दीर्घवृत वितरण: Difference between revisions
(Created page with "{{Short description|Family of distributions that generalize the multivariate normal distribution}} संभाव्यता और आंकड़ों में, एक...") |
No edit summary |
||
(9 intermediate revisions by 5 users not shown) | |||
Line 1: | Line 1: | ||
{{Short description|Family of distributions that generalize the multivariate normal distribution}} | {{Short description|Family of distributions that generalize the multivariate normal distribution}} | ||
संभाव्यता और आंकड़ों में, एक | संभाव्यता और आंकड़ों में, एक '''दीर्घवृत्त वितरण''' संभाव्यता वितरण के एक व्यापक परिवार का कोई सदस्य है जो [[बहुभिन्नरूपी सामान्य वितरण]] को सामान्यीकृत करता है। सहज रूप से, सरलीकृत दो और त्रि-आयामी मामले में, संयुक्त वितरण क्रमशः आइसो-घनत्व वाले भूखंडों में एक दीर्घवृत्त और एक दीर्घवृत्त बनाता है। | ||
सांख्यिकी में, चिरसम्मत [[बहुभिन्नरूपी विश्लेषण]] में सामान्य वितरण का उपयोग किया जाता है, जबकि दीर्घवृत्त वितरणों का उपयोग सामान्यीकृत बहुभिन्नरूपी विश्लेषण में किया जाता है, पूंछ वाले सममित वितरणों के अध्ययन के लिए जो [[बहुभिन्नरूपी टी-वितरण]] या प्रकाश की तरह भारी होते हैं (सामान्य की तुलना में)। कुछ सांख्यिकीय विधियां जो मूल रूप से सामान्य वितरण के अध्ययन से प्रेरित थीं, सामान्य दीर्घवृत्त वितरण (परिमित भिन्नता के साथ) के लिए विशेष रूप से गोलाकार वितरण (जो नीचे परिभाषित हैं) के लिए अच्छा प्रदर्शन है। दीर्घवृत वितरण का उपयोग प्रस्तावित बहुविविध-सांख्यिकीय प्रक्रियाओं का मूल्यांकन करने के लिए मजबूत आंकड़ों में भी किया जाता है। | |||
== परिभाषा == | == परिभाषा == | ||
दीर्घवृत्त वितरण संभाव्यता सिद्धांत के विशिष्ट कार्य के संदर्भ में परिभाषित किए गए हैं। यूक्लिडियन स्पेस में एक यादृच्छिक वेक्टर <math>X</math> में दीर्घवृत्त वितरण होता है यदि इसकी विशेषता फ़ंक्शन <math>\phi</math> निम्नलिखित [[कार्यात्मक समीकरण]] को संतुष्ट करता है (प्रत्येक कॉलम-वेक्टर <math>t</math> के लिए) | |||
:<math>\phi_{X-\mu}(t) | :<math>\phi_{X-\mu}(t) | ||
= | = | ||
\psi(t' \Sigma t) | \psi(t' \Sigma t) | ||
</math> कुछ [[स्थान पैरामीटर]] | </math> | ||
कुछ | :कुछ [[स्थान पैरामीटर]] <math>\mu</math> के लिए, कुछ गैर-ऋणात्मक-निश्चित मैट्रिक्स <math>\Sigma</math> और कुछ स्केलर फ़ंक्शन <math>\psi</math><ref name="chs">{{harvtxt|Cambanis|Huang|Simons|1981|p=368}}</ref> [[जटिल संख्या|जटिल]] संख्याओं के क्षेत्र में यूक्लिडियन रिक्त स्थान में यादृच्छिक वैक्टर को समायोजित करने के लिए वास्तविक यादृच्छिक वैक्टर के लिए दीर्घवृत्त वितरण की परिभाषा को विस्तारित किया गया है, जिससे समय-श्रृंखला विश्लेषण में अनुप्रयोगों की सुविधा मिलती है।<ref>{{harvtxt|Fang|Kotz|Ng|1990|loc=Chapter 2.9 "Complex elliptically symmetric distributions", pp. 64-66}}</ref> उदाहरण के लिए [[मोंटे कार्लो विधि|मोंटे कार्लो]] सिमुलेशन में उपयोग के लिए दीर्घवृत वितरण से छद्म-यादृच्छिक वैक्टर उत्पन्न करने के लिए कम्प्यूटेशनल तरीके उपलब्ध हैं।<ref>{{harvtxt|Johnson|1987|loc=Chapter 6, "Elliptically contoured distributions, pp. 106-124}}: {{cite book|last=Johnson|first=Mark E.|title=Multivariate statistical simulation: A guide to selecting and generating continuous multivariate distributions|publisher=John Wiley and Sons|year=1987}}, "an admirably lucid discussion" according to {{harvtxt|Fang|Kotz|Ng|1990|p=27}}.</ref> | ||
कुछ दीर्घवृत्त वितरणों को वैकल्पिक रूप से उनके घनत्व कार्यों के संदर्भ में परिभाषित किया जाता है। एक घनत्व फ़ंक्शन f के साथ एक दीर्घवृत्त वितरण का रूप है: | |||
