फोकर-प्लैंक समीकरण: Difference between revisions
(Created page with "{{Short description|Partial differential equation}} Image:FokkerPlanck.gif|thumb|बहाव और प्रसार दोनों शब्दों के साथ...") |
No edit summary |
||
Line 1: | Line 1: | ||
{{Short description|Partial differential equation}} | {{Short description|Partial differential equation}} | ||
[[सांख्यिकीय यांत्रिकी]] और [[सूचना सिद्धांत]] में, फोककर-प्लैंक समीकरण आंशिक अंतर समीकरण है जो [[एक प्रकार कि गति|प्रकार कि गति]] की तरह ड्रैग (भौतिकी) बलों और यादृच्छिक बलों के प्रभाव में कण के वेग की संभाव्यता घनत्व फलन के [[समय विकास]] का वर्णन करता है। समीकरण को अन्य वेधशालाओं के लिए भी सामान्यीकृत किया जा सकता है।<ref>{{Cite book| title = Statistical Physics: statics, dynamics and renormalization| author = Leo P. Kadanoff| publisher = World Scientific| isbn = 978-981-02-3764-6| year = 2000| url = https://books.google.com/books?id=22dadF5p6gYC&pg=PA135 }}</ref> फोककर-प्लैंक समीकरण के सूचना सिद्धांत, ग्राफ सिद्धांत, डेटा विज्ञान, वित्त, अर्थशास्त्र आदि में कई अनुप्रयोग हैं। | |||
इसका नाम [[एड्रियन फोकर]] और [[मैक्स प्लैंक]] के नाम पर रखा गया है, जिन्होंने 1914 और 1917 में इसका वर्णन किया था।<ref>{{cite journal|last=Fokker|first=A. D.|year=1914|title=विकिरण क्षेत्र में घूमते विद्युत द्विध्रुवों की औसत ऊर्जा|url=https://zenodo.org/record/1424274|journal=[[Annalen der Physik|Ann. Phys.]]|volume=348|issue=4. Folge 43|pages=810–820|bibcode=1914AnP...348..810F|doi=10.1002/andp.19143480507}}</ref><ref>{{cite journal|last=Planck|first=M.|year=1917|title=Über einen Satz der statistischen Dynamik und seine Erweiterung in der Quantentheorie|url=https://biodiversitylibrary.org/page/29213319|journal=Sitzungsberichte der Preussischen Akademie der Wissenschaften zu Berlin|volume=24|pages=324–341}}</ref> इसे [[एंड्री कोलमोगोरोव]] के नाम पर कोलमोगोरोव फॉरवर्ड समीकरण के रूप में भी जाना जाता है, जिन्होंने 1931 में स्वतंत्र रूप से इसकी खोज की थी।<ref>{{cite journal |first=Andrei |last=Kolmogorov |title=Über die analytischen Methoden in der Wahrscheinlichkeitstheorie |journal=[[Mathematische Annalen]] |volume=104 |issue=1 |trans-title=On Analytical Methods in the Theory of Probability |pages=415–458 [pp. 448–451] |year=1931 |language=de |doi=10.1007/BF01457949 |s2cid=119439925 }}</ref> जब इसे कण स्थिति वितरण पर | इसका नाम [[एड्रियन फोकर]] और [[मैक्स प्लैंक]] के नाम पर रखा गया है, जिन्होंने 1914 और 1917 में इसका वर्णन किया था।<ref>{{cite journal|last=Fokker|first=A. D.|year=1914|title=विकिरण क्षेत्र में घूमते विद्युत द्विध्रुवों की औसत ऊर्जा|url=https://zenodo.org/record/1424274|journal=[[Annalen der Physik|Ann. Phys.]]|volume=348|issue=4. Folge 43|pages=810–820|bibcode=1914AnP...348..810F|doi=10.1002/andp.19143480507}}</ref><ref>{{cite journal|last=Planck|first=M.|year=1917|title=Über einen Satz der statistischen Dynamik und seine Erweiterung in der Quantentheorie|url=https://biodiversitylibrary.org/page/29213319|journal=Sitzungsberichte der Preussischen Akademie der Wissenschaften zu Berlin|volume=24|pages=324–341}}</ref> इसे [[एंड्री कोलमोगोरोव]] के नाम पर कोलमोगोरोव फॉरवर्ड समीकरण के रूप में भी जाना जाता है, जिन्होंने 1931 में स्वतंत्र रूप से इसकी खोज की थी।<ref>{{cite journal |first=Andrei |last=Kolmogorov |title=Über die analytischen Methoden in der Wahrscheinlichkeitstheorie |journal=[[Mathematische Annalen]] |volume=104 |issue=1 |trans-title=On Analytical Methods in the Theory of Probability |pages=415–458 [pp. 448–451] |year=1931 |language=de |doi=10.1007/BF01457949 |s2cid=119439925 }}</ref> जब इसे कण स्थिति वितरण पर प्रयुक्त किया जाता है, तो इसे स्मोलुचोव्स्की समीकरण ([[मैरियन स्मोलुचोव्स्की]] के बाद) के रूप में जाना जाता है।<ref>{{cite book|last=Dhont|first=J. K. G.|url=https://books.google.com/books?id=mmArTF5SJ9oC&pg=PA183|title=कोलाइड्स की गतिशीलता का एक परिचय|publisher=Elsevier|year=1996|isbn=978-0-08-053507-4|page=183}}</ref> और इस संदर्भ में यह संवहन-[[प्रसार]] समीकरण के सामान्तर है। जब कण स्थिति और संवेग वितरण पर प्रयुक्त किया जाता है, तो इसे क्लेन-क्रैमर्स समीकरण के रूप में जाना जाता है। शून्य प्रसार वाला स्तिथि निरंतरता समीकरण है। फोककर-प्लैंक समीकरण क्रेमर्स-मोयल विस्तार के माध्यम से [[मास्टर समीकरण]] से प्राप्त किया जाता है।<ref>{{cite book |first1=Wolfgang |last1=Paul |first2=Jörg |last2=Baschnagel |chapter=A Brief Survey of the Mathematics of Probability Theory |title=स्टचास्तिक प्रोसेसेज़|pages=17–61 [esp. 33–35] |publisher=Springer |year=2013 |isbn= 978-3-319-00326-9|doi=10.1007/978-3-319-00327-6_2 }}</ref> | ||
[[शास्त्रीय यांत्रिकी|मौलिक यांत्रिकी]] और [[क्वांटम यांत्रिकी]] की एकल योजना में फोककर-प्लैंक समीकरण की पहली सुसंगत सूक्ष्म व्युत्पत्ति [[निकोले बोगोल्युबोव]] और [[निकोलाई मित्रोफ़ानोविच क्रायलोव]] द्वारा की गई थी।<ref>[[Nikolay Boglyubov Jr.|N. N. Bogolyubov Jr.]] and D. P. Sankovich (1994). "N. N. Bogolyubov and statistical mechanics". ''Russian Math. Surveys'' '''49'''(5): 19—49. {{doi|10.1070/RM1994v049n05ABEH002419}}</ref><ref>[[Nikolay Bogoliubov|N. N. Bogoliubov]] and [[Nikolay Mitrofanovich Krylov|N. M. Krylov]] (1939). ''Fokker–Planck equations generated in perturbation theory by a method based on the spectral properties of a perturbed Hamiltonian''. Zapiski Kafedry Fiziki Akademii Nauk Ukrainian SSR '''4''': 81–157 (in Ukrainian).</ref> | |||
