रुकने का समय: Difference between revisions

From Vigyanwiki
No edit summary
No edit summary
Line 8: Line 8:


=== असतत समय ===
=== असतत समय ===
मान लीजिए कि <math> \tau </math> एक यादृच्छिक चर है, जिसे फ़िल्टर किए गए संभाव्यता स्थान <math> (\Omega, \mathcal F, (\mathcal F_n)_{n \in \N}, P) </math> पर <math> \mathbb N \cup \{ +\infty \}</math> के मानों के साथ परिभाषित किया गया है। तब <math> \tau </math> को रुकने का समय कहा जाता है (फ़िल्टरेशन <math> \mathbb F= ((\mathcal F_n)_{n \in \N} </math> के संबंध में), यदि निम्नलिखित नियम प्रयुक्त होती है:
मान लीजिए कि <math> \tau </math> एक यादृच्छिक चर है, जिसे फ़िल्टर किए गए संभाव्यता समिष्ट <math> (\Omega, \mathcal F, (\mathcal F_n)_{n \in \N}, P) </math> पर <math> \mathbb N \cup \{ +\infty \}</math> के मानों के साथ परिभाषित किया गया है। तब <math> \tau </math> को रुकने का समय कहा जाता है (फ़िल्टरेशन <math> \mathbb F= ((\mathcal F_n)_{n \in \N} </math> के संबंध में), यदि निम्नलिखित नियम प्रयुक्त होती है:
:<math> \{ \tau =n \} \in \mathcal F_n </math> सभी <math> n </math> के लिए  
:<math> \{ \tau =n \} \in \mathcal F_n </math> सभी <math> n </math> के लिए  
सहज रूप से, इस स्थिति का अर्थ है कि समय <math>n</math> पर रुकना है या नहीं इसका "निर्णय" केवल समय <math>n</math> पर उपस्थित जानकारी पर आधारित होना चाहिए, भविष्य की किसी भी जानकारी पर नहीं है ।
सामान्यतः, इस स्थिति का अर्थ है कि समय <math>n</math> पर रुकना है या नहीं इसका "निर्णय" केवल समय <math>n</math> पर उपस्थित जानकारी पर आधारित होना चाहिए, भविष्य की किसी भी जानकारी पर नहीं है ।


=== सामान्य स्थिति ===
=== सामान्य स्थिति ===
मान लीजिए कि <math> \tau </math> एक यादृच्छिक चर है, जिसे फ़िल्टर किए गए संभाव्यता स्थान <math> (\Omega, \mathcal F, (\mathcal F_t)_{t \in T}, P) </math> पर <math> T</math> में मानों के साथ परिभाषित किया गया है। अधिकतर स्थिति में, <math> T=[0,+ \infty) </math> तब <math> \tau </math> को रुकने का समय कहा जाता है (फ़िल्टरेशन <math> \mathbb F= (\mathcal F_t)_{t \in T} </math> के संबंध में), यदि निम्नलिखित नियम प्रयुक्त होती है:
मान लीजिए कि <math> \tau </math> एक यादृच्छिक चर है, जिसे फ़िल्टर किए गए संभाव्यता समिष्ट <math> (\Omega, \mathcal F, (\mathcal F_t)_{t \in T}, P) </math> पर <math> T</math> में मानों के साथ परिभाषित किया गया है। अधिकतर स्थिति में, <math> T=[0,+ \infty) </math> तब <math> \tau </math> को रुकने का समय कहा जाता है (फ़िल्टरेशन <math> \mathbb F= (\mathcal F_t)_{t \in T} </math> के संबंध में), यदि निम्नलिखित नियम प्रयुक्त होती है:
:<math> \{ \tau \leq t \} \in \mathcal F_t </math> सभी <math> t \in T </math> के लिए  
:<math> \{ \tau \leq t \} \in \mathcal F_t </math> सभी <math> t \in T </math> के लिए  
=== अनुकूलित प्रक्रिया के रूप में ===
=== अनुकूलित प्रक्रिया के रूप में ===
मान लीजिए कि <math> \tau </math> एक यादृच्छिक चर है, जिसे फ़िल्टर किए गए संभाव्यता स्थान <math> (\Omega, \mathcal F, (\mathcal F_t)_{t \in T}, P) </math> पर <math> T</math> में मानों के साथ परिभाषित किया गया है। तब <math> \tau </math> को रुकने का समय कहा जाता है यदि स्टोकेस्टिक प्रक्रिया <math> X=(X_t)_{t \in T}</math> द्वारा परिभाषित है  
मान लीजिए कि <math> \tau </math> एक यादृच्छिक चर है, जिसे फ़िल्टर किए गए संभाव्यता समिष्ट <math> (\Omega, \mathcal F, (\mathcal F_t)_{t \in T}, P) </math> पर <math> T</math> में मानों के साथ परिभाषित किया गया है। तब <math> \tau </math> को रुकने का समय कहा जाता है यदि स्टोकेस्टिक प्रक्रिया <math> X=(X_t)_{t \in T}</math> द्वारा परिभाषित है  
:<math> X_t:= \begin{cases} 1 & \text{ if } t < \tau \\ 0 &\text{ if } t \geq \tau \end{cases} </math>
:<math> X_t:= \begin{cases} 1 & \text{ if } t < \tau \\ 0 &\text{ if } t \geq \tau \end{cases} </math>