:<math>f(x)= k \cdot g((x-\mu)'\Sigma^{-1}(x-\mu))</math> | :<math>f(x)= k \cdot g((x-\mu)'\Sigma^{-1}(x-\mu))</math> | ||
जहाँ <math>k</math> [[सामान्यीकरण स्थिरांक]] है, <math>x</math> एक <math>n</math>-आयामी यादृच्छिक सदिश है जिसमें माध्य सदिश <math>\mu</math> है (जो माध्य सदिश भी है यदि उत्तरार्द्ध मौजूद है), और <math>\Sigma</math> एक धनात्मक निश्चित मैट्रिक्स है जो सहप्रसरण मैट्रिक्स के समानुपाती होता है यदि सहप्रसरण मौजूद होता है।<ref>Frahm, G., Junker, M., & Szimayer, A. (2003). Elliptical copulas: Applicability and limitations. ''Statistics & Probability Letters'', 63(3), 275–286.</ref> | |||
=== उदाहरण === | === उदाहरण === | ||
उदाहरणों में निम्नलिखित बहुभिन्नरूपी | उदाहरणों में निम्नलिखित बहुभिन्नरूपी प्रायिकता बंटन शामिल हैं: | ||
* बहुभिन्नरूपी सामान्य वितरण | * बहुभिन्नरूपी सामान्य वितरण | ||
* | * बहुभिन्नरूपी टी-वितरण | ||
* [[बहुभिन्नरूपी स्थिर वितरण]]<ref>{{cite web|title=बहुभिन्नरूपी स्थिर घनत्व और वितरण कार्य: सामान्य और अण्डाकार मामला|author=Nolan, John|url=https://www.researchgate.net/publication/246910601|access-date=2017-05-26|date=September 29, 2014}}</ref> | * [[बहुभिन्नरूपी स्थिर वितरण]]<ref>{{cite web|title=बहुभिन्नरूपी स्थिर घनत्व और वितरण कार्य: सामान्य और अण्डाकार मामला|author=Nolan, John|url=https://www.researchgate.net/publication/246910601|access-date=2017-05-26|date=September 29, 2014}}</ref> | ||
* [[बहुभिन्नरूपी लाप्लास वितरण]]<ref>{{cite journal|title=बहुभिन्नरूपी सामान्यीकृत गॉसियन वितरण के लिए पैरामीटर अनुमान|journal=IEEE Transactions on Signal Processing|volume=61|issue=23|pages=5960–5971|author=Pascal, F.|display-authors=etal|arxiv=1302.6498|doi=10.1109/TSP.2013.2282909|year=2013|bibcode=2013ITSP...61.5960P |s2cid=3909632}}</ref> | * [[बहुभिन्नरूपी लाप्लास वितरण]]<ref>{{cite journal|title=बहुभिन्नरूपी सामान्यीकृत गॉसियन वितरण के लिए पैरामीटर अनुमान|journal=IEEE Transactions on Signal Processing|volume=61|issue=23|pages=5960–5971|author=Pascal, F.|display-authors=etal|arxiv=1302.6498|doi=10.1109/TSP.2013.2282909|year=2013|bibcode=2013ITSP...61.5960P |s2cid=3909632}}</ref> | ||
* [[बहुभिन्नरूपी रसद वितरण]]<ref name=schmidt>{{cite book|title=ऋण जोखिम: मापन, मूल्यांकन और प्रबंधन|page=274|author=Schmidt, Rafael|chapter=Credit Risk Modeling and Estimation via Elliptical Copulae|editor=Bol, George|display-editors=etal|year=2012|publisher=Springer|isbn=9783642593659}}</ref> | * [[बहुभिन्नरूपी रसद वितरण|बहुभिन्नरूपी तार्किक वितरण]]<ref name=schmidt>{{cite book|title=ऋण जोखिम: मापन, मूल्यांकन और प्रबंधन|page=274|author=Schmidt, Rafael|chapter=Credit Risk Modeling and Estimation via Elliptical Copulae|editor=Bol, George|display-editors=etal|year=2012|publisher=Springer|isbn=9783642593659}}</ref> | ||
* बहुभिन्नरूपी सममित सामान्य अतिपरवलयिक वितरण<ref name=schmidt/> | * बहुभिन्नरूपी सममित सामान्य अतिपरवलयिक वितरण<ref name=schmidt/> | ||
== गुण == | == गुण == | ||
2-आयामी | 2-आयामी प्रकरण में, यदि घनत्व मौजूद है, तो प्रत्येक आइसो-घनत्व स्थान (''x''<sub>1</sub>,''x''<sub>2</sub> जोड़े का सेट सभी <math>f(x)</math> का एक विशेष मान देते हैं) एक दीर्घवृत्त या दीर्घवृत्त का एक संघ है (इसलिए नाम दीर्घवृत्तीय वितरण ) अधिक आम तौर पर, मनमाने ढंग से n के लिए, आइसो-घनत्व लोकी दीर्घवृत्तों के संघ हैं। इन सभी दीर्घवृत्ताभों या दीर्घवृत्तों का उभयनिष्ठ केंद्र μ होता है और ये एक दूसरे की स्केल की हुई प्रतियाँ (होमोथेट) होते हैं। | ||
