में थ्रू-सिलिकॉन वाया शब्द का प्रयोग किया गया था।


2007{{ndash}}2008 के समय [[Toshiba|तोशिबा]], [[Aptina|आप्टिना]] एवं [[STMicroelectronics|एसटी माइक्रोइलेक्ट्रॉनिक]] सहित कंपनियों द्वारा टीएसवी का उपयोग करने वाले सीएमओएस छवि संवेदक का व्यावसायीकरण किया गया था, जिसमें तोशिबा ने अपनी प्रौद्योगिकी का नामकरण "चिप के माध्यम से" (टीसीवी) किया था। 3डी-स्टैक्ड [[ रैंडम एक्सेस मेमोरी ]] (रैम) का [[एल्पिडा मेमोरी]] द्वारा व्यावसायीकरण किया गया था, जिसने सितंबर 2009 में प्रथम 8 [[गिबिबाइट|जीबी डीआरएएम]] चिप (चार [[डीडीआर3]] [[एसडीआरएएम]] डाइस के साथ स्टैक) विकसित की थी, एवं इसे जून 2011 में प्रस्तुत किया गया था। [[टीएसएमसी]] ने जनवरी 2010 में टीएसवी प्रौद्योगिकी के साथ 3डी आईसी उत्पादन की योजना की घोषणा की।<ref name="Kada15">{{cite book |last1=Kada |first1=Morihiro |title=Three-Dimensional Integration of Semiconductors: Processing, Materials, and Applications |date=2015 |publisher=Springer |isbn=978-3-319-18675-7 |chapter=Research and Development History of Three-Dimensional Integration Technology |pages=15–8 |chapter-url=https://books.google.com/books?id=JaUvCwAAQBAJ&pg=PA15}}</ref> 2011 में, [[SK Hynix|एसके हाइनिक्स]] ने टीएसवी प्रौद्योगिकी का उपयोग करते हुए 16 जीबी डीडीआर3 एसडीआरएएम (40एनएम वर्ग) प्रस्तुत किया,<ref name="hynix">{{cite web |title=History: 2010s |url=https://www.skhynix.com/eng/about/history2010.jsp |website=[[SK Hynix]] |accessdate=19 July 2019}}</ref> [[सैमसंग इलेक्ट्रॉनिक्स]] ने सितंबर में टीएसवी पर आधारित 3डी-स्टैक्ड 32 जीबी डीडीआर3 (30एनएम वर्ग) प्रस्तुत किया, एवं तत्पश्चात सैमसंग एवं [[ माइक्रोन प्रौद्योगिकी |माइक्रोन प्रौद्योगिकी]] ने अक्टूबर में टीएसवी-आधारित [[हाइब्रिड मेमोरी क्यूब]] (एचएमसी) प्रौद्योगिकी की घोषणा की।<ref name="Kada15"/> एसके हाइनिक्स ने 2013 में टीएसवी प्रौद्योगिकी पर आधारित प्रथम हाई बैंडविड्थ मेमोरी (एचबीएम) चिप का निर्माण किया।<ref name="hynix"/>
==संदर्भ==
==संदर्भ==
{{Reflist}}
{{Reflist}}
Line 43: Line 37:
* http://www.google.com/patents/US7633165
* http://www.google.com/patents/US7633165
* http://www.icemostech.com/ice/
* http://www.icemostech.com/ice/
[[Category: एकीकृत सर्किट]] [[Category: सेमीकंडक्टर डिवाइस का निर्माण]]


[[Category: Machine Translated Page]]
[[Category:Articles with hatnote templates targeting a nonexistent page]]
[[Category:CS1]]
[[Category:CS1 errors]]
[[Category:Created On 09/06/2023]]
[[Category:Created On 09/06/2023]]
[[Category:Lua-based templates]]
[[Category:Machine Translated Page]]
[[Category:Pages with script errors]]
[[Category:Short description with empty Wikidata description]]
[[Category:Templates Vigyan Ready]]
[[Category:Templates that add a tracking category]]
[[Category:Templates that generate short descriptions]]
[[Category:Templates using TemplateData]]
[[Category:एकीकृत सर्किट]]
[[Category:सेमीकंडक्टर डिवाइस का निर्माण]]