निस्पंदन <math> \mathbb F= (\mathcal F_t)_{t \in T}</math> के लिए अनुकूलित है।
निस्पंदन <math> \mathbb F= (\mathcal F_t)_{t \in T}</math> के लिए अनुकूलित है।
Line 35: Line 32:
*जब तक उनका पैसा दोगुना न हो जाए या पैसा खत्म न हो जाए, तब तक खेलना बंद करने का नियम है, तथापि उनके द्वारा खेले जाने वाले गेम की संख्या की संभावित रूप से कोई सीमा नहीं है, क्योंकि उनके एक सीमित समय में बंद होने की संभावना 1 है।
*जब तक उनका पैसा दोगुना न हो जाए या पैसा खत्म न हो जाए, तब तक खेलना बंद करने का नियम है, तथापि उनके द्वारा खेले जाने वाले गेम की संख्या की संभावित रूप से कोई सीमा नहीं है, क्योंकि उनके एक सीमित समय में बंद होने की संभावना 1 है।


रुकने के समय की अधिक सामान्य परिभाषा को स्पष्ट करने के लिए, ब्राउनियन गति पर विचार करें, जो एक स्टोकेस्टिक प्रक्रिया है <math>(B_t)_{t\geq 0}</math> जहां प्रत्येक <math>B_t</math> संभाव्यता स्थान <math>(\Omega, \mathcal{F}, \mathbb{P})</math> पर परिभाषित एक यादृच्छिक चर है। हम इस संभाव्यता स्थान पर एक निस्पंदन को परिभाषित करते हैं <math>\mathcal{F}_t</math> को फॉर्म <math>(B_s)^{-1}(A)</math> के सभी सेटों द्वारा उत्पन्न σ-बीजगणित मानकर, जहां <math>0\leq s \leq t</math> और <math>A\subseteq \mathbb{R}</math> एक बोरेल सेट है। सहज रूप से, एक घटना E में है <math>\mathcal{F}_t</math> यदि और केवल यदि हम केवल समय 0 से समय t तक ब्राउनियन गति को देखकर यह निर्धारित कर सकते हैं कि E सही है या गलत हो सकता है।
रुकने के समय की अधिक सामान्य परिभाषा को स्पष्ट करने के लिए, ब्राउनियन गति पर विचार करें, जो एक स्टोकेस्टिक प्रक्रिया है <math>(B_t)_{t\geq 0}</math> जहां प्रत्येक <math>B_t</math> संभाव्यता समिष्ट <math>(\Omega, \mathcal{F}, \mathbb{P})</math> पर परिभाषित एक यादृच्छिक चर है। हम इस संभाव्यता समिष्ट पर एक निस्पंदन को परिभाषित करते हैं <math>\mathcal{F}_t</math> को फॉर्म <math>(B_s)^{-1}(A)</math> के सभी सेटों द्वारा उत्पन्न σ-बीजगणित मानकर, जहां <math>0\leq s \leq t</math> और <math>A\subseteq \mathbb{R}</math> एक बोरेल समुच्चय है। सहज रूप से, एक घटना E में है <math>\mathcal{F}_t</math> यदि और केवल यदि हम केवल समय 0 से समय t तक ब्राउनियन गति को देखकर यह निर्धारित कर सकते हैं कि E सही है या गलत हो सकता है।
*प्रत्येक स्थिरांक <math>\tau:=t_0</math> (तुच्छ रूप से) एक रुकने का समय है; यह रुकने के नियम के अनुरूप है "समय <math>\tau:=t_0</math> पर रुकें।
*प्रत्येक स्थिरांक <math>\tau:=t_0</math> (सामान्यतः) एक रुकने का समय है; यह रुकने के नियम के अनुरूप है "समय <math>\tau:=t_0</math> पर रुकें।
*मान लीजिए कि <math>a\in\mathbb{R}.</math> तो <math>\tau:=\inf \{t\geq 0 \mid B_t = a\}</math> ब्राउनियन गति के लिए रुकने का समय है, जो रुकने के नियम के अनुरूप है: "जैसे ही ब्राउनियन गति मान ''a'' पर पहुंचती है, रुक जाती है।"
*मान लीजिए कि <math>a\in\mathbb{R}.</math> तो <math>\tau:=\inf \{t\geq 0 \mid B_t = a\}</math> ब्राउनियन गति के लिए रुकने का समय है, जो रुकने के नियम के अनुरूप है: "जैसे ही ब्राउनियन गति मान ''a'' पर पहुंचती है, रुक जाती है।"
*एक और रुकने का समय <math>\tau:=\inf \{t\geq 1 \mid B_s > 0 \text{ for all } s\in[t-1,t]\}</math> द्वारा दिया गया है। यह रोकने के नियम के अनुरूप है "जैसे ही ब्राउनियन गति 1 समय इकाई लंबाई के सन्निहित खिंचाव पर धनात्मक हो, रुक जाओ।"
*एक और रुकने का समय <math>\tau:=\inf \{t\geq 1 \mid B_s > 0 \text{ for all } s\in[t-1,t]\}</math> द्वारा दिया गया है। यह रोकने के नियम के अनुरूप है "जैसे ही ब्राउनियन गति 1 समय इकाई लंबाई के सन्निहित खिंचाव पर धनात्मक हो, रुक जाओ।"
*सामान्य रूप से यदि τ<sub>1</sub> और τ<sub>2</sub> <math>\left(\Omega, \mathcal{F}, \left\{ \mathcal{F}_{t} \right \}_{t \geq 0}, \mathbb{P}\right)</math> पर रुक रहे हैं तो उनका न्यूनतम <math>\tau _1 \wedge \tau _2</math>, उनका अधिकतम <math>\tau _1 \vee \tau _2</math> और उनका योग ''τ''<sub>1</sub> + ''τ''<sub>2</sub> भी रुकने का समय है। (यह मतभेदों और उत्पादों के लिए सच नहीं है, क्योंकि इन्हें कब रोकना है यह निर्धारित करने के लिए "भविष्य में देखने" की आवश्यकता हो सकती है।)
*सामान्य रूप से यदि τ<sub>1</sub> और τ<sub>2</sub> <math>\left(\Omega, \mathcal{F}, \left\{ \mathcal{F}_{t} \right \}_{t \geq 0}, \mathbb{P}\right)</math> पर रुक रहे हैं तो उनका न्यूनतम <math>\tau _1 \wedge \tau _2</math>, उनका अधिकतम <math>\tau _1 \vee \tau _2</math> और उनका योग ''τ''<sub>1</sub> + ''τ''<sub>2</sub> भी रुकने का समय है। (यह मतभेदों और उत्पादों के लिए सच नहीं है, क्योंकि इन्हें कब रोकना है यह निर्धारित करने के लिए "भविष्य में देखने" की आवश्यकता हो सकती है।)                                                                                                                                                