बहुभिन्नरूपी सामान्य वितरण एक विशेष मामला है जिसमें <math>g(z)=e^{-z/2}</math> | बहुभिन्नरूपी सामान्य वितरण एक विशेष मामला है जिसमें <math>g(z)=e^{-z/2}</math>जबकि बहुभिन्नरूपी सामान्य अनबाउंड है (<math>x</math> का प्रत्येक तत्व गैर-शून्य संभाव्यता के साथ मनमाने ढंग से बड़े धनात्मक या ऋणात्मक मान ले सकता है क्योंकि <math>e^{-z/2}>0</math> सभी गैर-ऋणात्मक z z के लिए), सामान्य तौर पर, दीर्घवृत्तीय वितरण को परिबद्ध या असंबद्ध किया जा सकता है—ऐसे वितरण को परिबद्ध किया जाता है यदि <math>g(z)=0</math> कुछ मान से अधिक सभी <math>z</math> के लिए। | ||
ऐसे | ऐसे दीर्घवृत वितरण मौजूद हैं जिनका अपरिभाषित माध्य है, जैसे कि [[कॉची वितरण]] (यहां तक कि अविभाजित मामले में)। चूँकि चर x घनत्व फलन में द्विघात रूप से प्रवेश करता है, सभी दीर्घवृत वितरण <math>\mu</math> के बारे में [[सममित वितरण|सममित]] होते हैं। | ||
यदि संयुक्त रूप से दीर्घवृत यादृच्छिक वेक्टर के दो उपसमुच्चय असंबद्ध हैं, तो यदि उनके साधन मौजूद हैं तो वे एक दूसरे से स्वतंत्र हैं (प्रत्येक सबवेक्टर का मतलब दूसरे सबवेक्टर के मूल्य पर बिना शर्त माध्य के बराबर है)।<ref name="Owen 1983">{{harvtxt|Owen|Rabinovitch|1983}}</ref>{{rp|p. 748}} | |||
यदि यादृच्छिक वेक्टर एक्स अंडाकार रूप से वितरित किया जाता है, तो पूर्ण [[पंक्ति रैंक]] वाले किसी मैट्रिक्स डी के लिए डीएक्स भी होता है। इस प्रकार X के घटकों का कोई भी रैखिक संयोजन दीर्घवृत है (हालांकि जरूरी नहीं कि समान दीर्घवृत वितरण के साथ), और X का कोई भी उपसमुच्चय दीर्घवृत है।<ref name="Owen 1983" />{{rp|p. 748}} | |||
== अनुप्रयोग == | == अनुप्रयोग == | ||
दीर्घवृत वितरण का उपयोग सांख्यिकी और अर्थशास्त्र में किया जाता है। | |||
[[गणितीय वित्त|गणितीय]] अर्थशास्त्र में, अंडाकार वितरण का उपयोग गणितीय वित्त में [[पोर्टफोलियो सिद्धांत|पोर्टफोलियो]] का वर्णन करने के लिए किया गया है।<ref>{{harv|Gupta|Varga|Bodnar|2013}}</ref><ref>(Chamberlain 1983; Owen and Rabinovitch 1983)</ref> | |||
=== सांख्यिकी: सामान्यीकृत बहुभिन्नरूपी विश्लेषण === | === सांख्यिकी: सामान्यीकृत बहुभिन्नरूपी विश्लेषण === | ||
सांखियकी में, बहुभिन्नरूपी सामान्य वितरण (गॉस का) चिरसम्मत बहुभिन्नरूपी विश्लेषण में उपयोग किया जाता है, जिसमें अनुमान और परिकल्पना परीक्षण के लिए अधिकांश विधियाँ सामान्य वितरण से प्रेरित होती हैं। चिरसम्मत बहुभिन्नरूपी विश्लेषण के विपरीत, सामान्यीकृत बहुभिन्नरूपी विश्लेषण सामान्यता के प्रतिबंध के बिना दीर्घवृत वितरण पर शोध को दर्शाता है। | |||
उपयुक्त | उपयुक्त दीर्घवृत्तीय वितरण के लिए, कुछ चिरसम्मत विधियों में अच्छे गुण होते रहते हैं।<ref name="AndersonExtensions">{{harvtxt|Anderson|2004|loc=The final section of the text (before "Problems") that are always entitled "Elliptically contoured distributions", of the following chapters: Chapters | ||
3 ("Estimation of the mean vector and the covariance matrix", Section 3.6, pp. 101-108), | 3 ("Estimation of the mean vector and the covariance matrix", Section 3.6, pp. 101-108), | ||
4 ("The distributions and uses of sample correlation coefficients", Section 4.5, pp. 158-163), | 4 ("The distributions and uses of sample correlation coefficients", Section 4.5, pp. 158-163), | ||
Line 55: | Line 50: | ||
10 ("Testing hypotheses of equality of covariance matrices and equality of mean vectors and covariance vectors", Section 10.11, pp. 449-454), | 10 ("Testing hypotheses of equality of covariance matrices and equality of mean vectors and covariance vectors", Section 10.11, pp. 449-454), | ||