Latest revision as of 13:08, 1 September 2023

उच्च बैंडविड्थ मेमोरी (एचबीएम) इंटरफ़ेस के साथ संयोजन में स्टैक्ड डायनेमिक रैंडम-एक्सेस मेमोरी-डाइस द्वारा उपयोग किए जाने वाले टीएसवी

इलेक्ट्रॉनिक अभियांत्रिकी में, थ्रू-सिलिकॉन वाया (टीएसवी) या थ्रू-चिप वाया वर्टिकल विद्युतीय संपर्क (वाया) है जो पूर्ण रूप से सिलिकॉन वेफर या डाई से होकर निकलता है। टीएसवी उच्च-प्रदर्शन इंटरकनेक्ट प्रौद्योगिकी हैं जिनका उपयोग 3डी पैकेज एवं 3डी एकीकृत परिपथ बनाने के लिए वायर-बॉन्ड एवं फ्लिप चिप्स के विकल्प के रूप में किया जाता है। पैकेज-ऑन-पैकेज जैसे विकल्पों की तुलना में, इंटरकनेक्ट एवं डिवाइस घनत्व अधिक है, एवं कनेक्शन की लंबाई अल्प हो जाती है।

वर्गीकरण

वाया-फर्स्ट, थ्रू-मिडिल एवं वाया-लास्ट टीएसवी को अनुमानित करना

निर्माण प्रक्रिया द्वारा निर्धारित, तीन भिन्न-भिन्न प्रकार के टीएसवी उपस्थित हैं: व्यक्तिगत घटक (अवरोध, संधारित्र, प्रतिरोधक, आदि) से पूर्व थ्रू-फर्स्ट टीएसवी को बनाया जाता है (लाइन का फ्रंट एंड, फेओल ), थ्रू-मिडल टीएसवी हैं व्यक्तिगत घटक के प्रारूप के पश्चात निर्मित किन्तु धातु की परतों (बैक-एंड-ऑफ-लाइन, बीईओएल) से पूर्व, एवं वाया-लास्ट टीएसवी बीईओएल प्रक्रिया के पश्चात (या उस समय) निर्मित किए जाते हैं।[1][2] वाया-मिडल टीएसवी वर्तमान में उन्नत 3डी आईसी के साथ-साथ इंटरपोजर स्टैक के लिए लोकप्रिय विकल्प है।[2][3]

ईडीए एवं विनिर्माण चरणों के समय फ्रंट एंड ऑफ लाइन (एफईओएल) के माध्यम से टीएसवी का सावधानीपूर्वक लेखा-जोखा रखा जाना चाहिए। ऐसा इसलिए है क्योंकि टीएसवी एफईओएल परत में थर्मो-यांत्रिक तनाव उत्पन्न करते हैं, जिससे ट्रांजिस्टर व्यवहार प्रभावित होता है।[4]

अनुप्रयोग

छवि संवेदक

सीएमओएस छवि संवेदक (सीआईएस) आयतन निर्माण में टीएसवी (एस) को अपनाने वाले पूर्व अनुप्रयोगों में से थे। प्रारंभिक सीआईएस अनुप्रयोगों में, टीएसवी छवि संवेदक वेफर के पीछे इंटरकनेक्ट बनाने, वायर बॉन्ड को समाप्त करने एवं अल्प फॉर्म फैक्टर एवं उच्च-घनत्व इंटरकनेक्ट की अनुमति देने के लिए निर्मित किये गए थे। चिप स्टैकिंग केवल बैकसाइड इलुमिनेटेड (बीएसआई) सीआईएस के आगमन के साथ ही आया, एवं इसमें पारंपरिक फ्रंट-साइड प्रकाश से लेंस, सर्किट्री एवं फोटोडायोड के क्रम को विपरीत करना सम्मिलित था जिससे कि लेंस के माध्यम से आने वाला प्रकाश पूर्व फोटोडायोड से एवं तत्पश्चात सर्किट्री टकराता है। यह फोटोडायोड वेफर को फ्लिप करके, बैकसाइड को पतला करके, एवं तत्पश्चात इसे डायरेक्ट ऑक्साइड बॉन्ड का उपयोग करके रीडआउट लेयर के शीर्ष पर जोड़कर, टीएसवी के साथ परिधि के चारों ओर इंटरकनेक्ट करके पूर्ण किया गया था।[5]

