टॉटोलॉजिकल एक-रूप: Difference between revisions
m (added Category:Vigyan Ready using HotCat) |
No edit summary |
||
Line 3: | Line 3: | ||
गणित में, टॉटोलॉजिकल एक-रूप एक विशेष 1-रूप है जो मैनिफोल्ड <math>Q.</math> के कोटैंजेंट बंडल <math>T^{*}Q</math> पर परिभाषित होता है। भौतिकी में, इसका उपयोग एक बिंदु के वेग के | गणित में, टॉटोलॉजिकल एक-रूप एक विशेष 1-रूप है जो मैनिफोल्ड <math>Q.</math> के कोटैंजेंट बंडल <math>T^{*}Q</math> पर परिभाषित होता है। भौतिकी में, इसका उपयोग एक बिंदु के वेग के मध्य एक पत्राचार बनाने के लिए किया जाता है। एक यांत्रिक प्रणाली और उसकी गति में, इस प्रकार लैग्रेंजियन यांत्रिकी और हैमिल्टनियन यांत्रिकी के मध्य एक पुल प्रदान करता है (कई गुना <math>Q</math> पर) होता हैं। | ||
इस रूप का [[बाहरी व्युत्पन्न]] एक [[सरलीकृत रूप]] देने को परिभाषित करता है जो <math>T^{*}Q</math> एक [[ सिंपलेक्टिक मैनिफ़ोल्ड |सिंपलेक्टिक मैनिफ़ोल्ड]] की संरचना देता है। टॉटोलॉजिकल एक-रूप हैमिल्टनियन यांत्रिकी और लैग्रेंजियन यांत्रिकी की औपचारिकता से संबंधित होने में एक महत्वपूर्ण भूमिका निभाता है। टॉटोलॉजिकल एक-रूप को कभी-कभी लिउविले एक-रूप, पोंकारे एक-रूप, एक-रूप या सिंपलेक्टिक पोटेंशियल भी कहा जाता है। एक समान वस्तु [[स्पर्शरेखा बंडल]] पर [[विहित वेक्टर क्षेत्र|विहित सदिश क्षेत्र]] है। | इस रूप का [[बाहरी व्युत्पन्न]] एक [[सरलीकृत रूप]] देने को परिभाषित करता है जो <math>T^{*}Q</math> एक [[ सिंपलेक्टिक मैनिफ़ोल्ड |सिंपलेक्टिक मैनिफ़ोल्ड]] की संरचना देता है। टॉटोलॉजिकल एक-रूप हैमिल्टनियन यांत्रिकी और लैग्रेंजियन यांत्रिकी की औपचारिकता से संबंधित होने में एक महत्वपूर्ण भूमिका निभाता है। टॉटोलॉजिकल एक-रूप को कभी-कभी लिउविले एक-रूप, पोंकारे एक-रूप, एक-रूप या सिंपलेक्टिक पोटेंशियल भी कहा जाता है। एक समान वस्तु [[स्पर्शरेखा बंडल]] पर [[विहित वेक्टर क्षेत्र|विहित सदिश क्षेत्र]] है। | ||
Line 11: | Line 11: | ||
<math>n = \mathop{\text{dim}}Q</math> और <math>(p_1, \ldots, p_n) \in U \subseteq \R^n</math> के साथ <math>p. </math> का समन्वय प्रतिनिधित्व है। | <math>n = \mathop{\text{dim}}Q</math> और <math>(p_1, \ldots, p_n) \in U \subseteq \R^n</math> के साथ <math>p. </math> का समन्वय प्रतिनिधित्व है। | ||
<math>T^*Q</math> पर कोई भी निर्देशांक जो इस परिभाषा को कुल अंतर (स्पष्ट रूप) तक संरक्षित करता है, उसे विहित निर्देशांक कहा जा सकता है; विभिन्न विहित समन्वय प्रणालियों के | <math>T^*Q</math> पर कोई भी निर्देशांक जो इस परिभाषा को कुल अंतर (स्पष्ट रूप) तक संरक्षित करता है, उसे विहित निर्देशांक कहा जा सकता है; विभिन्न विहित समन्वय प्रणालियों के मध्य परिवर्तनों को विहित परिवर्तनों के रूप में जाना जाता है। | ||
कैनोनिकल सिंपलेक्टिक रूप, जिसे पोंकारे टू-रूप के रूप में भी जाना जाता है, द्वारा दिया गया है | कैनोनिकल सिंपलेक्टिक रूप, जिसे पोंकारे टू-रूप के रूप में भी जाना जाता है, द्वारा दिया गया है | ||