11 ("Principal components", Section 11.8, pp. 482-483), | 11 ("Principal components", Section 11.8, pp. 482-483), | ||
13 ("The distribution of characteristic roots and vectors", Section 13.8, pp. 563-567)}}</ref><ref name="FangZhang">{{harvtxt|Fang|Zhang|1990}}</ref> परिमित-विचरण | 13 ("The distribution of characteristic roots and vectors", Section 13.8, pp. 563-567)}}</ref><ref name="FangZhang">{{harvtxt|Fang|Zhang|1990}}</ref> परिमित-विचरण धारणाओं के तहत, कोचरन प्रमेय (द्विघात रूपों के वितरण पर) का विस्तार होता है।<ref name="FangZhangCochran">{{harvtxt|Fang|Zhang|1990|loc=Chapter 2.8 "Distribution of quadratic forms and Cochran's theorem", pp. 74-81}}</ref> | ||
==== गोलाकार वितरण ==== | ==== गोलाकार वितरण ==== | ||
<math>\alpha I</math> के रूप में शून्य माध्य और विचरण वाला एक दीर्घवृत वितरण जहां <math>I</math> पहचान मैट्रिक्स है, गोलाकार वितरण कहलाता है।<ref name="FangZhangSpherical">{{harvtxt|Fang|Zhang|1990|loc=Chapter 2.5 "Spherical distributions", pp. 53-64}}</ref> गोलाकार वितरणों के लिए, पैरामीटर अनुमान और परिकल्पना-परीक्षण पर शास्त्रीय परिणाम बढ़ा दिए गए हैं।<ref name="FangZhangEstimation">{{harvtxt|Fang|Zhang|1990|loc=Chapter IV "Estimation of parameters", pp. 127-153}}</ref><ref name="FangZhangTesting">{{harvtxt|Fang|Zhang|1990|loc=Chapter V "Testing hypotheses", pp. 154-187}}</ref> इसी तरह के परिणाम [[सामान्य रैखिक मॉडल|रैखिक मॉडल]] के लिए हैं,<ref name="FangZhangModels">{{harvtxt|Fang|Zhang|1990|loc=Chapter VII "Linear models", pp. 188-211}}</ref> और वास्तव में जटिल मॉडल के लिए भी (विशेष रूप से [[विकास वक्र (सांख्यिकी)|विकास वक्र]] मॉडल के लिए)। बहुभिन्नरूपी मॉडलों के विश्लेषण में [[बहुरेखीय बीजगणित]] (विशेष रूप से [[क्रोनकर उत्पाद]] और वैश्वीकरण) और [[मैट्रिक्स गणना|मैट्रिक्स]] कलन का उपयोग किया जाता है।<ref name="FangZhang" /><ref name="PanFang">{{harvtxt|Pan|Fang|2007|p=ii}}</ref><ref name="KolloVonRosenXIII">{{harvtxt|Kollo|von Rosen|2005|p=xiii}}</ref> | |||
====स्थायी सांख्यिकी: अनन्तस्पर्शी ==== | |||
==== | |||
दीर्घवृत वितरण का एक अन्य उपयोग मजबूत आंकड़ों में है, जिसमें शोधकर्ता जांच करते हैं कि दीर्घवृत वितरण के वर्ग पर सांख्यिकीय प्रक्रियाओं का प्रदर्शन कैसे किया जाता है, और अधिक सामान्य समस्याओं पर प्रक्रियाओं के प्रदर्शन में अंतर्दृष्टि प्राप्त करने के लिए,<ref name="KariyaSinha">{{cite book|last1=Kariya|first1=Takeaki|first2=Bimal K.|last2=Sinha|title=सांख्यिकीय परीक्षणों की मजबूती|publisher=Academic Press|year=1989|isbn=0123982308}} | |||
</ref> उदाहरण के लिए सीमित सिद्धांत का उपयोग करके [[स्पर्शोन्मुख सिद्धांत (सांख्यिकी)|सांख्यिकी]] ("एसिम्प्टोटिक्स")।<ref name="KolloVonRosen221">{{harvtxt|Kollo|von Rosen|2005|p=221}}</ref> | |||
=== अर्थशास्त्र और वित्त === | === अर्थशास्त्र और वित्त === | ||
पोर्टफोलियो सिद्धांत में | दीर्घवृत वितरण पोर्टफोलियो सिद्धांत में महत्वपूर्ण हैं क्योंकि, यदि पोर्टफोलियो निर्माण के लिए उपलब्ध सभी संपत्तियों पर रिटर्न संयुक्त रूप से अंडाकार रूप से वितरित किया जाता है, तो सभी पोर्टफोलियो को उनके स्थान और पैमाने से पूरी तरह से चित्रित किया जा सकता है - यानी, समान स्थान और पोर्टफोलियो के पैमाने वाले दो पोर्टफोलियो रिटर्न में पोर्टफोलियो रिटर्न का वितरण समान होता है।<ref>{{harvtxt|Chamberlain|1983}}</ref><ref name="Owen 1983"/> म्युचुअल फंड पृथक्करण प्रमेय और कैपिटल एसेट प्राइसिंग मॉडल ([[पूंजी परिसंपत्ति मूल्य निर्धारण मॉडल]]) सहित पोर्टफोलियो विश्लेषण की विभिन्न विशेषताएं, सभी दीर्घवृत वितरणों के लिए मान्य हैं।<ref name="Owen 1983"/>{{rp|p. 748}} | ||