3डी पैकेज

3डी पैकेज (पैकेज में प्रणाली, मल्टी-चिप मॉड्यूल, आदि) में दो या अधिक चिप्स (एकीकृत परिपथ) लंबवत रूप से स्टैक्ड होते हैं जिससे कि वे अल्प स्थान घेरते हैं या अधिक कनेक्टिविटी रखते हैं। आईबीएम की सिलिकॉन कैरियर पैकेजिंग टेक्नोलॉजी में वैकल्पिक प्रकार का 3डी पैकेज पाया जा सकता है, जहां आईसी को स्टैक नहीं किया जाता है, किन्तु पैकेज में कई आईसी को एक साथ जोड़ने के लिए टीएसवी युक्त वाहक सब्सट्रेट का उपयोग किया जाता है। अधिकांश 3डी पैकेजों में, स्टैक्ड चिप्स को उनके किनारों के साथ साथ तारित किया जाता है; यह एज वायरिंग पैकेज की लंबाई एवं चौड़ाई को थोड़ा बढ़ा देती है एवं सामान्यतःचिप्स के मध्य अतिरिक्त "इंटरपोजर" परत की आवश्यकता होती है। कुछ नए 3डी पैकेजों में, टीएसवी चिप्स की बॉडी के माध्यम से वर्टिकल कनेक्शन बनाकर एज वायरिंग को प्रतिस्थापित करते हैं। परिणामी पैकेज में कोई अतिरिक्त लंबाई या चौड़ाई नहीं है। क्योंकि किसी इंटरपोजर की आवश्यकता नहीं है, टीएसवी 3डी पैकेज एज-वायर्ड 3डी पैकेज की तुलना में अनुनय भी कर सकता है। इस टीएसवी प्रौद्योगिकी को कभी-कभी टीएसएस (थ्रू-सिलिकॉन स्टैकिंग या थ्रू-सिलिकॉन स्टैकिंग) भी कहा जाता है।

3डी इंटीग्रेटेड परिपथ

तीन आयामी एकीकृत परिपथ (3डी आईसी) एकल एकीकृत परिपथ है जिसे सिलिकन वेफर्स एवं डाइज को स्टैक करके बनाया गया है एवं उन्हें लंबवत रूप से आपस में जोड़ा जाता है जिससे कि वे एकल उपकरण के रूप में व्यवहार करें। टीएसवी प्रौद्योगिकी का उपयोग करके, 3डी आईसी छोटे से "पदचिह्न" में अधिक कार्य क्षमता पैक कर सकते हैं। स्टैक में विभिन्न उपकरण विषम हो सकते हैं, उदा, सीएमओएस तर्क, डायनेमिक रैंडम-एक्सेस मेमोरी एवं III-V सामग्री को एक ही आईसी में संयोजित किया जाता है। इसके अतिरिक्त, डिवाइस के माध्यम से महत्वपूर्ण विद्युत पथों को अधिक छोटा किया जा सकता है, जिससे तीव्रता से संचालन हो सकता है। वाइड आई/ओ 3डी डीरैम मेमोरी मानक (जेडईसी जेईएसडी229) में डिज़ाइन में टीएसवी सम्मिलित है।[6]

इतिहास

टीएसवी अवधारणा की उत्पत्ति 1958 में प्रस्तावित विलियम शॉक्ले के पेटेंट "सेमीकंडक्टिव एंड मेथड ऑफ मेकिंग द सेम" में देखी जा सकती है, जिसे 1962 में प्रदान किया गया था।[7][8] जिसे आगे आईबीएम के शोधकर्ताओं मर्लिन स्मिथ एवं इमानुएल स्टर्न द्वारा विकसित किया गया था। उनके पेटेंट के साथ "सेमीकंडक्टर वेफर्स में थ्रू-कनेक्शन बनाने के प्रकार" 1964 में प्रस्तुत किए गए एवं 1967 में प्रदान किए गए,[9][10] उत्तरार्द्ध सिलिकॉन के माध्यम से छिद्र बनाने के लिए एक विधि का वर्णन करता है।[11] टीएसवी को मूल रूप से 3डी एकीकरण के लिए डिज़ाइन नहीं किया गया था, किन्तु टीएसवी पर आधारित पूर्व 3डी चिप्स का आविष्कार पश्चात में 1980 के दशक में किया गया था।[12]