==एक आयाम== | ==एक आयाम == | ||
एक स्थानिक आयाम x में, | एक स्थानिक आयाम x में, मानक [[वीनर प्रक्रिया]] <math>W_t</math> द्वारा संचालित और [[स्टोकेस्टिक विभेदक समीकरण]] (एसडीई) द्वारा वर्णित एक Itô कैलकुलस के लिए| | ||
<math display="block">dX_t = \mu(X_t, t) \,dt + \sigma(X_t, t) \,dW_t</math> | प्रक्रिया <math display="block">dX_t = \mu(X_t, t) \,dt + \sigma(X_t, t) \,dW_t</math> | ||
बहाव | |||
|title = | |||
बहाव <math>\mu(X_t, t)</math> और प्रसार गुणांक <math>D(X_t, t) = \sigma^2(X_t, t)/2</math> वेग के साथ , यादृच्छिक चर का <math>X_t</math> संभाव्यता घनत्व <math>p(x, t)</math> के लिए फोककर-प्लैंक समीकरण है <ref>{{Citation |title=The Fokker–Planck Equation: Methods of Solution and Applications |last=Risken |first=H. |volume=Second Edition, Third Printing |pages=72 |date=1996 |publication-date=1996}}</ref> | |||
{{Equation box 1|cellpadding|border|indent=:|equation=<math> \frac{\partial}{\partial t} p(x, t) = -\frac{\partial}{\partial x}\left[\mu(x, t) p(x, t)\right] + \frac{\partial^2}{\partial x^2}\left[D(x, t) p(x, t)\right]. </math>|border colour=#0073CF|background colour=#F5FFFA}}{{hidden begin | |||
|title = इटो एसडीई और फोककर-प्लैंक समीकरण के बीच लिंक | |||
}} | }} | ||
निम्नलिखित में प्रयोग करें <math>\sigma = \sqrt{2D}</math>. | निम्नलिखित में प्रयोग करें <math>\sigma = \sqrt{2D}</math>. | ||
Line 71: | Line 75: | ||
जबकि फोककर-प्लैंक समीकरण का उपयोग उन समस्याओं के साथ किया जाता है जहां प्रारंभिक वितरण ज्ञात होता है, यदि समस्या पिछले समय के वितरण को जानने की है, तो फेनमैन-केएसी सूत्र का उपयोग किया जा सकता है, जो कोलमोगोरोव पिछड़े समीकरण का परिणाम है। | जबकि फोककर-प्लैंक समीकरण का उपयोग उन समस्याओं के साथ किया जाता है जहां प्रारंभिक वितरण ज्ञात होता है, यदि समस्या पिछले समय के वितरण को जानने की है, तो फेनमैन-केएसी सूत्र का उपयोग किया जा सकता है, जो कोलमोगोरोव पिछड़े समीकरण का परिणाम है। | ||
इटो अर्थ में ऊपर परिभाषित स्टोकेस्टिक प्रक्रिया को [[स्ट्रैटोनोविच इंटीग्रल]] कन्वेंशन के | इटो अर्थ में ऊपर परिभाषित स्टोकेस्टिक प्रक्रिया को [[स्ट्रैटोनोविच इंटीग्रल]] कन्वेंशन के अंदर स्ट्रैटोनोविच एसडीई के रूप में फिर से लिखा जा सकता है: | ||
<math display="block">dX_t = \left[\mu(X_t, t) - \frac{1}{2} \frac{\partial}{\partial X_t}D(X_t, t)\right] \,dt + \sqrt{2 D(X_t, t)} \circ dW_t.</math> | <math display="block">dX_t = \left[\mu(X_t, t) - \frac{1}{2} \frac{\partial}{\partial X_t}D(X_t, t)\right] \,dt + \sqrt{2 D(X_t, t)} \circ dW_t. </math> | ||
यदि | यदि ध्वनि स्थान -निर्भर है तो इसमें प्रसार ढाल प्रभावों के कारण अतिरिक्त ध्वनि -प्रेरित बहाव शब्द सम्मिलित है। इस संयुग्मित का उपयोग अधिकांशतः भौतिक अनुप्रयोगों में किया जाता है। तथा इसमें मुख्य रूप से , यह सर्वविदित है कि स्ट्रैटोनोविच एसडीई का कोई भी समाधान इटो एसडीई का समाधान होता है। | ||
निरंतर प्रसार के साथ शून्य- | निरंतर प्रसार के साथ शून्य-ड्रिफ्ट समीकरण को मौलिक ब्राउनियन गति का मॉडल माना जा सकता है: | ||
<math display="block">\frac{\partial}{\partial t} p(x, t) = D_0\frac{\partial^2}{\partial x^2}\left[p(x, t)\right].</math> | <math display="block">\frac{\partial}{\partial t} p(x, t) = D_0\frac{\partial^2}{\partial x^2}\left[p(x, t)\right].</math> | ||
यदि निश्चित सीमाओं की शर्त जोड़ दी जाए तो इस मॉडल में समाधानों का अलग-अलग स्पेक्ट्रम होता है <math>\{0 \leq x \leq L\}</math>: | यदि निश्चित सीमाओं की शर्त जोड़ दी जाए तो इस मॉडल में समाधानों का अलग-अलग स्पेक्ट्रम होता है <math>\{0 \leq x \leq L\}</math>: | ||
<math display="block">p(0, t) = p(L, t) = 0,</math> | <math display="block">p(0, t) = p(L, t) = 0,</math> | ||
<math display="block">p(x, 0) = p_0(x).</math> | <math display="block">p(x, 0) = p_0(x).</math> | ||
यह दिखाया गया है<ref name=kam2014>{{cite journal | last = Kamenshchikov | first = S. | title = परफेक्ट कैओस सिस्टम में क्लस्टरिंग और अनिश्चितता| journal = Journal of Chaos | volume = 2014 | pages = 1–6 | year = 2014 | doi=10.1155/2014/292096| arxiv = 1301.4481 | s2cid = 17719673 | doi-access = free }}</ref> इस मामले में समाधानों का | यह दिखाया गया है<ref name="kam2014">{{cite journal | last = Kamenshchikov | first = S. | title = परफेक्ट कैओस सिस्टम में क्लस्टरिंग और अनिश्चितता| journal = Journal of Chaos | volume = 2014 | pages = 1–6 | year = 2014 | doi=10.1155/2014/292096| arxiv = 1301.4481 | s2cid = 17719673 | doi-access = free }}</ref> इस मामले में समाधानों का विश्लेषणात्मक स्पेक्ट्रम समन्वय-वेग चरण मात्रा के लिए स्थानीय अनिश्चितता संबंध प्राप्त करने की अनुमति देता है: | ||
<math display="block"> \Delta x \, \Delta v \geq D_0. </math> | <math display="block"> \Delta x \, \Delta v \geq D_0. </math> | ||
यहाँ <math>D_0</math> संबंधित प्रसार स्पेक्ट्रम का न्यूनतम मान है <math>D_j</math>, जबकि <math>\Delta x</math> और <math>\Delta v</math> निर्देशांक-वेग परिभाषा की अनिश्चितता का प्रतिनिधित्व करते हैं। | यहाँ <math>D_0</math> संबंधित प्रसार स्पेक्ट्रम का न्यूनतम मान है <math>D_j</math>, जबकि <math>\Delta x</math> और <math>\Delta v</math> निर्देशांक-वेग परिभाषा की अनिश्चितता का प्रतिनिधित्व करते हैं। | ||
Line 88: | Line 92: | ||
<math display="block">d\mathbf{X}_t = \boldsymbol{\mu}(\mathbf{X}_t,t)\,dt + \boldsymbol{\sigma}(\mathbf{X}_t,t)\,d\mathbf{W}_t,</math> | <math display="block">d\mathbf{X}_t = \boldsymbol{\mu}(\mathbf{X}_t,t)\,dt + \boldsymbol{\sigma}(\mathbf{X}_t,t)\,d\mathbf{W}_t,</math> | ||