==टिप्पणियाँ== | ==टिप्पणियाँ== | ||
{{Reflist}} | {{Reflist}} | ||
Line 111: | Line 99: | ||
}} | }} | ||
{{refend}} | {{refend}} | ||
==अग्रिम पठन== | |||
== | |||
{{refbegin}} | {{refbegin}} | ||
* {{cite book|editor1-last=Fang|editor1-first=Kai-Tai|editor-link1=Kai-Tai Fang|editor2-last=Anderson|editor2-first=T. W.|editor-link2=Theodore W. Anderson|title=Statistical inference in elliptically contoured and related distributions|publisher=Allerton Press|location=New York|year=1990|isbn=0898640482|oclc=20490516}} A collection of papers. | * {{cite book|editor1-last=Fang|editor1-first=Kai-Tai|editor-link1=Kai-Tai Fang|editor2-last=Anderson|editor2-first=T. W.|editor-link2=Theodore W. Anderson|title=Statistical inference in elliptically contoured and related distributions|publisher=Allerton Press|location=New York|year=1990|isbn=0898640482|oclc=20490516}} A collection of papers. | ||
Line 141: | Line 107: | ||
{{statistics|analysis|state=collapsed}} | {{statistics|analysis|state=collapsed}} | ||
{{DEFAULTSORT:Elliptical Distribution}} | {{DEFAULTSORT:Elliptical Distribution}} | ||
[[Category: | [[Category:Collapse templates|Elliptical Distribution]] | ||
[[Category:Created On 26/12/2022]] | [[Category:Created On 26/12/2022|Elliptical Distribution]] | ||
[[Category:Lua-based templates|Elliptical Distribution]] | |||
[[Category:Machine Translated Page|Elliptical Distribution]] | |||
[[Category:Navigational boxes| ]] | |||
[[Category:Navigational boxes without horizontal lists|Elliptical Distribution]] | |||
[[Category:Pages with empty portal template|Elliptical Distribution]] | |||
[[Category:Pages with script errors|Elliptical Distribution]] | |||
[[Category:Portal-inline template with redlinked portals|Elliptical Distribution]] | |||
[[Category:Short description with empty Wikidata description|Elliptical Distribution]] | |||
[[Category:Sidebars with styles needing conversion|Elliptical Distribution]] | |||
[[Category:Template documentation pages|Documentation/doc]] | |||
[[Category:Templates Vigyan Ready|Elliptical Distribution]] | |||
[[Category:Templates generating microformats|Elliptical Distribution]] | |||
[[Category:Templates that add a tracking category|Elliptical Distribution]] | |||
[[Category:Templates that are not mobile friendly|Elliptical Distribution]] | |||
[[Category:Templates that generate short descriptions|Elliptical Distribution]] | |||
[[Category:Templates using TemplateData|Elliptical Distribution]] | |||
[[Category:Wikipedia metatemplates|Elliptical Distribution]] |
Latest revision as of 13:30, 4 September 2023
संभाव्यता और आंकड़ों में, एक दीर्घवृत्त वितरण संभाव्यता वितरण के एक व्यापक परिवार का कोई सदस्य है जो बहुभिन्नरूपी सामान्य वितरण को सामान्यीकृत करता है। सहज रूप से, सरलीकृत दो और त्रि-आयामी मामले में, संयुक्त वितरण क्रमशः आइसो-घनत्व वाले भूखंडों में एक दीर्घवृत्त और एक दीर्घवृत्त बनाता है।