ऊपर दिए गए दूसरे उदाहरण की तरह हिटिंग टाइम, स्टॉपिंग टाइम के महत्वपूर्ण उदाहरण हो सकते हैं। चूँकि यह दिखाना अपेक्षाकृत सरल है कि अनिवार्य रूप से सभी रुकने के समय हिटिंग समय हैं,<ref name="Fischer (2013)">{{cite journal|last=Fischer|first=Tom|title=समय को रोकने और समय को रोकने के सिग्मा-बीजगणित के सरल निरूपण पर|journal=Statistics and Probability Letters|year=2013|volume=83|issue=1|pages=345–349|doi=10.1016/j.spl.2012.09.024|arxiv=1112.1603}}</ref> यह दिखाना अधिक कठिन हो सकता है कि एक निश्चित हिटिंग समय रुकने का समय है। बाद के प्रकार के परिणामों को हिटिंग टाइम या डेबट प्रमेय या डेबट प्रमेय के रूप में जाना जाता है।
ऊपर दिए गए दूसरे उदाहरण की तरह हिटिंग टाइम, स्टॉपिंग टाइम के महत्वपूर्ण उदाहरण हो सकते हैं। चूँकि यह दिखाना अपेक्षाकृत सरल है कि अनिवार्य रूप से सभी रुकने के समय हिटिंग समय हैं,<ref name="Fischer (2013)">{{cite journal|last=Fischer|first=Tom|title=समय को रोकने और समय को रोकने के सिग्मा-बीजगणित के सरल निरूपण पर|journal=Statistics and Probability Letters|year=2013|volume=83|issue=1|pages=345–349|doi=10.1016/j.spl.2012.09.024|arxiv=1112.1603}}</ref> यह दिखाना अधिक कठिन हो सकता है कि एक निश्चित हिटिंग समय रुकने का समय है। बाद के प्रकार के परिणामों को हिटिंग टाइम या डेबट प्रमेय या डेबट प्रमेय के रूप में जाना जाता है।