कहाँ <math>\mathbf{X}_t</math> और <math>\boldsymbol{\mu}(\mathbf{X}_t,t)</math> हैं {{mvar|N}}-आयामी यादृच्छिक [[वेक्टर (ज्यामिति)]], | कहाँ <math>\mathbf{X}_t</math> और <math>\boldsymbol{\mu}(\mathbf{X}_t,t)</math> हैं {{mvar|N}}-आयामी यादृच्छिक [[वेक्टर (ज्यामिति)]], <math>\boldsymbol{\sigma}(\mathbf{X}_t,t)</math> <math>N \times M</math> मैट्रिक्स और <math>\mathbf{W}_t</math> एम-आयामी मानक वीनर प्रक्रिया है, संभाव्यता घनत्व <math>p(\mathbf{x},t)</math> के लिए <math>\mathbf{X}_t</math> फोकर-प्लैंक समीकरण को संतुष्ट करता है{{Equation box 1|cellpadding|border|indent=:|equation=<math> \frac{\partial p(\mathbf{x},t)}{\partial t} = -\sum_{i=1}^N \frac{\partial}{\partial x_i} \left[ \mu_i(\mathbf{x},t) p(\mathbf{x},t) \right] + \sum_{i=1}^{N} \sum_{j=1}^{N} \frac{\partial^2}{\partial x_i \, \partial x_j} \left[ D_{ij}(\mathbf{x},t) p(\mathbf{x},t) \right], </math>|border colour=#0073CF|background colour=#F5FFFA}}बहाव वेक्टर के साथ <math>\boldsymbol{\mu} = (\mu_1,\ldots,\mu_N)</math> और प्रसार [[ टेन्सर |टेन्सर]] <math display="inline">\mathbf{D} = \frac{1}{2} \boldsymbol{\sigma\sigma}^\mathsf{T}</math>, अर्थात।<math display="block">D_{ij}(\mathbf{x},t) = \frac{1}{2}\sum_{k=1}^M \sigma_{ik}(\mathbf{x},t) \sigma_{jk}(\mathbf{x},t).</math> | ||
यदि इटो एसडीई के बजाय, स्ट्रैटोनोविच इंटीग्रल पर विचार किया जाता है, | यदि इटो एसडीई के बजाय, स्ट्रैटोनोविच इंटीग्रल पर विचार किया जाता है, | ||
Line 98: | Line 102: | ||
== सामान्यीकरण == | == सामान्यीकरण == | ||
सामान्य तौर पर, फोककर-प्लैंक समीकरण सामान्य कोलमोगोरोव फॉरवर्ड समीकरण का | सामान्य तौर पर, फोककर-प्लैंक समीकरण सामान्य कोलमोगोरोव फॉरवर्ड समीकरण का विशेष स्तिथि है | ||
<math display="block">\partial_t \rho = \mathcal{A}^*\rho</math> | <math display="block">\partial_t \rho = \mathcal{A}^*\rho</math> | ||
Line 123: | Line 127: | ||
===ऑर्नस्टीन-उहलेनबेक प्रक्रिया=== | ===ऑर्नस्टीन-उहलेनबेक प्रक्रिया=== | ||
ऑर्नस्टीन-उहलेनबेक प्रक्रिया | ऑर्नस्टीन-उहलेनबेक प्रक्रिया ऐसी प्रक्रिया है जिसे इस प्रकार परिभाषित किया गया है | ||
<math display="block">dX_t = -a X_t dt + \sigma dW_t.</math> | <math display="block">dX_t = -a X_t dt + \sigma dW_t.</math> | ||
साथ <math>a>0</math>. भौतिक रूप से, इस समीकरण को इस प्रकार प्रेरित किया जा सकता है: द्रव्यमान का | साथ <math>a>0</math>. भौतिक रूप से, इस समीकरण को इस प्रकार प्रेरित किया जा सकता है: द्रव्यमान का कण <math> m </math> वेग के साथ <math> V_t</math> किसी माध्यम, उदाहरण के लिए, तरल पदार्थ में जाने पर, घर्षण बल का अनुभव होगा जो गति का प्रतिरोध करता है जिसका परिमाण कण के वेग के आनुपातिक होने के रूप में अनुमानित किया जा सकता है <math> -a V_t</math> साथ <math> a = \mathrm{constant} </math>. माध्यम में मौजूद अन्य कण कण से टकराते समय बेतरतीब ढंग से उसे लात मारेंगे और इस प्रभाव को श्वेत ध्वनि शब्द द्वारा अनुमानित किया जा सकता है; <math> \sigma (d W_t/dt) </math>. न्यूटन का दूसरा नियम इस प्रकार लिखा गया है | ||
<math display="block"> m \frac{dV_t}{dt}=-a V_t +\sigma \frac{dW_t}{dt}. </math> | <math display="block"> m \frac{dV_t}{dt}=-a V_t +\sigma \frac{dW_t}{dt}. </math> | ||
Line 141: | Line 145: | ||
===प्लाज्मा भौतिकी=== | ===प्लाज्मा भौतिकी=== | ||
प्लाज्मा भौतिकी में, | प्लाज्मा भौतिकी में, कण प्रजाति के लिए वितरण फलन (भौतिकी)। <math>s</math>, <math>p_s (\mathbf{x},\mathbf{v},t)</math>, संभाव्यता घनत्व फलन का स्थान लेता है। संबंधित बोल्ट्ज़मैन समीकरण द्वारा दिया गया है | ||
<math display="block">\frac{\partial p_s}{\partial t} + \mathbf{v} \cdot \boldsymbol{\nabla} p_s + \frac{Z_s e}{m_s} \left( \mathbf{E} + \mathbf{v} \times \mathbf{B} \right) \cdot \boldsymbol{\nabla}_v p_s = -\frac{\partial}{\partial v_i} \left(p_s \langle\Delta v_i\rangle\right) + \frac{1}{2} \frac{\partial^2}{\partial v_i \, \partial v_j} \left(p_s \langle\Delta v_i \, \Delta v_j\rangle\right),</math> | <math display="block">\frac{\partial p_s}{\partial t} + \mathbf{v} \cdot \boldsymbol{\nabla} p_s + \frac{Z_s e}{m_s} \left( \mathbf{E} + \mathbf{v} \times \mathbf{B} \right) \cdot \boldsymbol{\nabla}_v p_s = -\frac{\partial}{\partial v_i} \left(p_s \langle\Delta v_i\rangle\right) + \frac{1}{2} \frac{\partial^2}{\partial v_i \, \partial v_j} \left(p_s \langle\Delta v_i \, \Delta v_j\rangle\right),</math> | ||
जहां तीसरे पद में [[लोरेंत्ज़ बल]] के कारण कण त्वरण | जहां तीसरे पद में [[लोरेंत्ज़ बल]] के कारण कण त्वरण सम्मिलित है और दाईं ओर फोककर-प्लैंक शब्द कण टकराव के प्रभावों को दर्शाता है। मात्राएँ <math>\langle\Delta v_i\rangle</math> और <math>\langle\Delta v_i \, \Delta v_j\rangle</math> वेग में औसत परिवर्तन प्रकार का कण है <math>s</math> इकाई समय में अन्य सभी कण प्रजातियों के साथ टकराव के कारण अनुभव। इन मात्राओं के लिए व्यंजक अन्यत्र दिए गए हैं।<ref name="Rosenbluth">{{Cite journal|last=Rosenbluth |first=M. N. |title=Fokker–Planck Equation for an Inverse-Square Force |journal=Physical Review |volume=107 |issue= 1|pages=1–6 |year=1957 |doi=10.1103/physrev.107.1|bibcode = 1957PhRv..107....1R |url=https://escholarship.org/uc/item/2gk1s1v8 }}</ref> यदि टकरावों को नजरअंदाज कर दिया जाता है, तो बोल्ट्ज़मैन समीकरण [[व्लासोव समीकरण]] में बदल जाता है। | ||
== स्मोलुचोव्स्की प्रसार समीकरण == | == स्मोलुचोव्स्की प्रसार समीकरण == | ||