1980 के दशक में जापान में टीएसवी प्रक्रिया निर्मित पूर्व त्रि-आयामी एकीकृत परिपथ (3डी आईसी) स्टैक्ड चिप्स का आविष्कार किया गया था। हिताची ने 1983 में जापानी पेटेंट प्रस्तुत किया, उसके पश्चात 1984 में फुजित्सु ने प्रस्तुत किया। 1986 में, फुजित्सु ने टीएसवी का उपयोग करके स्टैक्ड चिप संरचना का वर्णन करते हुए जापानी पेटेंट प्रस्तुत किया।[13] 1989 में, तोहोकू विश्वविद्यालय के मित्सुमसा कोयोनागी ने टीएसवी के साथ वेफर-टू-वेफर बॉन्डिंग की प्रौद्योगिकी का प्रयास किया, जिसका उपयोग उन्होंने 1989 में 3डी एलएसआई चिप बनाने के लिए किया।[13][14][15] 1999 में, जापान में एसोसिएशन ऑफ़ सुपर-एडवांस्ड इलेक्ट्रॉनिक्स टेक्नोलॉजीज (एएसईटी) ने टीएसवी प्रौद्योगिकी का उपयोग करके 3डी आईसी चिप्स के विकास का वित्तपोषण प्रारंभ किया, जिसे "उच्च घनत्व इलेक्ट्रॉनिक सिस्टम एकीकरण प्रौद्योगिकी पर आर एंड डी" परियोजना कहा जाता है।[13][16] तोहोकू विश्वविद्यालय में कोयनागी समूह ने 1999 में तीन-परत स्टैक्ड छवि संवेदक चिप, 2000 में तीन-परत मेमोरी चिप, 2001 में तीन-परत कृत्रिम रेटिना चिप, 2002 में तीन-परत माइक्रोप्रोसेसर, 2005 में दस-परत मेमोरी चिप बनाने के लिए टीएसवी प्रौद्योगिकी का उपयोग किया।[14]

इंटर-चिप वाया (आईसीवी) विधि 1997 में फ्रौनहोफर-सीमेंस अनुसंधान सोसायटी द्वारा विकसित की गई थी– जिसमें पीटर रैम, डी बोलमैन, आर ब्रौन, आर बुचनर, यू काओ-मिन्ह, मैनफ्रेड एंजेलहार्ट एवं अर्मिन क्लुम्प सम्मिलित थे।[17] यह टीएसवी प्रक्रिया का रूपांतर था, एवं पश्चात में इसे एसएलआईडी (ठोस तरल अंतर-प्रसार) प्रौद्योगिकी कहा गया।[18]

शब्द "थ्रू-सिलिकॉन वाया" (टीएसवी) को ट्रू-सी टेक्नोलॉजीज के शोधकर्ताओं सर्गेई सवास्तिओक, ओ सिनियाग्यूइन एवं ई कोर्कज़िन्स्की द्वारा निर्मित किया गया था, जिन्होंने 2000 में 3डी वेफर-स्तरीय पैकेजिंग (डब्ल्यूएलपी) समाधान के लिए टीएसवी विधि प्रस्तावित की थी।[19] सावास्तिओक पश्चात में अल्वियाइंक. के सह-संस्थापक एवं सीईओ बन गए। प्रारम्भ से, व्यवसाय योजना के विषय में उनकी दृष्टि सिलिकॉन इंटरकनेक्ट के माध्यम से बनाने की थी क्योंकि ये वायर बॉन्ड पर महत्वपूर्ण प्रदर्शन सुधार प्रदान करते हैं। सावास्तिओक ने सॉलिड स्टेट टेक्नोलॉजी में विषय पर दो लेख प्रथम जनवरी 2000 में एवं तत्पश्चात 2010 में प्रकाशित किए। प्रथम लेख "मूर का नियम - द जेड डायमेंशन" जनवरी 2000 में सॉलिड स्टेट टेक्नोलॉजी पत्रिका में प्रकाशित हुआ था।[20] इस लेख ने भविष्य में 2डी चिप स्टैकिंग से वेफर लेवल स्टैकिंग में संक्रमण के रूप में टीएसवी विकास के रोडमैप को रेखांकित किया। सिलिकॉन वायस के माध्यम से शीर्षक वाले वर्गों में से में, डॉ सर्गेई सवास्तियौक ने लिखा, "प्रौद्योगिकियों में निवेश जो वेफर-लेवल वर्टिकल मिनिएचराइजेशन (वेफर थिनिंग) एवं वर्टिकल इंटीग्रेशन (सिलिकॉन वायस के माध्यम से) दोनों प्रदान करता है, उत्तम समझ में आता है।" उन्होंने प्रस्तावित किया, "मूर के नियम से जुड़े इच्छानुसार 2डी वैचारिक अवरोध को विस्थापित करके, हम आईसी पैकेजों के डिजाइन, परीक्षण एवं निर्माण में सरलता से नया आयाम खोल सकते हैं। जब हमें इसकी सबसे अधिक आवश्यकता होती है - पोर्टेबल कंप्यूटिंग, मेमोरी कार्ड, स्मार्ट कार्ड, सेलुलर फोन एवं अन्य उपयोगों के लिए - हम मूर के नियम का जेड आयाम में पालन कर सकते हैं। यह प्रथम बार था जब किसी प्रौद्योगिकी प्रकाशन में थ्रू-सिलिकॉन वाया शब्द का प्रयोग किया गया था।