सांख्यिकी में, चिरसम्मत बहुभिन्नरूपी विश्लेषण में सामान्य वितरण का उपयोग किया जाता है, जबकि दीर्घवृत्त वितरणों का उपयोग सामान्यीकृत बहुभिन्नरूपी विश्लेषण में किया जाता है, पूंछ वाले सममित वितरणों के अध्ययन के लिए जो बहुभिन्नरूपी टी-वितरण या प्रकाश की तरह भारी होते हैं (सामान्य की तुलना में)। कुछ सांख्यिकीय विधियां जो मूल रूप से सामान्य वितरण के अध्ययन से प्रेरित थीं, सामान्य दीर्घवृत्त वितरण (परिमित भिन्नता के साथ) के लिए विशेष रूप से गोलाकार वितरण (जो नीचे परिभाषित हैं) के लिए अच्छा प्रदर्शन है। दीर्घवृत वितरण का उपयोग प्रस्तावित बहुविविध-सांख्यिकीय प्रक्रियाओं का मूल्यांकन करने के लिए मजबूत आंकड़ों में भी किया जाता है।
परिभाषा
दीर्घवृत्त वितरण संभाव्यता सिद्धांत के विशिष्ट कार्य के संदर्भ में परिभाषित किए गए हैं। यूक्लिडियन स्पेस में एक यादृच्छिक वेक्टर में दीर्घवृत्त वितरण होता है यदि इसकी विशेषता फ़ंक्शन निम्नलिखित कार्यात्मक समीकरण को संतुष्ट करता है (प्रत्येक कॉलम-वेक्टर के लिए)
- कुछ स्थान पैरामीटर के लिए, कुछ गैर-ऋणात्मक-निश्चित मैट्रिक्स और कुछ स्केलर फ़ंक्शन [1] जटिल संख्याओं के क्षेत्र में यूक्लिडियन रिक्त स्थान में यादृच्छिक वैक्टर को समायोजित करने के लिए वास्तविक यादृच्छिक वैक्टर के लिए दीर्घवृत्त वितरण की परिभाषा को विस्तारित किया गया है, जिससे समय-श्रृंखला विश्लेषण में अनुप्रयोगों की सुविधा मिलती है।[2] उदाहरण के लिए मोंटे कार्लो सिमुलेशन में उपयोग के लिए दीर्घवृत वितरण से छद्म-यादृच्छिक वैक्टर उत्पन्न करने के लिए कम्प्यूटेशनल तरीके उपलब्ध हैं।[3]
कुछ दीर्घवृत्त वितरणों को वैकल्पिक रूप से उनके घनत्व कार्यों के संदर्भ में परिभाषित किया जाता है। एक घनत्व फ़ंक्शन f के साथ एक दीर्घवृत्त वितरण का रूप है:
जहाँ सामान्यीकरण स्थिरांक है, एक -आयामी यादृच्छिक सदिश है जिसमें माध्य सदिश है (जो माध्य सदिश भी है यदि उत्तरार्द्ध मौजूद है), और एक धनात्मक निश्चित मैट्रिक्स है जो सहप्रसरण मैट्रिक्स के समानुपाती होता है यदि सहप्रसरण मौजूद होता है।[4]
उदाहरण
उदाहरणों में निम्नलिखित बहुभिन्नरूपी प्रायिकता बंटन शामिल हैं:
- बहुभिन्नरूपी सामान्य वितरण
- बहुभिन्नरूपी टी-वितरण
- बहुभिन्नरूपी स्थिर वितरण[5]
- बहुभिन्नरूपी लाप्लास वितरण[6]
- बहुभिन्नरूपी तार्किक वितरण[7]
- बहुभिन्नरूपी सममित सामान्य अतिपरवलयिक वितरण[7]
गुण
2-आयामी प्रकरण में, यदि घनत्व मौजूद है, तो प्रत्येक आइसो-घनत्व स्थान (x1,x2 जोड़े का सेट सभी का एक विशेष मान देते हैं) एक दीर्घवृत्त या दीर्घवृत्त का एक संघ है (इसलिए नाम दीर्घवृत्तीय वितरण ) अधिक आम तौर पर, मनमाने ढंग से n के लिए, आइसो-घनत्व लोकी दीर्घवृत्तों के संघ हैं। इन सभी दीर्घवृत्ताभों या दीर्घवृत्तों का उभयनिष्ठ केंद्र μ होता है और ये एक दूसरे की स्केल की हुई प्रतियाँ (होमोथेट) होते हैं।
बहुभिन्नरूपी सामान्य वितरण एक विशेष मामला है जिसमें जबकि बहुभिन्नरूपी सामान्य अनबाउंड है ( का प्रत्येक तत्व गैर-शून्य संभाव्यता के साथ मनमाने ढंग से बड़े धनात्मक या ऋणात्मक मान ले सकता है क्योंकि सभी गैर-ऋणात्मक z z के लिए), सामान्य तौर पर, दीर्घवृत्तीय वितरण को परिबद्ध या असंबद्ध किया जा सकता है—ऐसे वितरण को परिबद्ध किया जाता है यदि कुछ मान से अधिक सभी के लिए।
ऐसे दीर्घवृत वितरण मौजूद हैं जिनका अपरिभाषित माध्य है, जैसे कि कॉची वितरण (यहां तक कि अविभाजित मामले में)। चूँकि चर x घनत्व फलन में द्विघात रूप से प्रवेश करता है, सभी दीर्घवृत वितरण के बारे में सममित होते हैं।
यदि संयुक्त रूप से दीर्घवृत यादृच्छिक वेक्टर के दो उपसमुच्चय असंबद्ध हैं, तो यदि उनके साधन मौजूद हैं तो वे एक दूसरे से स्वतंत्र हैं (प्रत्येक सबवेक्टर का मतलब दूसरे सबवेक्टर के मूल्य पर बिना शर्त माध्य के बराबर है)।[8]: p. 748
यदि यादृच्छिक वेक्टर एक्स अंडाकार रूप से वितरित किया जाता है, तो पूर्ण पंक्ति रैंक वाले किसी मैट्रिक्स डी के लिए डीएक्स भी होता है। इस प्रकार X के घटकों का कोई भी रैखिक संयोजन दीर्घवृत है (हालांकि जरूरी नहीं कि समान दीर्घवृत वितरण के साथ), और X का कोई भी उपसमुच्चय दीर्घवृत है।[8]: p. 748