बाह्य बल के अधीन | बाह्य बल के अधीन अत्यधिक नमीयुक्त ब्राउनियन कण पर विचार करें <math>F(r)</math>:<ref name=":0">{{Cite web|title=स्मोलुचोव्स्की प्रसार समीकरण|url=https://www.ks.uiuc.edu/~kosztin/PHYCS498NSM/|last=Ioan|first=Kosztin|date=Spring 2000|website=Non-Equilibrium Statistical Mechanics: Course Notes}}</ref><math display="block">m\ddot{r} = - \gamma \dot{r} + F(r) + \sigma \xi(t)</math>जहां <math>m\ddot r</math> शब्द नगण्य है (ओवरडैम्प्ड का अर्थ)। अत: यह न्यायसंगत है <math>\gamma dr = F(r)dt + \sigma dW_t</math>. इस कण के लिए फोककर-प्लैंक समीकरण स्मोलुचोव्स्की प्रसार समीकरण है: | ||
<math display="block">\partial_t P(r,t| r_0, t_0) = \nabla \cdot [D (\nabla - \beta F(r)) P(r,t| r_0, t_0)] </math>कहाँ <math>D</math> प्रसार स्थिरांक है और <math>\beta = \frac{1}{k_\text{B} T}</math>. इस समीकरण का महत्व यह है कि यह कणों की प्रणाली पर तापमान के प्रभाव और स्थानिक रूप से निर्भर प्रसार स्थिरांक दोनों को | <math display="block">\partial_t P(r,t| r_0, t_0) = \nabla \cdot [D (\nabla - \beta F(r)) P(r,t| r_0, t_0)] </math>कहाँ <math>D</math> प्रसार स्थिरांक है और <math>\beta = \frac{1}{k_\text{B} T}</math>. इस समीकरण का महत्व यह है कि यह कणों की प्रणाली पर तापमान के प्रभाव और स्थानिक रूप से निर्भर प्रसार स्थिरांक दोनों को सम्मिलित करने की अनुमति देता है। | ||
{{Hidden begin| title = | {{Hidden begin| title = फोककर-प्लैंक समीकरण से स्मोलुचोव्स्की समीकरण की व्युत्पत्ति}} | ||
बाह्य क्षेत्र में ब्राउनियन कण के [[लैंग्विन समीकरण]] से प्रारंभ करना <math>F(r)</math>, कहाँ <math>\gamma</math> घर्षण शब्द है, <math>\xi</math> कण पर एक उतार-चढ़ाव वाला बल है, और <math>\sigma</math> उतार-चढ़ाव का आयाम है. | बाह्य क्षेत्र में ब्राउनियन कण के [[लैंग्विन समीकरण]] से प्रारंभ करना <math>F(r)</math>, कहाँ <math>\gamma</math> घर्षण शब्द है, <math>\xi</math> कण पर एक उतार-चढ़ाव वाला बल है, और <math>\sigma</math> उतार-चढ़ाव का आयाम है. | ||
Line 203: | Line 207: | ||
==== सिद्धांत ==== | ==== सिद्धांत ==== | ||
प्रपत्र की | प्रपत्र की रैखिक क्षमता से प्रारंभ करना <math>U(x) = cx</math> संगत स्मोलुचोव्स्की समीकरण बन जाता है, | ||
<math display="block">\partial_t P(x,t| x_0, t_0) = \partial_x D (\partial_x + \beta c) P(x,t| x_0, t_0) </math> | <math display="block">\partial_t P(x,t| x_0, t_0) = \partial_x D (\partial_x + \beta c) P(x,t| x_0, t_0) </math> | ||
जहां प्रसार स्थिरांक, <math>D</math>, स्थान और समय पर स्थिर है। सीमा की स्थितियाँ ऐसी हैं कि संभावना ख़त्म हो जाती है <math>x \rightarrow \pm \infin </math> | जहां प्रसार स्थिरांक, <math>D</math>, स्थान और समय पर स्थिर है। सीमा की स्थितियाँ ऐसी हैं कि संभावना ख़त्म हो जाती है <math>x \rightarrow \pm \infin </math> ही स्थान से शुरू होने वाले कणों के समूह की प्रारंभिक स्थिति के साथ, <math>P(x,t|x_0,t_0)= \delta (x-x_0) </math>. | ||
परिभाषित <math>\tau = D t </math> और <math>b = \beta c </math> और समन्वय परिवर्तन को | परिभाषित <math>\tau = D t </math> और <math>b = \beta c </math> और समन्वय परिवर्तन को प्रयुक्त करना, | ||
<math display="block">y = x +\tau b ,\ \ \ y_0= x_0 + \tau_0 b </math> | <math display="block">y = x +\tau b ,\ \ \ y_0= x_0 + \tau_0 b </math> | ||
Line 222: | Line 226: | ||
दाईं ओर का सिमुलेशन [[ब्राउनियन गतिकी]] सिमुलेशन का उपयोग करके पूरा किया गया था।<ref>{{Cite web|title=ब्राउनियन डायनेमिक्स|url=https://www.ks.uiuc.edu/~kosztin/PHYCS498NSM/| last=Koztin|first=Ioan| website=Non-Equilibrium Statistical Mechanics: Course Notes|access-date=2020-05-18|archive-date=2020-01-15 | archive-url=https://web.archive.org/web/20200115202424/http://www.ks.uiuc.edu/~kosztin/PHYCS498NSM/|url-status=dead}}</ref><ref>{{Cite web |title=ब्राउनियन डायनेमिक्स विधि लागू|url=https://www.ks.uiuc.edu/~kosztin/PHYCS498NSM/| last=Kosztin|first=Ioan | website=Non-Equilibrium Statistical Mechanics: Course Notes|access-date=2020-05-18|archive-date=2020-01-15 | archive-url=https://web.archive.org/web/20200115202424/http://www.ks.uiuc.edu/~kosztin/PHYCS498NSM/|url-status=dead}}</ref> सिस्टम के लिए लैंग्विन समीकरण से प्रारंभ करते हुए, | दाईं ओर का सिमुलेशन [[ब्राउनियन गतिकी]] सिमुलेशन का उपयोग करके पूरा किया गया था।<ref>{{Cite web|title=ब्राउनियन डायनेमिक्स|url=https://www.ks.uiuc.edu/~kosztin/PHYCS498NSM/| last=Koztin|first=Ioan| website=Non-Equilibrium Statistical Mechanics: Course Notes|access-date=2020-05-18|archive-date=2020-01-15 | archive-url=https://web.archive.org/web/20200115202424/http://www.ks.uiuc.edu/~kosztin/PHYCS498NSM/|url-status=dead}}</ref><ref>{{Cite web |title=ब्राउनियन डायनेमिक्स विधि लागू|url=https://www.ks.uiuc.edu/~kosztin/PHYCS498NSM/| last=Kosztin|first=Ioan | website=Non-Equilibrium Statistical Mechanics: Course Notes|access-date=2020-05-18|archive-date=2020-01-15 | archive-url=https://web.archive.org/web/20200115202424/http://www.ks.uiuc.edu/~kosztin/PHYCS498NSM/|url-status=dead}}</ref> सिस्टम के लिए लैंग्विन समीकरण से प्रारंभ करते हुए, | ||
<math display="block">m\ddot{x} = - \gamma \dot{x} -c + \sigma \xi(t)</math> | <math display="block">m\ddot{x} = - \gamma \dot{x} -c + \sigma \xi(t)</math> | ||
कहाँ <math>\gamma</math> घर्षण शब्द है, <math>\xi</math> कण पर | कहाँ <math>\gamma</math> घर्षण शब्द है, <math>\xi</math> कण पर उतार-चढ़ाव वाला बल है, और <math>\sigma</math> उतार-चढ़ाव का आयाम है. संतुलन पर घर्षण बल जड़त्व बल से बहुत अधिक होता है, <math>\left| \gamma \dot{x} \right| \gg \left| m \ddot{x} \right|</math>. इसलिए, लैंग्विन समीकरण बन जाता है, | ||