==स्थानीयकरण==
==समिष्टीयकरण                                                                                                                                                                                                                              ==
स्टॉपिंग टाइम का उपयोग अधिकांशतः स्टोकेस्टिक प्रक्रियाओं के कुछ गुणों को उन स्थितियों में सामान्यीकृत करने के लिए किया जाता है जिनमें आवश्यक गुण केवल स्थानीय अर्थ में संतुष्ट होती है। सबसे पहले, यदि X एक प्रक्रिया है और τ रुकने का समय है, तो X<sup>τ</sup> का उपयोग प्रक्रिया X को समय τ पर रोकने के लिए किया जाता है।
स्टॉपिंग टाइम का उपयोग अधिकांशतः स्टोकेस्टिक प्रक्रियाओं के कुछ गुणों को उन स्थितियों में सामान्यीकृत करने के लिए किया जाता है जिनमें आवश्यक गुण केवल समिष्टीय अर्थ में संतुष्ट होती है। सबसे पहले, यदि X एक प्रक्रिया है और τ रुकने का समय है, तो X<sup>τ</sup> का उपयोग प्रक्रिया X को समय τ पर रोकने के लिए किया जाता है।


:<math> X^\tau_t=X_{\min(t,\tau)}                                                                                                                                                                                         
:<math> X^\tau_t=X_{\min(t,\tau)}                                                                                                                                                                                         
                                                                                                                                                                                                                                   </math>
                                                                                                                                                                                                                                   </math>
फिर, X को स्थानीय रूप से कुछ गुण P को संतुष्ट करने के लिए कहा जाता है यदि रुकने के समय τ<sub>''n''</sub> का अनुक्रम उपस्थित है, जो अनंत तक बढ़ता है और जिसके लिए प्रक्रियाएं होती हैं
फिर, X को समिष्टीय रूप से कुछ गुण P को संतुष्ट करने के लिए कहा जाता है यदि रुकने के समय τ<sub>''n''</sub> का अनुक्रम उपस्थित है, जो अनंत तक बढ़ता है और जिसके लिए प्रक्रियाएं होती हैं
:<math>\mathbf{1}_{\{\tau_n>0\}}X^{\tau_n}</math> गुण पी को संतुष्ट करें। समय सूचकांक सेट I = [0, ∞) के साथ सामान्य उदाहरण इस प्रकार हैं:
:<math>\mathbf{1}_{\{\tau_n>0\}}X^{\tau_n}</math> गुण पी को संतुष्ट करें। समय सूचकांक समुच्चय I = [0, ∞) के साथ सामान्य उदाहरण इस प्रकार हैं:


<ब्लॉककोट>'


[[स्थानीय मार्टिंगेल]] प्रक्रिया' एक प्रक्रिया X एक स्थानीय मार्टिंगेल है यदि यह कैडलैग है और इसमें रुकने के समय का एक क्रम τ<sub>''n''</sub> उपस्थित है अनंत तक बढ़ रहा है, जैसे कि
[[स्थानीय मार्टिंगेल|समिष्टीय मार्टिंगेल]] प्रक्रिया' एक प्रक्रिया X एक समिष्टीय मार्टिंगेल है यदि यह कैडलैग है और इसमें रुकने के समय का एक क्रम τ<sub>''n''</sub> उपस्थित है अनंत तक बढ़ रहा है, जैसे कि
:<math>\mathbf{1}_{\{\tau_n>0\}}X^{\tau_n}</math>  
:<math>\mathbf{1}_{\{\tau_n>0\}}X^{\tau_n}</math>  
:प्रत्येक n के लिए एक [[मार्टिंगेल (संभावना सिद्धांत)]] है।
:प्रत्येक n के लिए एक [[मार्टिंगेल (संभावना सिद्धांत)]] है।


<ब्लॉककोट>


'स्थानीय रूप से एकीकृत प्रक्रिया'एक गैर-ऋणात्मक और बढ़ती हुई प्रक्रिया X स्थानीय रूप से एकीकृत है यदि रुकने के समय का क्रम τ<sub>''n''</sub> उपस्थित है अनंत तक बढ़ रहा है, जैसे कि
'समिष्टीय रूप से एकीकृत प्रक्रिया' एक गैर-ऋणात्मक और बढ़ती हुई प्रक्रिया X समिष्टीय रूप से एकीकृत है यदि रुकने के समय का क्रम τ<sub>''n''</sub> उपस्थित है अनंत तक बढ़ रहा है, जैसे कि
:<math>\operatorname{E} \left [\mathbf{1}_{\{\tau_n>0\}}X^{\tau_n} \right ]<\infty</math>  
:<math>\operatorname{E} \left [\mathbf{1}_{\{\tau_n>0\}}X^{\tau_n} \right ]<\infty</math>  
:प्रत्येक n के लिए.
:प्रत्येक n के लिए.