अनुप्रयोग
दीर्घवृत वितरण का उपयोग सांख्यिकी और अर्थशास्त्र में किया जाता है।
गणितीय अर्थशास्त्र में, अंडाकार वितरण का उपयोग गणितीय वित्त में पोर्टफोलियो का वर्णन करने के लिए किया गया है।[9][10]
सांख्यिकी: सामान्यीकृत बहुभिन्नरूपी विश्लेषण
सांखियकी में, बहुभिन्नरूपी सामान्य वितरण (गॉस का) चिरसम्मत बहुभिन्नरूपी विश्लेषण में उपयोग किया जाता है, जिसमें अनुमान और परिकल्पना परीक्षण के लिए अधिकांश विधियाँ सामान्य वितरण से प्रेरित होती हैं। चिरसम्मत बहुभिन्नरूपी विश्लेषण के विपरीत, सामान्यीकृत बहुभिन्नरूपी विश्लेषण सामान्यता के प्रतिबंध के बिना दीर्घवृत वितरण पर शोध को दर्शाता है।
उपयुक्त दीर्घवृत्तीय वितरण के लिए, कुछ चिरसम्मत विधियों में अच्छे गुण होते रहते हैं।[11][12] परिमित-विचरण धारणाओं के तहत, कोचरन प्रमेय (द्विघात रूपों के वितरण पर) का विस्तार होता है।[13]
गोलाकार वितरण
के रूप में शून्य माध्य और विचरण वाला एक दीर्घवृत वितरण जहां पहचान मैट्रिक्स है, गोलाकार वितरण कहलाता है।[14] गोलाकार वितरणों के लिए, पैरामीटर अनुमान और परिकल्पना-परीक्षण पर शास्त्रीय परिणाम बढ़ा दिए गए हैं।[15][16] इसी तरह के परिणाम रैखिक मॉडल के लिए हैं,[17] और वास्तव में जटिल मॉडल के लिए भी (विशेष रूप से विकास वक्र मॉडल के लिए)। बहुभिन्नरूपी मॉडलों के विश्लेषण में बहुरेखीय बीजगणित (विशेष रूप से क्रोनकर उत्पाद और वैश्वीकरण) और मैट्रिक्स कलन का उपयोग किया जाता है।[12][18][19]
स्थायी सांख्यिकी: अनन्तस्पर्शी
दीर्घवृत वितरण का एक अन्य उपयोग मजबूत आंकड़ों में है, जिसमें शोधकर्ता जांच करते हैं कि दीर्घवृत वितरण के वर्ग पर सांख्यिकीय प्रक्रियाओं का प्रदर्शन कैसे किया जाता है, और अधिक सामान्य समस्याओं पर प्रक्रियाओं के प्रदर्शन में अंतर्दृष्टि प्राप्त करने के लिए,[20] उदाहरण के लिए सीमित सिद्धांत का उपयोग करके सांख्यिकी ("एसिम्प्टोटिक्स")।[21]
अर्थशास्त्र और वित्त
दीर्घवृत वितरण पोर्टफोलियो सिद्धांत में महत्वपूर्ण हैं क्योंकि, यदि पोर्टफोलियो निर्माण के लिए उपलब्ध सभी संपत्तियों पर रिटर्न संयुक्त रूप से अंडाकार रूप से वितरित किया जाता है, तो सभी पोर्टफोलियो को उनके स्थान और पैमाने से पूरी तरह से चित्रित किया जा सकता है - यानी, समान स्थान और पोर्टफोलियो के पैमाने वाले दो पोर्टफोलियो रिटर्न में पोर्टफोलियो रिटर्न का वितरण समान होता है।[22][8] म्युचुअल फंड पृथक्करण प्रमेय और कैपिटल एसेट प्राइसिंग मॉडल (पूंजी परिसंपत्ति मूल्य निर्धारण मॉडल) सहित पोर्टफोलियो विश्लेषण की विभिन्न विशेषताएं, सभी दीर्घवृत वितरणों के लिए मान्य हैं।[8]: p. 748
टिप्पणियाँ
- ↑ Cambanis, Huang & Simons (1981, p. 368)
- ↑ Fang, Kotz & Ng (1990, Chapter 2.9 "Complex elliptically symmetric distributions", pp. 64-66)
- ↑ Johnson (1987, Chapter 6, "Elliptically contoured distributions, pp. 106-124): Johnson, Mark E. (1987). Multivariate statistical simulation: A guide to selecting and generating continuous multivariate distributions. John Wiley and Sons., "an admirably lucid discussion" according to Fang, Kotz & Ng (1990, p. 27).
- ↑ Frahm, G., Junker, M., & Szimayer, A. (2003). Elliptical copulas: Applicability and limitations. Statistics & Probability Letters, 63(3), 275–286.
- ↑ Nolan, John (September 29, 2014). "बहुभिन्नरूपी स्थिर घनत्व और वितरण कार्य: सामान्य और अण्डाकार मामला". Retrieved 2017-05-26.
- ↑ Pascal, F.; et al. (2013). "बहुभिन्नरूपी सामान्यीकृत गॉसियन वितरण के लिए पैरामीटर अनुमान". IEEE Transactions on Signal Processing. 61 (23): 5960–5971. arXiv:1302.6498. Bibcode:2013ITSP...61.5960P. doi:10.1109/TSP.2013.2282909. S2CID 3909632.