<math display=block>\omega = -d\theta = \sum_i dq^i \wedge dp_i</math> | <math display=block>\omega = -d\theta = \sum_i dq^i \wedge dp_i</math> | ||
सामान्य [[फाइबर बंडल]] तक इस अवधारणा के विस्तार को [[सोल्डर फॉर्म|सोल्डर रूप]] के रूप में जाना जाता है। परंपरा के अनुसार, जब भी रूप की एक अद्वितीय, विहित परिभाषा होती है, | सामान्य [[फाइबर बंडल]] तक इस अवधारणा के विस्तार को [[सोल्डर फॉर्म|सोल्डर रूप]] के रूप में जाना जाता है। परंपरा के अनुसार, जब भी रूप की एक अद्वितीय, विहित परिभाषा होती है, तब कोई व्यक्ति कैनोनिकल रूप वाक्यांश का उपयोग करता है, और जब भी कोई इच्छानुसार विकल्प बनाना होता है, तब कोई सोल्डर रूप शब्द का उपयोग करता है। [[बीजगणितीय ज्यामिति]] और [[जटिल ज्यामिति|सम्मिश्र ज्यामिति]] में [[विहित वर्ग]] के साथ अस्पष्ट के कारण विहित शब्द को हतोत्साहित किया जाता है, और [[टॉटोलॉजिकल बंडल]] की तरह टॉटोलॉजिकल शब्द को प्राथमिकता दी जाती है। | ||
==समन्वय-मुक्त परिभाषा== | ==समन्वय-मुक्त परिभाषा== | ||
Line 87: | Line 87: | ||
for every <math>\mathbf{q} \in U</math> and <math>c_j \in \R.</math> Since <math>c_j = p^j / q^j,</math> we see that <math>\alpha_{p_i}(\mathbf{p},\mathbf{q}) = 0,</math> as long as <math>q^j \neq 0</math> for all <math>j.</math> On the other hand, the function <math>\alpha_{p_i}</math> is continuous, and hence <math>\alpha_{p_i}(\mathbf{p},\mathbf{q}) = 0</math> on <math>\R^n \times U.</math> | for every <math>\mathbf{q} \in U</math> and <math>c_j \in \R.</math> Since <math>c_j = p^j / q^j,</math> we see that <math>\alpha_{p_i}(\mathbf{p},\mathbf{q}) = 0,</math> as long as <math>q^j \neq 0</math> for all <math>j.</math> On the other hand, the function <math>\alpha_{p_i}</math> is continuous, and hence <math>\alpha_{p_i}(\mathbf{p},\mathbf{q}) = 0</math> on <math>\R^n \times U.</math> | ||
|} | |} | ||
तो, पुल-बैक और बाहरी व्युत्पन्न के | तो, पुल-बैक और बाहरी व्युत्पन्न के मध्य कम्यूटेशन द्वारा, | ||
<math display=block>\beta^*\omega = -\beta^*d\theta = -d (\beta^*\theta) = -d\beta.</math> | <math display=block>\beta^*\omega = -\beta^*d\theta = -d (\beta^*\theta) = -d\beta.</math> | ||
==कार्रवाई== | ==कार्रवाई== | ||
यदि <math>H</math> कोटैंजेंट बंडल पर एक हैमिल्टनियन यांत्रिकी है और <math>X_H</math> इसका [[हैमिल्टनियन वेक्टर फ़ील्ड|हैमिल्टनियन सदिश फ़ील्ड]] है, | यदि <math>H</math> कोटैंजेंट बंडल पर एक हैमिल्टनियन यांत्रिकी है और <math>X_H</math> इसका [[हैमिल्टनियन वेक्टर फ़ील्ड|हैमिल्टनियन सदिश फ़ील्ड]] है, तब संबंधित [[क्रिया (भौतिकी)]] <math>S</math> द्वारा दिया गया है | ||
<math display=block>S = \theta(X_H).</math> | <math display=block>S = \theta(X_H).</math> | ||