==समय रुकने के प्रकार                                                                        ==
==समय रुकने के प्रकार                                                                        ==
समय सूचकांक सेट I = [0,∞) के साथ रुकने के समय को अधिकांशतः कई प्रकारों में से एक में विभाजित किया जाता है, जो इस बात पर निर्भर करता है कि क्या पूर्वानुमान करना संभव है कि वे कब घटित होने वाले हैं।
समय सूचकांक समुच्चय I = [0,∞) के साथ रुकने के समय को अधिकांशतः कई प्रकारों में से एक में विभाजित किया जाता है, जो इस बात पर निर्भर करता है कि क्या पूर्वानुमान करना संभव है कि वे कब घटित होने वाले हैं।


रुकने का समय τ अनुमानित है यदि यह रुकने के समय τ<sub>''n''</sub> के बढ़ते अनुक्रम की सीमा के समान्य है जो τ<sub>''n''</sub> < τ को संतुष्ट करता है जब भी τ > 0. अनुक्रम τ<sub>''n''</sub> को τ की घोषणा करने के लिए कहा जाता है, और पूर्वानुमानित रुकने के समय को कभी-कभी घोषणा योग्य के रूप में जाना जाता है। पूर्वानुमानित रुकने के समय के उदाहरण निरंतर और अनुकूलित प्रक्रियाओं के हिटिंग समय हैं। यदि τ पहली बार है जब एक सतत और वास्तविक मूल्यवान प्रक्रिया X कुछ मान a के समान्य है, तो इसे अनुक्रम τ<sub>''n''</sub> द्वारा घोषित किया जाता है, जहां τ<sub>''n''</sub> पहली बार है जब .
रुकने का समय τ अनुमानित है यदि यह रुकने के समय τ<sub>''n''</sub> के बढ़ते अनुक्रम की सीमा के समान्य है जो τ<sub>''n''</sub> < τ को संतुष्ट करता है जब भी τ > 0. अनुक्रम τ<sub>''n''</sub> को τ की घोषणा करने के लिए कहा जाता है, और पूर्वानुमानित रुकने के समय को कभी-कभी घोषणा योग्य के रूप में जाना जाता है। पूर्वानुमानित रुकने के समय के उदाहरण निरंतर और अनुकूलित प्रक्रियाओं के हिटिंग समय हैं। यदि τ पहली बार है जब एक सतत और वास्तविक मूल्यवान प्रक्रिया X कुछ मान a के समान्य है, तो इसे अनुक्रम τ<sub>''n''</sub> द्वारा घोषित किया जाता है, जहां τ<sub>''n''</sub> पहली बार है जब .
Line 75: Line 70:


==नैदानिक ​​​​परीक्षणों में रोक के नियम==
==नैदानिक ​​​​परीक्षणों में रोक के नियम==
चिकित्सा में नैदानिक ​​​​परीक्षण अधिकांशतः यह निर्धारित करने के लिए अंतरिम विश्लेषण करते हैं कि क्या परीक्षण पहले ही अपने अंतिम बिंदुओं को पूरा कर चुका है। चूँकि, अंतरिम विश्लेषण गलत-धनात्मक परिणामों का विपत्ति उत्पन्न करता है, और इसलिए अंतरिम विश्लेषण की संख्या और समय निर्धारित करने के लिए सीमाओं को रोकने का उपयोग किया जाता है (जिसे अल्फा-खर्च के रूप में भी जाना जाता है, गलत सकारात्मकता की दर को दर्शाने के लिए) प्रत्येक आर अंतरिम परीक्षण में, यदि संभावना सीमा p से कम है, तो परीक्षण रोक दिया जाता है, जो उपयोग की गई विधि पर निर्भर करता है। [[अनुक्रमिक विश्लेषण]] देखें.
चिकित्सा में नैदानिक ​​​​परीक्षण अधिकांशतः यह निर्धारित करने के लिए अंतरिम विश्लेषण करते हैं कि क्या परीक्षण पहले ही अपने अंतिम बिंदुओं को पूरा कर चुका है। चूँकि, अंतरिम विश्लेषण गलत-धनात्मक परिणामों का विपत्ति उत्पन्न करता है, और इसलिए अंतरिम विश्लेषण की संख्या और समय निर्धारित करने के लिए सीमाओं को रोकने का उपयोग किया जाता है (जिसे अल्फा-व्यय के रूप में भी जाना जाता है, गलत धनात्मक की दर को दर्शाने के लिए) प्रत्येक आर अंतरिम परीक्षण में, यदि संभावना सीमा p से कम है, तो परीक्षण रोक दिया जाता है, जो उपयोग की गई विधि पर निर्भर करता है। [[अनुक्रमिक विश्लेषण]] देखें.