- ↑ 7.0 7.1 Schmidt, Rafael (2012). "Credit Risk Modeling and Estimation via Elliptical Copulae". In Bol, George; et al. (eds.). ऋण जोखिम: मापन, मूल्यांकन और प्रबंधन. Springer. p. 274. ISBN 9783642593659.
- ↑ 8.0 8.1 8.2 8.3 Owen & Rabinovitch (1983)
- ↑ (Gupta, Varga & Bodnar 2013)
- ↑ (Chamberlain 1983; Owen and Rabinovitch 1983)
- ↑ Anderson (2004, The final section of the text (before "Problems") that are always entitled "Elliptically contoured distributions", of the following chapters: Chapters 3 ("Estimation of the mean vector and the covariance matrix", Section 3.6, pp. 101-108), 4 ("The distributions and uses of sample correlation coefficients", Section 4.5, pp. 158-163), 5 ("The generalized T2-statistic", Section 5.7, pp. 199-201), 7 ("The distribution of the sample covariance matrix and the sample generalized variance", Section 7.9, pp. 242-248), 8 ("Testing the general linear hypothesis; multivariate analysis of variance", Section 8.11, pp. 370-374), 9 ("Testing independence of sets of variates", Section 9.11, pp. 404-408), 10 ("Testing hypotheses of equality of covariance matrices and equality of mean vectors and covariance vectors", Section 10.11, pp. 449-454), 11 ("Principal components", Section 11.8, pp. 482-483), 13 ("The distribution of characteristic roots and vectors", Section 13.8, pp. 563-567))
- ↑ 12.0 12.1 Fang & Zhang (1990)
- ↑ Fang & Zhang (1990, Chapter 2.8 "Distribution of quadratic forms and Cochran's theorem", pp. 74-81)
- ↑ Fang & Zhang (1990, Chapter 2.5 "Spherical distributions", pp. 53-64)
- ↑ Fang & Zhang (1990, Chapter IV "Estimation of parameters", pp. 127-153)
- ↑ Fang & Zhang (1990, Chapter V "Testing hypotheses", pp. 154-187)
- ↑ Fang & Zhang (1990, Chapter VII "Linear models", pp. 188-211)
- ↑ Pan & Fang (2007, p. ii)
- ↑ Kollo & von Rosen (2005, p. xiii)
- ↑ Kariya, Takeaki; Sinha, Bimal K. (1989). सांख्यिकीय परीक्षणों की मजबूती. Academic Press. ISBN 0123982308.
- ↑ Kollo & von Rosen (2005, p. 221)
- ↑ Chamberlain (1983)
संदर्भ
- Anderson, T. W. (2004). An introduction to multivariate statistical analysis (3rd ed.). New York: John Wiley and Sons. ISBN 9789812530967.
- Cambanis, Stamatis; Huang, Steel; Simons, Gordon (1981). "On the theory of elliptically contoured distributions". Journal of Multivariate Analysis. 11 (3): 368–385. doi:10.1016/0047-259x(81)90082-8.
- Chamberlain, Gary (February 1983). "A characterization of the distributions that imply mean—Variance utility functions". Journal of Economic Theory. 29 (1): 185–201. doi:10.1016/0022-0531(83)90129-1.
- Fang, Kai-Tai; Zhang, Yao-Ting (1990). Generalized multivariate analysis. Science Press (Beijing) and Springer-Verlag (Berlin). ISBN 3540176519. OCLC 622932253.
- Fang, Kai-Tai; Kotz, Samuel; Ng, Kai Wang ("Kai-Wang" on front cover) (1990). Symmetric multivariate and related distributions. Monographs on statistics and applied probability. Vol. 36. London: Chapman and Hall. ISBN 0-412-314-304. OCLC 123206055.
- Gupta, Arjun K.; Varga, Tamas; Bodnar, Taras (2013). Elliptically contoured models in statistics and portfolio theory (2nd ed.). New York: Springer-Verlag. doi:10.1007/978-1-4614-8154-6. ISBN 978-1-4614-8153-9.
- Originally Gupta, Arjun K.; Varga, Tamas (1993). Elliptically contoured models in statistics. Mathematics and Its Applications (1st ed.). Dordrecht: Kluwer Academic Publishers. ISBN 0792326083.
- Kollo, Tõnu; von Rosen, Dietrich (2005). Advanced multivariate statistics with matrices. Dordrecht: Springer. ISBN 978-1-4020-3418-3.
- Owen, Joel; Rabinovitch, Ramon (June 1983). "On the Class of Elliptical Distributions and their Applications to the Theory of Portfolio Choice". The Journal of Finance. 38 (3): 745–752. doi:10.2307/2328079. JSTOR 2328079.
- Pan, Jianxin; Fang, Kaitai (2007). Growth curve models and statistical diagnostics (PDF). Springer series in statistics. Science Press (Beijing) and Springer-Verlag (New York). doi:10.1007/978-0-387-21812-0. ISBN 9780387950532. OCLC 44162563.
अग्रिम पठन
- Fang, Kai-Tai; Anderson, T. W., eds. (1990). Statistical inference in elliptically contoured and related distributions. New York: Allerton Press. ISBN 0898640482. OCLC 20490516. A collection of papers.