2007–2008 के समय तोशिबा, आप्टिना एवं एसटी माइक्रोइलेक्ट्रॉनिक सहित कंपनियों द्वारा टीएसवी का उपयोग करने वाले सीएमओएस छवि संवेदक का व्यावसायीकरण किया गया था, जिसमें तोशिबा ने अपनी प्रौद्योगिकी का नामकरण "चिप के माध्यम से" (टीसीवी) किया था। 3डी-स्टैक्ड रैंडम एक्सेस मेमोरी (रैम) का एल्पिडा मेमोरी द्वारा व्यावसायीकरण किया गया था, जिसने सितंबर 2009 में प्रथम 8 जीबी डीआरएएम चिप (चार डीडीआर3 एसडीआरएएम डाइस के साथ स्टैक) विकसित की थी, एवं इसे जून 2011 में प्रस्तुत किया गया था। टीएसएमसी ने जनवरी 2010 में टीएसवी प्रौद्योगिकी के साथ 3डी आईसी उत्पादन की योजना की घोषणा की।[21] 2011 में, एसके हाइनिक्स ने टीएसवी प्रौद्योगिकी का उपयोग करते हुए 16 जीबी डीडीआर3 एसडीआरएएम (40एनएम वर्ग) प्रस्तुत किया,[22] सैमसंग इलेक्ट्रॉनिक्स ने सितंबर में टीएसवी पर आधारित 3डी-स्टैक्ड 32 जीबी डीडीआर3 (30एनएम वर्ग) प्रस्तुत किया, एवं तत्पश्चात सैमसंग एवं माइक्रोन प्रौद्योगिकी ने अक्टूबर में टीएसवी-आधारित हाइब्रिड मेमोरी क्यूब (एचएमसी) प्रौद्योगिकी की घोषणा की।[21] एसके हाइनिक्स ने 2013 में टीएसवी प्रौद्योगिकी पर आधारित प्रथम हाई बैंडविड्थ मेमोरी (एचबीएम) चिप का निर्माण किया।[22]