<math display="block">\gamma \dot{x} = -c + \sigma \xi(t)</math> | <math display="block">\gamma \dot{x} = -c + \sigma \xi(t)</math> | ||
ब्राउनियन गतिशील सिमुलेशन के लिए उतार-चढ़ाव बल <math>\xi(t)</math> आयाम प्रणाली के तापमान पर निर्भर होने के साथ गॉसियन माना जाता है <math display="inline">\sigma = \sqrt{2\gamma k_\text{B} T}</math>. लैंग्विन समीकरण को फिर से लिखना, | ब्राउनियन गतिशील सिमुलेशन के लिए उतार-चढ़ाव बल <math>\xi(t)</math> आयाम प्रणाली के तापमान पर निर्भर होने के साथ गॉसियन माना जाता है <math display="inline">\sigma = \sqrt{2\gamma k_\text{B} T}</math>. लैंग्विन समीकरण को फिर से लिखना, | ||
Line 230: | Line 234: | ||
==समाधान== | ==समाधान== | ||
आंशिक अंतर समीकरण होने के कारण, फोककर-प्लैंक समीकरण को केवल विशेष मामलों में ही विश्लेषणात्मक रूप से हल किया जा सकता है। श्रोडिंगर समीकरण के साथ फोकर-प्लैंक समीकरण की | आंशिक अंतर समीकरण होने के कारण, फोककर-प्लैंक समीकरण को केवल विशेष मामलों में ही विश्लेषणात्मक रूप से हल किया जा सकता है। श्रोडिंगर समीकरण के साथ फोकर-प्लैंक समीकरण की औपचारिक सादृश्यता कई मामलों में इसके समाधान के लिए क्वांटम यांत्रिकी से ज्ञात उन्नत ऑपरेटर तकनीकों के उपयोग की अनुमति देती है। इसके अलावा, ओवरडैम्प्ड गतिशीलता के मामले में जब फोककर-प्लैंक समीकरण में सभी स्थानिक चर के संबंध में दूसरा आंशिक व्युत्पन्न होता है, तो समीकरण को मास्टर समीकरण के रूप में लिखा जा सकता है जिसे आसानी से संख्यात्मक रूप से हल किया जा सकता है।<ref>{{Cite journal| author= Holubec Viktor, Kroy Klaus, and Steffenoni Stefano |title=Physically consistent numerical solver for time-dependent Fokker–Planck equations |journal=Phys. Rev. E |volume=99 |issue= 4|pages=032117 |year=2019 |doi=10.1103/PhysRevE.99.032117|pmid=30999402 |arxiv=1804.01285 |bibcode=2019PhRvE..99c2117H |s2cid=119203025 }}</ref> | ||
कई अनुप्रयोगों में, व्यक्ति केवल स्थिर-अवस्था संभाव्यता वितरण में रुचि रखता है <math> p_0(x)</math>, जिसे यहां से पाया जा सकता है <math display="inline">\frac{\partial p(x,t)}{\partial t} = 0</math>. | कई अनुप्रयोगों में, व्यक्ति केवल स्थिर-अवस्था संभाव्यता वितरण में रुचि रखता है <math> p_0(x)</math>, जिसे यहां से पाया जा सकता है <math display="inline">\frac{\partial p(x,t)}{\partial t} = 0</math>. | ||
माध्य प्रथम मार्ग समय और विभाजन संभावनाओं की गणना को | माध्य प्रथम मार्ग समय और विभाजन संभावनाओं की गणना को साधारण अंतर समीकरण के समाधान तक कम किया जा सकता है जो फोककर-प्लैंक समीकरण से घनिष्ठ रूप से संबंधित है। | ||
==ज्ञात समाधान और व्युत्क्रम वाले विशेष मामले== | ==ज्ञात समाधान और व्युत्क्रम वाले विशेष मामले== | ||
[[स्थानीय अस्थिरता]] के माध्यम से विकल्पों की [[अस्थिरता मुस्कान]] मॉडलिंग के लिए [[गणितीय वित्त]] में, किसी को प्रसार गुणांक प्राप्त करने की समस्या होती है <math>{\sigma}(\mathbf{X}_t,t)</math> बाज़ार विकल्प उद्धरणों से प्राप्त संभाव्यता घनत्व के अनुरूप। इसलिए समस्या फोककर-प्लैंक समीकरण का उलटा है: विकल्प बाजार से निकाले गए एक्स के अंतर्निहित विकल्प के घनत्व एफ (एक्स, टी) को देखते हुए, स्थानीय अस्थिरता का पता लगाना है <math>{\sigma}(\mathbf{X}_t,t)</math> एफ के अनुरूप यह | [[स्थानीय अस्थिरता]] के माध्यम से विकल्पों की [[अस्थिरता मुस्कान]] मॉडलिंग के लिए [[गणितीय वित्त]] में, किसी को प्रसार गुणांक प्राप्त करने की समस्या होती है <math>{\sigma}(\mathbf{X}_t,t)</math> बाज़ार विकल्प उद्धरणों से प्राप्त संभाव्यता घनत्व के अनुरूप। इसलिए समस्या फोककर-प्लैंक समीकरण का उलटा है: विकल्प बाजार से निकाले गए एक्स के अंतर्निहित विकल्प के घनत्व एफ (एक्स, टी) को देखते हुए, स्थानीय अस्थिरता का पता लगाना है <math>{\sigma}(\mathbf{X}_t,t)</math> एफ के अनुरूप यह व्युत्क्रम समस्या है जिसे सामान्यतः डुपाइरे (1994, 1997) द्वारा गैर-पैरामीट्रिक समाधान के साथ हल किया गया है।<ref>[[Bruno Dupire]] (1994) Pricing with a Smile. ''Risk Magazine'', January, 18–20.</ref><ref>[[Bruno Dupire]] (1997) Pricing and Hedging with Smiles. Mathematics of Derivative Securities. Edited by M.A.H. Dempster and S.R. Pliska, Cambridge University Press, Cambridge, 103–111. {{ISBN|0-521-58424-8}}.</ref> ब्रिगो और मर्कुरियो (2002, 2003) विशेष स्थानीय अस्थिरता के माध्यम से पैरामीट्रिक रूप में समाधान का प्रस्ताव करते हैं <math>{\sigma}(\mathbf{X}_t,t)</math> [[मिश्रण मॉडल]] द्वारा दिए गए फोककर-प्लैंक समीकरण के समाधान के अनुरूप।<ref>{{Cite journal| doi = 10.1142/S0219024902001511| year = 2002| last1 = Brigo | first1 = D.| last2 = Mercurio| first2 = Fabio| title = लॉगनॉर्मल-मिक्सचर डायनामिक्स और कैलिब्रेशन टू मार्केट वोलैटिलिटी स्माइल्स| journal = International Journal of Theoretical and Applied Finance| volume = 5| issue = 4| pages = 427–446| citeseerx = 10.1.1.210.4165}}</ref><ref>{{Cite journal| doi = 10.1088/1469-7688/3/3/303| title = वैकल्पिक परिसंपत्ति-मूल्य की गतिशीलता और अस्थिरता मुस्कुराती है| year = 2003| last1 = Brigo | first1 = D.| last2 = Mercurio | first2 = F.| last3 = Sartorelli | first3 = G.| journal = Quantitative Finance| volume = 3| issue = 3| pages = 173–183| s2cid = 154069452}}</ref> अधिक जानकारी फेंगलर (2008) में भी उपलब्ध है।<ref>Fengler, M. R. (2008). Semiparametric Modeling of Implied Volatility, 2005, Springer Verlag, {{ISBN|978-3-540-26234-3}}</ref> गैदरल (2008),<ref>[[Jim Gatheral]] (2008). The Volatility Surface. Wiley and Sons, {{ISBN|978-0-471-79251-2}}.</ref> और मुसीला और रुत्कोव्स्की (2008)।<ref>Marek Musiela, Marek Rutkowski. ''Martingale Methods in Financial Modelling'', 2008, 2nd Edition, Springer-Verlag, {{ISBN|978-3-540-20966-9}}.</ref> | ||