अधिक व्यावहारिक शब्दों में, हैमिल्टनियन प्रवाह [[गति के हैमिल्टन-जैकोबी समीकरण]] का पालन करने वाले एक यांत्रिक प्रणाली के मौलिक प्रक्षेपवक्र का प्रतिनिधित्व करता है। हैमिल्टनियन प्रवाह हैमिल्टनियन सदिश क्षेत्र का अभिन्न अंग है, और इसलिए कोई [[क्रिया-कोण चर]] के लिए पारंपरिक नोटेशन का उपयोग करते हुए लिखता है: | अधिक व्यावहारिक शब्दों में, हैमिल्टनियन प्रवाह [[गति के हैमिल्टन-जैकोबी समीकरण]] का पालन करने वाले एक यांत्रिक प्रणाली के मौलिक प्रक्षेपवक्र का प्रतिनिधित्व करता है। हैमिल्टनियन प्रवाह हैमिल्टनियन सदिश क्षेत्र का अभिन्न अंग है, और इसलिए कोई [[क्रिया-कोण चर]] के लिए पारंपरिक नोटेशन का उपयोग करते हुए लिखता है: | ||
Line 116: | Line 116: | ||
{{reflist}} | {{reflist}} | ||
* [[Ralph Abraham (mathematician)|Ralph Abraham]] and [[Jerrold E. Marsden]], ''Foundations of Mechanics'', (1978) Benjamin-Cummings, London {{isbn|0-8053-0102-X}} ''See section 3.2''. | * [[Ralph Abraham (mathematician)|Ralph Abraham]] and [[Jerrold E. Marsden]], ''Foundations of Mechanics'', (1978) Benjamin-Cummings, London {{isbn|0-8053-0102-X}} ''See section 3.2''. | ||
Revision as of 16:04, 25 August 2023
गणित में, टॉटोलॉजिकल एक-रूप एक विशेष 1-रूप है जो मैनिफोल्ड के कोटैंजेंट बंडल पर परिभाषित होता है। भौतिकी में, इसका उपयोग एक बिंदु के वेग के मध्य एक पत्राचार बनाने के लिए किया जाता है। एक यांत्रिक प्रणाली और उसकी गति में, इस प्रकार लैग्रेंजियन यांत्रिकी और हैमिल्टनियन यांत्रिकी के मध्य एक पुल प्रदान करता है (कई गुना पर) होता हैं।
इस रूप का बाहरी व्युत्पन्न एक सरलीकृत रूप देने को परिभाषित करता है जो एक सिंपलेक्टिक मैनिफ़ोल्ड की संरचना देता है। टॉटोलॉजिकल एक-रूप हैमिल्टनियन यांत्रिकी और लैग्रेंजियन यांत्रिकी की औपचारिकता से संबंधित होने में एक महत्वपूर्ण भूमिका निभाता है। टॉटोलॉजिकल एक-रूप को कभी-कभी लिउविले एक-रूप, पोंकारे एक-रूप, एक-रूप या सिंपलेक्टिक पोटेंशियल भी कहा जाता है। एक समान वस्तु स्पर्शरेखा बंडल पर विहित सदिश क्षेत्र है।
टॉटोलॉजिकल एक-रूप को परिभाषित करने के लिए, एक समन्वय चार्ट का चयन करें पर और एक विहित समन्वय प्रणाली पर एक इच्छानुसार बिंदु चुनें जो कोटैंजेंट बंडल की परिभाषा के अनुसार, कहाँ और तनातनी एक-रूप द्वारा दिया गया है
पर कोई भी निर्देशांक जो इस परिभाषा को कुल अंतर (स्पष्ट रूप) तक संरक्षित करता है, उसे विहित निर्देशांक कहा जा सकता है; विभिन्न विहित समन्वय प्रणालियों के मध्य परिवर्तनों को विहित परिवर्तनों के रूप में जाना जाता है।
कैनोनिकल सिंपलेक्टिक रूप, जिसे पोंकारे टू-रूप के रूप में भी जाना जाता है, द्वारा दिया गया है
समन्वय-मुक्त परिभाषा
टॉटोलॉजिकल 1-रूप को चरण स्थान पर एक रूप के रूप में अमूर्त रूप से भी परिभाषित किया जा सकता है। मान लीजिए एक मैनिफोल्ड है और कोटैंजेंट बंडल या चरण स्थान है। होने देना