==यह भी देखें==
==यह भी देखें==
Line 90: Line 85:
== संदर्भ                                                                          ==
== संदर्भ                                                                          ==
{{Reflist}}
{{Reflist}}
== अग्रिम पठन ==
== अग्रिम पठन ==
* [[Thomas S. Ferguson]], [https://web.archive.org/web/20080913145914/http://projecteuclid.org/DPubS?service=UI&version=1.0&verb=Display&handle=euclid.ss%2F1177012493  “Who solved the secretary problem?”, Stat. Sci. vol. 4, 282&ndash;296, (1989).]
* [[Thomas S. Ferguson]], [https://web.archive.org/web/20080913145914/http://projecteuclid.org/DPubS?service=UI&version=1.0&verb=Display&handle=euclid.ss%2F1177012493  “Who solved the secretary problem?”, Stat. Sci. vol. 4, 282&ndash;296, (1989).]

Revision as of 12:43, 28 July 2023

संभाव्यता सिद्धांत में, विशेष रूप से स्टोकेस्टिक प्रक्रियाओं के अध्ययन में, एक रुकने का समय (मार्कोव समय, मार्कोव क्षण, वैकल्पिक रुकने का समय या वैकल्पिक समय)[1] एक विशिष्ट प्रकार का "यादृच्छिक समय" है: एक यादृच्छिक चर जिसका मूल्य उस समय के रूप में व्याख्या किया जाता है जिस पर एक दी गई स्टोकेस्टिक प्रक्रिया रुचि का एक निश्चित व्यवहार प्रदर्शित करती है। रुकने के समय को अधिकांशतः एक रुकने के नियम द्वारा परिभाषित किया जाता है, जो वर्तमान स्थिति और पिछली घटनाओं के आधार पर किसी प्रक्रिया को जारी रखने या रोकने का निर्णय लेने के लिए एक तंत्र है, और जो लगभग सदैव किसी सीमित समय पर रुकने का निर्णय लेना होगा।

निर्णय सिद्धांत में रुकने का समय होता है, और वैकल्पिक रोक प्रमेय इस संदर्भ में एक महत्वपूर्ण परिणाम है। जैसा कि चुंग ने अपनी पुस्तक (1982) में कहा है, "समय की सातत्यता को वश में करने" के लिए रुकने के समय को गणितीय प्रमाणों में भी अधिकांशतः प्रयुक्त किया जाता है।

परिभाषा

असतत समय

मान लीजिए कि एक यादृच्छिक चर है, जिसे फ़िल्टर किए गए संभाव्यता समिष्ट पर के मानों के साथ परिभाषित किया गया है। तब को रुकने का समय कहा जाता है (फ़िल्टरेशन के संबंध में), यदि निम्नलिखित नियम प्रयुक्त होती है:

सभी के लिए

सामान्यतः, इस स्थिति का अर्थ है कि समय पर रुकना है या नहीं इसका "निर्णय" केवल समय पर उपस्थित जानकारी पर आधारित होना चाहिए, भविष्य की किसी भी जानकारी पर नहीं है ।

सामान्य स्थिति

मान लीजिए कि एक यादृच्छिक चर है, जिसे फ़िल्टर किए गए संभाव्यता समिष्ट पर में मानों के साथ परिभाषित किया गया है। अधिकतर स्थिति में, तब को रुकने का समय कहा जाता है (फ़िल्टरेशन के संबंध में), यदि निम्नलिखित नियम प्रयुक्त होती है:

सभी के लिए

अनुकूलित प्रक्रिया के रूप में

मान लीजिए कि एक यादृच्छिक चर है, जिसे फ़िल्टर किए गए संभाव्यता समिष्ट पर में मानों के साथ परिभाषित किया गया है। तब को रुकने का समय कहा जाता है यदि स्टोकेस्टिक प्रक्रिया द्वारा परिभाषित है

निस्पंदन के लिए अनुकूलित है।

टिप्पणियाँ

कुछ लेखक स्पष्ट रूप से उन मामलों को बाहर कर देते हैं जहां हो सकता है, जबकि अन्य लेखक को के समापन में कोई भी मान लेने की अनुमति देते हैं।

उदाहरण

यादृच्छिक समय के कुछ उदाहरणों को स्पष्ट करने के लिए जो नियमों को रोक रहे हैं और कुछ जो नहीं हैं, एक जुआरी को एक सामान्य घरेलू बढ़त के साथ रूलेट खेलने पर विचार करें, जो $100 से प्रारंभ होता है और प्रत्येक खेल में लाल रंग पर $1 का दांव लगाता है:

  • ठीक पाँच गेम खेलना रुकने के समय τ = 5 से मेल खाता है, और यह रुकने का नियम है।
  • जब तक उनके पास पैसे ख़त्म न हो जाएं या 500 गेम न खेल लें, तब तक खेलना बंद करने का नियम है।
  • जब तक वे अधिकतम राशि आगे न पहुंच जाएं तब तक खेलना कोई रुकने का नियम नहीं है और न ही रुकने का समय प्रदान करता है, क्योंकि इसके लिए भविष्य के साथ-साथ वर्तमान और अतीत के बारे में जानकारी की आवश्यकता होती है।
  • जब तक वे अपना पैसा दोगुना नहीं कर लेते (यदि आवश्यक हो तो उधार लेना) खेलना कोई बंद करने वाला नियम नहीं है, क्योंकि इस बात की धनात्मक संभावना है कि वे कभी भी अपना पैसा दोगुना नहीं करेंगे।
  • जब तक उनका पैसा दोगुना न हो जाए या पैसा खत्म न हो जाए, तब तक खेलना बंद करने का नियम है, तथापि उनके द्वारा खेले जाने वाले गेम की संख्या की संभावित रूप से कोई सीमा नहीं है, क्योंकि उनके एक सीमित समय में बंद होने की संभावना 1 है।

रुकने के समय की अधिक सामान्य परिभाषा को स्पष्ट करने के लिए, ब्राउनियन गति पर विचार करें, जो एक स्टोकेस्टिक प्रक्रिया है जहां प्रत्येक संभाव्यता समिष्ट पर परिभाषित एक यादृच्छिक चर है। हम इस संभाव्यता समिष्ट पर एक निस्पंदन को परिभाषित करते हैं को फॉर्म के सभी सेटों द्वारा उत्पन्न σ-बीजगणित मानकर, जहां और एक बोरेल समुच्चय है। सहज रूप से, एक घटना E में है यदि और केवल यदि हम केवल समय 0 से समय t तक ब्राउनियन गति को देखकर यह निर्धारित कर सकते हैं कि E सही है या गलत हो सकता है।

  • प्रत्येक स्थिरांक (सामान्यतः) एक रुकने का समय है; यह रुकने के नियम के अनुरूप है "समय पर रुकें।
  • मान लीजिए कि तो ब्राउनियन गति के लिए रुकने का समय है, जो रुकने के नियम के अनुरूप है: "जैसे ही ब्राउनियन गति मान a पर पहुंचती है, रुक जाती है।"
  • एक और रुकने का समय द्वारा दिया गया है। यह रोकने के नियम के अनुरूप है "जैसे ही ब्राउनियन गति 1 समय इकाई लंबाई के सन्निहित खिंचाव पर धनात्मक हो, रुक जाओ।"
  • सामान्य रूप से यदि τ1 और τ2 पर रुक रहे हैं तो उनका न्यूनतम , उनका अधिकतम और उनका योग τ1 + τ2 भी रुकने का समय है। (यह मतभेदों और उत्पादों के लिए सच नहीं है, क्योंकि इन्हें कब रोकना है यह निर्धारित करने के लिए "भविष्य में देखने" की आवश्यकता हो सकती है।)

ऊपर दिए गए दूसरे उदाहरण की तरह हिटिंग टाइम, स्टॉपिंग टाइम के महत्वपूर्ण उदाहरण हो सकते हैं। चूँकि यह दिखाना अपेक्षाकृत सरल है कि अनिवार्य रूप से सभी रुकने के समय हिटिंग समय हैं,[2] यह दिखाना अधिक कठिन हो सकता है कि एक निश्चित हिटिंग समय रुकने का समय है। बाद के प्रकार के परिणामों को हिटिंग टाइम या डेबट प्रमेय या डेबट प्रमेय के रूप में जाना जाता है।

समिष्टीयकरण

स्टॉपिंग टाइम का उपयोग अधिकांशतः स्टोकेस्टिक प्रक्रियाओं के कुछ गुणों को उन स्थितियों में सामान्यीकृत करने के लिए किया जाता है जिनमें आवश्यक गुण केवल समिष्टीय अर्थ में संतुष्ट होती है। सबसे पहले, यदि X एक प्रक्रिया है और τ रुकने का समय है, तो Xτ का उपयोग प्रक्रिया X को समय τ पर रोकने के लिए किया जाता है।

फिर, X को समिष्टीय रूप से कुछ गुण P को संतुष्ट करने के लिए कहा जाता है यदि रुकने के समय τn का अनुक्रम उपस्थित है, जो अनंत तक बढ़ता है और जिसके लिए प्रक्रियाएं होती हैं

गुण पी को संतुष्ट करें। समय सूचकांक समुच्चय I = [0, ∞) के साथ सामान्य उदाहरण इस प्रकार हैं:


समिष्टीय मार्टिंगेल प्रक्रिया' एक प्रक्रिया X एक समिष्टीय मार्टिंगेल है यदि यह कैडलैग है और इसमें रुकने के समय का एक क्रम τn उपस्थित है अनंत तक बढ़ रहा है, जैसे कि

प्रत्येक n के लिए एक मार्टिंगेल (संभावना सिद्धांत) है।


'समिष्टीय रूप से एकीकृत प्रक्रिया' एक गैर-ऋणात्मक और बढ़ती हुई प्रक्रिया X समिष्टीय रूप से एकीकृत है यदि रुकने के समय का क्रम τn उपस्थित है अनंत तक बढ़ रहा है, जैसे कि

प्रत्येक n के लिए.