==फोकर-प्लैंक समीकरण और पथ अभिन्न== | ==फोकर-प्लैंक समीकरण और पथ अभिन्न== | ||
प्रत्येक फोककर-प्लैंक समीकरण [[पथ अभिन्न सूत्रीकरण]] के | प्रत्येक फोककर-प्लैंक समीकरण [[पथ अभिन्न सूत्रीकरण]] के सामान्तर है। पथ अभिन्न सूत्रीकरण क्षेत्र सिद्धांत विधियों के अनुप्रयोग के लिए उत्कृष्ट प्रारंभिक बिंदु है।<ref>{{Cite book|author=Zinn-Justin, Jean |title=क्वांटम क्षेत्र सिद्धांत और महत्वपूर्ण घटनाएँ|publisher=Clarendon Press |location=Oxford |year=1996 |isbn=978-0-19-851882-2 }}</ref> उदाहरण के लिए, इसका उपयोग क्रिटिकल फेनोमेना#क्रिटिकल डायनामिक्स में किया जाता है। | ||
पथ समाकलन की व्युत्पत्ति क्वांटम यांत्रिकी की तरह ही संभव है। | पथ समाकलन की व्युत्पत्ति क्वांटम यांत्रिकी की तरह ही संभव है। चर के साथ फोककर-प्लैंक समीकरण की व्युत्पत्ति <math>x</math> इस प्रकार है। डेल्टा फलन सम्मिलित करके प्रारंभ करें और फिर भागों द्वारा एकीकृत करें: | ||
<math display="block">\begin{align} | <math display="block">\begin{align} | ||
Line 249: | Line 253: | ||
\end{align}</math> | \end{align}</math> | ||
<math>x</math>वें>-डेरिवेटिव यहां केवल पर कार्य करते हैं <math>\delta</math>- | <math>x</math>वें>-डेरिवेटिव यहां केवल पर कार्य करते हैं <math>\delta</math>-फलन , चालू नहीं <math>p(x,t)</math>. समय अंतराल पर एकीकृत करें <math>\varepsilon</math>, | ||
<math display="block">p(x', t + \varepsilon) =\int_{-\infty}^\infty \, \mathrm{d}x\left(\left( 1+\varepsilon \left[ D_1(x,t) \frac \partial {\partial x} + D_2(x,t) \frac{\partial^2}{\partial x^2}\right]\right) \delta(x' - x) \right) p(x,t)+O(\varepsilon^2).</math> | <math display="block">p(x', t + \varepsilon) =\int_{-\infty}^\infty \, \mathrm{d}x\left(\left( 1+\varepsilon \left[ D_1(x,t) \frac \partial {\partial x} + D_2(x,t) \frac{\partial^2}{\partial x^2}\right]\right) \delta(x' - x) \right) p(x,t)+O(\varepsilon^2).</math> | ||
Line 260: | Line 264: | ||
p(x', t+\varepsilon) & = \int_{-\infty}^\infty \mathrm{d}x \int_{-i\infty}^{i\infty} \frac{\mathrm{d}\tilde{x}}{2\pi i} \left(1+\varepsilon \left[ \tilde{x} D_1(x,t) +\tilde{x}^2 D_2(x,t) \right] \right) e^{\tilde{x} (x - x')}p(x,t) +O(\varepsilon^2) \\[5pt] | p(x', t+\varepsilon) & = \int_{-\infty}^\infty \mathrm{d}x \int_{-i\infty}^{i\infty} \frac{\mathrm{d}\tilde{x}}{2\pi i} \left(1+\varepsilon \left[ \tilde{x} D_1(x,t) +\tilde{x}^2 D_2(x,t) \right] \right) e^{\tilde{x} (x - x')}p(x,t) +O(\varepsilon^2) \\[5pt] | ||
& =\int_{-\infty}^\infty \mathrm{d}x \int_{-i\infty}^{i\infty} \frac{\mathrm{d}\tilde{x}}{2\pi i}\exp \left( \varepsilon \left[ -\tilde{x}\frac{(x'- x) }\varepsilon + \tilde{x} D_1(x,t) +\tilde{x}^2 D_2(x,t) \right] \right) p(x,t) +O(\varepsilon^2). | & =\int_{-\infty}^\infty \mathrm{d}x \int_{-i\infty}^{i\infty} \frac{\mathrm{d}\tilde{x}}{2\pi i}\exp \left( \varepsilon \left[ -\tilde{x}\frac{(x'- x) }\varepsilon + \tilde{x} D_1(x,t) +\tilde{x}^2 D_2(x,t) \right] \right) p(x,t) +O(\varepsilon^2). | ||
\end{align}</math> | \end{align} </math> | ||
यह समीकरण व्यक्त करता है <math>p(x', t+\varepsilon)</math> के कार्यात्मक के रूप में <math>p(x,t)</math>. बार-बार दोहराना <math>(t'-t)/\varepsilon</math> समय और सीमा का प्रदर्शन <math>\varepsilon \rightarrow 0</math> [[क्रिया (भौतिकी)]] के साथ अभिन्न पथ देता है | यह समीकरण व्यक्त करता है <math>p(x', t+\varepsilon)</math> के कार्यात्मक के रूप में <math>p(x,t)</math>. बार-बार दोहराना <math>(t'-t)/\varepsilon</math> समय और सीमा का प्रदर्शन <math>\varepsilon \rightarrow 0</math> [[क्रिया (भौतिकी)]] के साथ अभिन्न पथ देता है | ||
Revision as of 17:37, 27 July 2023
सांख्यिकीय यांत्रिकी और सूचना सिद्धांत में, फोककर-प्लैंक समीकरण आंशिक अंतर समीकरण है जो प्रकार कि गति की तरह ड्रैग (भौतिकी) बलों और यादृच्छिक बलों के प्रभाव में कण के वेग की संभाव्यता घनत्व फलन के समय विकास का वर्णन करता है। समीकरण को अन्य वेधशालाओं के लिए भी सामान्यीकृत किया जा सकता है।[1] फोककर-प्लैंक समीकरण के सूचना सिद्धांत, ग्राफ सिद्धांत, डेटा विज्ञान, वित्त, अर्थशास्त्र आदि में कई अनुप्रयोग हैं।
इसका नाम एड्रियन फोकर और मैक्स प्लैंक के नाम पर रखा गया है, जिन्होंने 1914 और 1917 में इसका वर्णन किया था।[2][3] इसे एंड्री कोलमोगोरोव के नाम पर कोलमोगोरोव फॉरवर्ड समीकरण के रूप में भी जाना जाता है, जिन्होंने 1931 में स्वतंत्र रूप से इसकी खोज की थी।[4] जब इसे कण स्थिति वितरण पर प्रयुक्त किया जाता है, तो इसे स्मोलुचोव्स्की समीकरण (मैरियन स्मोलुचोव्स्की के बाद) के रूप में जाना जाता है।[5] और इस संदर्भ में यह संवहन-प्रसार समीकरण के सामान्तर है। जब कण स्थिति और संवेग वितरण पर प्रयुक्त किया जाता है, तो इसे क्लेन-क्रैमर्स समीकरण के रूप में जाना जाता है। शून्य प्रसार वाला स्तिथि निरंतरता समीकरण है। फोककर-प्लैंक समीकरण क्रेमर्स-मोयल विस्तार के माध्यम से मास्टर समीकरण से प्राप्त किया जाता है।[6]
मौलिक यांत्रिकी और क्वांटम यांत्रिकी की एकल योजना में फोककर-प्लैंक समीकरण की पहली सुसंगत सूक्ष्म व्युत्पत्ति निकोले बोगोल्युबोव और निकोलाई मित्रोफ़ानोविच क्रायलोव द्वारा की गई थी।[7][8]
एक आयाम
एक स्थानिक आयाम x में, मानक वीनर प्रक्रिया द्वारा संचालित और स्टोकेस्टिक विभेदक समीकरण (एसडीई) द्वारा वर्णित एक Itô कैलकुलस के लिए| प्रक्रिया
बहाव और प्रसार गुणांक वेग के साथ , यादृच्छिक चर का संभाव्यता घनत्व के लिए फोककर-प्लैंक समीकरण है [9]
निम्नलिखित में प्रयोग करें .