संदर्भ

  1. 2009 International Technology Roadmap for Semiconductors (ITRS). 5 September 2009. pp. 4–5.
  2. 2.0 2.1 Knechtel, Johann; Sinanoglu, Ozgur; Elfadel, Ibrahim (Abe) M.; Lienig, Jens; Sze, Cliff C. N. (2017). "Large-Scale 3D Chips: Challenges and Solutions for Design Automation, Testing, and Trustworthy Integration". IPSJ Transactions on System LSI Design Methodology. 10: 45–62. doi:10.2197/ipsjtsldm.10.45.
  3. Beyne, Eric (June 2016). "The 3-D Interconnect Technology Landscape". IEEE Design & Test. 33 (3): 8–20. doi:10.1109/mdat.2016.2544837. S2CID 29564868.
  4. Lim, Sung Kyu (2013). Design for High Performance, Low Power, and Reliable 3D Integrated Circuits. doi:10.1007/978-1-4419-9542-1. ISBN 978-1-4419-9541-4.
  5. F. von Trapp, The Future Of Image Sensors is Chip Stacking http://www.3dincites.com/2014/09/future-image-sensors-chip-stacking
  6. Desjardins, E. "JEDEC Publishes Breakthrough Standard for Wide I/O Mobile DRAM". JEDEC. JEDEC. Retrieved 1 December 2014.
  7. J.H. Lau, Who Invented the Through Silicon Via (TSV) and When? 3D InCites, 2010
  8. U.S. Patent 3,044,909
  9. Kada, Morihiro (2015). "Research and Development History of Three-Dimensional Integration Technology". सेमीकंडक्टर का त्रि-आयामी एकीकरण. pp. 1–23. doi:10.1007/978-3-319-18675-7_1. ISBN 978-3-319-18674-0.
  10. U.S. Patent 3,343,256
  11. Pavlidis, Vasilis F.; Savidis, Ioannis; Friedman, Eby G. (2017). त्रि-आयामी एकीकृत सर्किट डिजाइन. Newnes. p. 68. ISBN 978-0-12-410484-6.
  12. Lau, John H. (2010). Reliability of RoHS-Compliant 2D and 3D IC Interconnects. McGraw Hill Professional. p. 1. ISBN 978-0-07-175380-7. TSV is the heart of 3-D IC/Si integration and is a more-than-26-year-old technology. Even the TSV (for electrical feed-through) was invented by William Shockley in 1962 (the patent was filed on October 23, 1958), but it was not originally designed for 3-D integration.
  13. 13.0 13.1 13.2 Kada, Morihiro (2015). "Research and Development History of Three-Dimensional Integration Technology" (PDF). Three-Dimensional Integration of Semiconductors: Processing, Materials, and Applications. Springer. pp. 8–9. ISBN 978-3-319-18675-7.
  14. 14.0 14.1 Fukushima, T.; Tanaka, T.; Koyanagi, Mitsumasa (2007). "Thermal Issues of 3D ICs" (PDF). SEMATECH. Tohoku University. Archived from the original (PDF) on 16 May 2017. Retrieved 16 May 2017.
  15. Tanaka, Tetsu; Lee, Kang Wook; Fukushima, Takafumi; Koyanagi, Mitsumasa (2011). "3D Integration Technology and Heterogeneous Integration". S2CID 62780117. {{cite journal}}: Cite journal requires |journal= (help)
  16. Takahashi, Kenji; Tanida, Kazumasa (2011). "Vertical Interconnection by ASET". Handbook of 3D Integration, Volume 1: Technology and Applications of 3D Integrated Circuits. John Wiley & Sons. p. 339. ISBN 978-3-527-62306-8.
  17. Ramm, P.; Bollmann, D.; Braun, R.; Buchner, R.; Cao-Minh, U.; et al. (November 1997). "लंबवत एकीकृत सर्किट के लिए तीन आयामी धातुकरण". Microelectronic Engineering. 37–38: 39–47. doi:10.1016/S0167-9317(97)00092-0. S2CID 22232571.
  18. Macchiolo, A.; Andricek, L.; Moser, H. G.; Nisius, R.; Richter, R. H.; Weigell, P. (1 January 2012). "ATLAS पिक्सेल अपग्रेड के लिए SLID-ICV वर्टिकल इंटीग्रेशन टेक्नोलॉजी". Physics Procedia. 37: 1009–1015. arXiv:1202.6497. Bibcode:2012PhPro..37.1009M. doi:10.1016/j.phpro.2012.02.444. S2CID 91179768.
  19. Savastionk, S.; Siniaguine, O.; Korczynski, E. (2000). "Thru-silicon vias for 3D WLP". Proceedings International Symposium on Advanced Packaging Materials Processes, Properties and Interfaces (Cat. No.00TH8507). pp. 206–207. doi:10.1109/ISAPM.2000.869271. ISBN 0-930815-59-9. S2CID 110397071.
  20. Savastiouk, Sergey (January 2000). "Z- दिशा में मूर का नियम". Solid State Technology. 43 (1): 84.
  21. 21.0 21.1 Kada, Morihiro (2015). "Research and Development History of Three-Dimensional Integration Technology". Three-Dimensional Integration of Semiconductors: Processing, Materials, and Applications. Springer. pp. 15–8. ISBN 978-3-319-18675-7.
  22. 22.0 22.1 "History: 2010s". SK Hynix. Retrieved 19 July 2019.


बाहरी संबंध