समय रुकने के प्रकार

समय सूचकांक समुच्चय I = [0,∞) के साथ रुकने के समय को अधिकांशतः कई प्रकारों में से एक में विभाजित किया जाता है, जो इस बात पर निर्भर करता है कि क्या पूर्वानुमान करना संभव है कि वे कब घटित होने वाले हैं।

रुकने का समय τ अनुमानित है यदि यह रुकने के समय τn के बढ़ते अनुक्रम की सीमा के समान्य है जो τn < τ को संतुष्ट करता है जब भी τ > 0. अनुक्रम τn को τ की घोषणा करने के लिए कहा जाता है, और पूर्वानुमानित रुकने के समय को कभी-कभी घोषणा योग्य के रूप में जाना जाता है। पूर्वानुमानित रुकने के समय के उदाहरण निरंतर और अनुकूलित प्रक्रियाओं के हिटिंग समय हैं। यदि τ पहली बार है जब एक सतत और वास्तविक मूल्यवान प्रक्रिया X कुछ मान a के समान्य है, तो इसे अनुक्रम τn द्वारा घोषित किया जाता है, जहां τn पहली बार है जब .

सुगम्य रुकने के समय वे होते हैं जिन्हें पूर्वानुमानित समय के अनुक्रम द्वारा कवर किया जा सकता है। अर्थात्, रुकने का समय τ सुलभ है यदि, P(τ = τn कुछ n के लिए) = 1, जहां τn अनुमानित समय है।

रुकने का समय τ 'पूरी तरह से दुर्गम' है यदि इसे रुकने के समय के बढ़ते क्रम द्वारा कभी भी घोषित नहीं किया जा सकता है। समान रूप से, प्रत्येक पूर्वानुमानित समय σ के लिए P(τ = σ < ∞) = 0। पूरी तरह से दुर्गम रुकने के समय के उदाहरणों में पॉइसन प्रक्रियाओं का जंप समय सम्मिलित है।

प्रत्येक रुकने के समय को विशिष्ट रूप से सुलभ और पूरी तरह से दुर्गम समय में विघटित किया जा सकता है। अर्थात् एक अद्वितीय सुलभ रुकने का समय σ और पूरी तरह से दुर्गम समय υ उपस्थित है जैसे कि τ = σ जब भी σ < ∞, τ = υ जब भी υ < ∞, और τ = ∞ जब भी σ = υ = ∞ ध्यान दें कि इस अपघटन परिणाम के विवरण में, रुकने का समय लगभग निश्चित रूप से सीमित नहीं होना चाहिए, और ∞ के समान्य हो सकता है।

नैदानिक ​​​​परीक्षणों में रोक के नियम

चिकित्सा में नैदानिक ​​​​परीक्षण अधिकांशतः यह निर्धारित करने के लिए अंतरिम विश्लेषण करते हैं कि क्या परीक्षण पहले ही अपने अंतिम बिंदुओं को पूरा कर चुका है। चूँकि, अंतरिम विश्लेषण गलत-धनात्मक परिणामों का विपत्ति उत्पन्न करता है, और इसलिए अंतरिम विश्लेषण की संख्या और समय निर्धारित करने के लिए सीमाओं को रोकने का उपयोग किया जाता है (जिसे अल्फा-व्यय के रूप में भी जाना जाता है, गलत धनात्मक की दर को दर्शाने के लिए) प्रत्येक आर अंतरिम परीक्षण में, यदि संभावना सीमा p से कम है, तो परीक्षण रोक दिया जाता है, जो उपयोग की गई विधि पर निर्भर करता है। अनुक्रमिक विश्लेषण देखें.

यह भी देखें

संदर्भ

  1. Kallenberg, Olav (2017). यादृच्छिक उपाय, सिद्धांत और अनुप्रयोग. Probability Theory and Stochastic Modelling. Vol. 77. Switzerland: Springer. p. 347. doi:10.1007/978-3-319-41598-7. ISBN 978-3-319-41596-3.
  2. Fischer, Tom (2013). "समय को रोकने और समय को रोकने के सिग्मा-बीजगणित के सरल निरूपण पर". Statistics and Probability Letters. 83 (1): 345–349. arXiv:1112.1603. doi:10.1016/j.spl.2012.09.024.

अग्रिम पठन