इन्फिनिटेसिमल जेनरेटर (स्टोकेस्टिक प्रक्रियाएं) को परिभाषित करें (निम्नलिखित Ref में पाया जा सकता है।[10]):
फिर, एक Itô समीकरण के अधीन एक कण के लिए, का उपयोग कर
जबकि फोककर-प्लैंक समीकरण का उपयोग उन समस्याओं के साथ किया जाता है जहां प्रारंभिक वितरण ज्ञात होता है, यदि समस्या पिछले समय के वितरण को जानने की है, तो फेनमैन-केएसी सूत्र का उपयोग किया जा सकता है, जो कोलमोगोरोव पिछड़े समीकरण का परिणाम है।
इटो अर्थ में ऊपर परिभाषित स्टोकेस्टिक प्रक्रिया को स्ट्रैटोनोविच इंटीग्रल कन्वेंशन के अंदर स्ट्रैटोनोविच एसडीई के रूप में फिर से लिखा जा सकता है:
निरंतर प्रसार के साथ शून्य-ड्रिफ्ट समीकरण को मौलिक ब्राउनियन गति का मॉडल माना जा सकता है:
उच्च आयाम
अधिक सामान्यतः, यदि
कहाँ और हैं N-आयामी यादृच्छिक वेक्टर (ज्यामिति), मैट्रिक्स और एम-आयामी मानक वीनर प्रक्रिया है, संभाव्यता घनत्व के लिए फोकर-प्लैंक समीकरण को संतुष्ट करता है
बहाव वेक्टर के साथ और प्रसार टेन्सर , अर्थात।
यदि इटो एसडीई के बजाय, स्ट्रैटोनोविच इंटीग्रल पर विचार किया जाता है,
सामान्यीकरण
सामान्य तौर पर, फोककर-प्लैंक समीकरण सामान्य कोलमोगोरोव फॉरवर्ड समीकरण का विशेष स्तिथि है
उदाहरण
वीनर प्रक्रिया
एक मानक अदिश वीनर प्रक्रिया स्टोकेस्टिक विभेदक समीकरण द्वारा उत्पन्न होती है
ऑर्नस्टीन-उहलेनबेक प्रक्रिया
ऑर्नस्टीन-उहलेनबेक प्रक्रिया ऐसी प्रक्रिया है जिसे इस प्रकार परिभाषित किया गया है
संगत फोकर-प्लैंक समीकरण है
प्लाज्मा भौतिकी
प्लाज्मा भौतिकी में, कण प्रजाति के लिए वितरण फलन (भौतिकी)। , , संभाव्यता घनत्व फलन का स्थान लेता है। संबंधित बोल्ट्ज़मैन समीकरण द्वारा दिया गया है
स्मोलुचोव्स्की प्रसार समीकरण
बाह्य बल के अधीन अत्यधिक नमीयुक्त ब्राउनियन कण पर विचार करें :[14]
बाह्य क्षेत्र में ब्राउनियन कण के लैंग्विन समीकरण से प्रारंभ करना , कहाँ घर्षण शब्द है, कण पर एक उतार-चढ़ाव वाला बल है, और उतार-चढ़ाव का आयाम है.
इसके बाद, किसी विशेष आयतन में कणों की कुल संख्या इस प्रकार दी जाती है,
कम्प्यूटेशनल विचार
ब्राउनियन गति लैंग्विन समीकरण का अनुसरण करती है, जिसे कई अलग-अलग स्टोकेस्टिक फोर्सिंग के लिए हल किया जा सकता है, जिसके परिणाम औसत होते हैं (आणविक गतिशीलता में विहित संयोजन)। हालाँकि, इस कम्प्यूटेशनल रूप से गहन दृष्टिकोण के बजाय, कोई फोककर-प्लैंक समीकरण का उपयोग कर सकता है और संभाव्यता पर विचार कर सकता है अंतराल में कण का वेग है जब यह अपनी गति प्रारम्भ करता है समय 0 पर.
1-डी रैखिक संभावित उदाहरण
एक आयाम में ब्राउनियन गतिकी सरल है।[14][15]
सिद्धांत
प्रपत्र की रैखिक क्षमता से प्रारंभ करना संगत स्मोलुचोव्स्की समीकरण बन जाता है,
परिभाषित और और समन्वय परिवर्तन को प्रयुक्त करना,
सिमुलेशन
दाईं ओर का सिमुलेशन ब्राउनियन गतिकी सिमुलेशन का उपयोग करके पूरा किया गया था।[16][17] सिस्टम के लिए लैंग्विन समीकरण से प्रारंभ करते हुए,
समाधान
आंशिक अंतर समीकरण होने के कारण, फोककर-प्लैंक समीकरण को केवल विशेष मामलों में ही विश्लेषणात्मक रूप से हल किया जा सकता है। श्रोडिंगर समीकरण के साथ फोकर-प्लैंक समीकरण की औपचारिक सादृश्यता कई मामलों में इसके समाधान के लिए क्वांटम यांत्रिकी से ज्ञात उन्नत ऑपरेटर तकनीकों के उपयोग की अनुमति देती है। इसके अलावा, ओवरडैम्प्ड गतिशीलता के मामले में जब फोककर-प्लैंक समीकरण में सभी स्थानिक चर के संबंध में दूसरा आंशिक व्युत्पन्न होता है, तो समीकरण को मास्टर समीकरण के रूप में लिखा जा सकता है जिसे आसानी से संख्यात्मक रूप से हल किया जा सकता है।[18] कई अनुप्रयोगों में, व्यक्ति केवल स्थिर-अवस्था संभाव्यता वितरण में रुचि रखता है , जिसे यहां से पाया जा सकता है . माध्य प्रथम मार्ग समय और विभाजन संभावनाओं की गणना को साधारण अंतर समीकरण के समाधान तक कम किया जा सकता है जो फोककर-प्लैंक समीकरण से घनिष्ठ रूप से संबंधित है।
ज्ञात समाधान और व्युत्क्रम वाले विशेष मामले
स्थानीय अस्थिरता के माध्यम से विकल्पों की अस्थिरता मुस्कान मॉडलिंग के लिए गणितीय वित्त में, किसी को प्रसार गुणांक प्राप्त करने की समस्या होती है बाज़ार विकल्प उद्धरणों से प्राप्त संभाव्यता घनत्व के अनुरूप। इसलिए समस्या फोककर-प्लैंक समीकरण का उलटा है: विकल्प बाजार से निकाले गए एक्स के अंतर्निहित विकल्प के घनत्व एफ (एक्स, टी) को देखते हुए, स्थानीय अस्थिरता का पता लगाना है एफ के अनुरूप यह व्युत्क्रम समस्या है जिसे सामान्यतः डुपाइरे (1994, 1997) द्वारा गैर-पैरामीट्रिक समाधान के साथ हल किया गया है।[19][20] ब्रिगो और मर्कुरियो (2002, 2003) विशेष स्थानीय अस्थिरता के माध्यम से पैरामीट्रिक रूप में समाधान का प्रस्ताव करते हैं मिश्रण मॉडल द्वारा दिए गए फोककर-प्लैंक समीकरण के समाधान के अनुरूप।[21][22] अधिक जानकारी फेंगलर (2008) में भी उपलब्ध है।[23] गैदरल (2008),[24] और मुसीला और रुत्कोव्स्की (2008)।[25]
फोकर-प्लैंक समीकरण और पथ अभिन्न
प्रत्येक फोककर-प्लैंक समीकरण पथ अभिन्न सूत्रीकरण के सामान्तर है। पथ अभिन्न सूत्रीकरण क्षेत्र सिद्धांत विधियों के अनुप्रयोग के लिए उत्कृष्ट प्रारंभिक बिंदु है।[26] उदाहरण के लिए, इसका उपयोग क्रिटिकल फेनोमेना#क्रिटिकल डायनामिक्स में किया जाता है।
पथ समाकलन की व्युत्पत्ति क्वांटम यांत्रिकी की तरह ही संभव है। चर के साथ फोककर-प्लैंक समीकरण की व्युत्पत्ति इस प्रकार है। डेल्टा फलन सम्मिलित करके प्रारंभ करें और फिर भागों द्वारा एकीकृत करें:
वें>-डेरिवेटिव यहां केवल पर कार्य करते हैं -फलन , चालू नहीं . समय अंतराल पर एकीकृत करें ,
यह भी देखें
- कोलमोगोरोव पिछड़े समीकरण (प्रसार)
- बोल्ट्ज़मैन समीकरण
- व्लासोव समीकरण
- मास्टर समीकरण
- माध्य-क्षेत्र खेल सिद्धांत
- बीबीजीकेवाई पदानुक्रम|बोगोलीउबोव-बॉर्न-ग्रीन-किर्कवुड-यवोन समीकरणों का पदानुक्रम
- ऑर्नस्टीन-उहलेनबेक प्रक्रिया
- संवहन-प्रसार समीकरण
- क्लेन-क्रेमर्स समीकरण
नोट्स और संदर्भ
- ↑ Leo P. Kadanoff (2000). Statistical Physics: statics, dynamics and renormalization. World Scientific. ISBN 978-981-02-3764-6.
- ↑ Fokker, A. D. (1914). "विकिरण क्षेत्र में घूमते विद्युत द्विध्रुवों की औसत ऊर्जा". Ann. Phys. 348 (4. Folge 43): 810–820. Bibcode:1914AnP...348..810F. doi:10.1002/andp.19143480507.
- ↑ Planck, M. (1917). "Über einen Satz der statistischen Dynamik und seine Erweiterung in der Quantentheorie". Sitzungsberichte der Preussischen Akademie der Wissenschaften zu Berlin. 24: 324–341.
- ↑ Kolmogorov, Andrei (1931). "Über die analytischen Methoden in der Wahrscheinlichkeitstheorie" [On Analytical Methods in the Theory of Probability]. Mathematische Annalen (in Deutsch). 104 (1): 415–458 [pp. 448–451]. doi:10.1007/BF01457949. S2CID 119439925.
- ↑ Dhont, J. K. G. (1996). कोलाइड्स की गतिशीलता का एक परिचय. Elsevier. p. 183. ISBN 978-0-08-053507-4.
- ↑ Paul, Wolfgang; Baschnagel, Jörg (2013). "A Brief Survey of the Mathematics of Probability Theory". स्टचास्तिक प्रोसेसेज़. Springer. pp. 17–61 [esp. 33–35]. doi:10.1007/978-3-319-00327-6_2. ISBN 978-3-319-00326-9.
- ↑ N. N. Bogolyubov Jr. and D. P. Sankovich (1994). "N. N. Bogolyubov and statistical mechanics". Russian Math. Surveys 49(5): 19—49. doi:10.1070/RM1994v049n05ABEH002419
- ↑ N. N. Bogoliubov and N. M. Krylov (1939). Fokker–Planck equations generated in perturbation theory by a method based on the spectral properties of a perturbed Hamiltonian. Zapiski Kafedry Fiziki Akademii Nauk Ukrainian SSR 4: 81–157 (in Ukrainian).
- ↑ Risken, H. (1996), The Fokker–Planck Equation: Methods of Solution and Applications, vol. Second Edition, Third Printing, p. 72
- ↑ 10.0 10.1 Öttinger, Hans Christian (1996). पॉलिमरिक तरल पदार्थों में स्टोकेस्टिक प्रक्रियाएं. Berlin-Heidelberg: Springer-Verlag. p. 75. ISBN 978-3-540-58353-0.
- ↑ Kamenshchikov, S. (2014). "परफेक्ट कैओस सिस्टम में क्लस्टरिंग और अनिश्चितता". Journal of Chaos. 2014: 1–6. arXiv:1301.4481. doi:10.1155/2014/292096. S2CID 17719673.
- ↑ Lecture handout 2019 nyu.edu
- ↑ Rosenbluth, M. N. (1957). "Fokker–Planck Equation for an Inverse-Square Force". Physical Review. 107 (1): 1–6. Bibcode:1957PhRv..107....1R. doi:10.1103/physrev.107.1.
- ↑ 14.0 14.1 Ioan, Kosztin (Spring 2000). "स्मोलुचोव्स्की प्रसार समीकरण". Non-Equilibrium Statistical Mechanics: Course Notes.
- ↑ Kosztin, Ioan (Spring 2000). "ब्राउनियन डायनेमिक्स विधि लागू". Non-Equilibrium Statistical Mechanics: Course Notes.
- ↑ Koztin, Ioan. "ब्राउनियन डायनेमिक्स". Non-Equilibrium Statistical Mechanics: Course Notes. Archived from the original on 2020-01-15. Retrieved 2020-05-18.
- ↑ Kosztin, Ioan. "ब्राउनियन डायनेमिक्स विधि लागू". Non-Equilibrium Statistical Mechanics: Course Notes. Archived from the original on 2020-01-15. Retrieved 2020-05-18.
- ↑ Holubec Viktor, Kroy Klaus, and Steffenoni Stefano (2019). "Physically consistent numerical solver for time-dependent Fokker–Planck equations". Phys. Rev. E. 99 (4): 032117. arXiv:1804.01285. Bibcode:2019PhRvE..99c2117H. doi:10.1103/PhysRevE.99.032117. PMID 30999402. S2CID 119203025.
{{cite journal}}
: CS1 maint: multiple names: authors list (link) - ↑ Bruno Dupire (1994) Pricing with a Smile. Risk Magazine, January, 18–20.
- ↑ Bruno Dupire (1997) Pricing and Hedging with Smiles. Mathematics of Derivative Securities. Edited by M.A.H. Dempster and S.R. Pliska, Cambridge University Press, Cambridge, 103–111. ISBN 0-521-58424-8.
- ↑ Brigo, D.; Mercurio, Fabio (2002). "लॉगनॉर्मल-मिक्सचर डायनामिक्स और कैलिब्रेशन टू मार्केट वोलैटिलिटी स्माइल्स". International Journal of Theoretical and Applied Finance. 5 (4): 427–446. CiteSeerX 10.1.1.210.4165. doi:10.1142/S0219024902001511.
- ↑ Brigo, D.; Mercurio, F.; Sartorelli, G. (2003). "वैकल्पिक परिसंपत्ति-मूल्य की गतिशीलता और अस्थिरता मुस्कुराती है". Quantitative Finance. 3 (3): 173–183. doi:10.1088/1469-7688/3/3/303. S2CID 154069452.
- ↑ Fengler, M. R. (2008). Semiparametric Modeling of Implied Volatility, 2005, Springer Verlag, ISBN 978-3-540-26234-3
- ↑ Jim Gatheral (2008). The Volatility Surface. Wiley and Sons, ISBN 978-0-471-79251-2.
- ↑ Marek Musiela, Marek Rutkowski. Martingale Methods in Financial Modelling, 2008, 2nd Edition, Springer-Verlag, ISBN 978-3-540-20966-9.
- ↑ Zinn-Justin, Jean (1996). क्वांटम क्षेत्र सिद्धांत और महत्वपूर्ण घटनाएँ. Oxford: Clarendon Press. ISBN 978-0-19-851882-2.
- ↑ Janssen, H. K. (1976). "क्लासिकल फील्ड डायनेमिक्स और डायनामिकल क्रिटिकल प्रॉपर्टीज के रीनॉर्मलाइजेशन ग्रुप कैलकुलेशन के लिए लैग्रेंजियन पर". Z. Phys. B23 (4): 377–380. Bibcode:1976ZPhyB..23..377J. doi:10.1007/BF01316547. S2CID 121216943.
अग्रिम पठन
- Frank, Till Daniel (2005). Nonlinear Fokker–Planck Equations: Fundamentals and Applications. Springer Series in Synergetics. Springer. ISBN 3-540-21264-7.
- Gardiner, Crispin (2009). Stochastic Methods (4th ed.). Springer. ISBN 978-3-540-70712-7.
- Pavliotis, Grigorios A. (2014). Stochastic Processes and Applications: Diffusion Processes, the Fokker–Planck and Langevin Equations. Springer Texts in Applied Mathematics. Springer. ISBN 978-1-4939-1322-0.
- Risken, Hannes (1996). The Fokker–Planck Equation: Methods of Solutions and Applications. Springer Series in Synergetics (2nd ed.). Springer. ISBN 3-540-61530-X.