प्रेरित स्पर्शरेखा मानचित्र बनें। मान लीजिए कि पर एक बिंदु है, चूँकि कोटैंजेंट बंडल है, हम को पर स्पर्शरेखा स्थान का मानचित्र समझ सकते हैं।
सिम्पेक्टिक क्षमता
सहानुभूति क्षमता को सामान्यतः थोड़ा अधिक स्वतंत्र रूप से परिभाषित किया जाता है, और केवल स्थानीय रूप से भी परिभाषित किया जाता है: यह कोई एक-रूप है जिसमे ऐसा है कि ; वास्तव में सिम्प्लेक्टिक क्षमताएं विहित 1-रूप से एक बंद अंतर रूप से भिन्न होती हैं।
गुण
टॉटोलॉजिकल एक-रूप अद्वितीय एक-रूप है जो पुलबैक_(डिफरेंशियल ज्योमेट्री) को समाप्त करता है। अथार्त चलो 1-रूप पर हो एक अनुभाग है (फाइबर_बंडल) एक इच्छानुसार 1-रूप के लिए पर का पुलबैक द्वारा परिभाषा के अनुसार, यहाँ, का पुशफॉरवर्ड (अंतर) है पसंद 1-रूप पर है तनातनी एक-रूप संपत्ति के साथ एकमात्र रूप है कि प्रत्येक 1-फ़ॉर्म के लिए पर है
Proof. |
For a chart on (where let be the coordinates on where the fiber coordinates are associated with the linear basis By assumption, for every
or
It follows that
which implies that
Step 1. We have Step 1'. For completeness, we now give a coordinate-free proof that for any 1-form Observe that, intuitively speaking, for every and the linear map in the definition of projects the tangent space onto its subspace As a consequence, for every and
where is the instance of at the point that is,
Applying the coordinate-free definition of to obtain
Step 2. It is enough to show that if for every one-form Let
where
Substituting into the identity obtain
or equivalently, for any choice of functions
Let where In this case, For every and
This shows that on and the identity
must hold for an arbitrary choice of functions If (with indicating superscript) then and the identity becomes
for every and Since we see that as long as for all On the other hand, the function is continuous, and hence on
|
तो, पुल-बैक और बाहरी व्युत्पन्न के मध्य कम्यूटेशन द्वारा,
कार्रवाई
यदि कोटैंजेंट बंडल पर एक हैमिल्टनियन यांत्रिकी है और इसका हैमिल्टनियन सदिश फ़ील्ड है, तब संबंधित क्रिया (भौतिकी) द्वारा दिया गया है
ऊर्जा स्थिरांक को धारण करके परिभाषित कई गुना पर अभिन्न अंग को समझा जाता है: ।
रीमैनियन और स्यूडो-रीमैनियन मैनिफोल्ड्स पर
यदि अनेक गुना एक रीमानियन या छद्म-रिमानियन मेट्रिक (गणित) है तब सामान्यीकृत निर्देशांक के संदर्भ में संबंधित परिभाषाएँ बनाई जा सकती हैं। विशेष रूप से, यदि हम मीट्रिक को मानचित्र के रूप में लेते हैं
सामान्यीकृत निर्देशांक में पर किसी के पास
मीट्रिक किसी को में एक इकाई-त्रिज्या क्षेत्र को परिभाषित करने की अनुमति देता है। इस क्षेत्र तक सीमित विहित एक-रूप एक संपर्क संरचना बनाता है; इस मीट्रिक के लिए जियोडेसिक प्रवाह उत्पन्न करने के लिए संपर्क संरचना का उपयोग किया जा सकता है।
संदर्भ
- Ralph Abraham and Jerrold E. Marsden, Foundations of Mechanics, (1978) Benjamin-Cummings, London ISBN 0-8053-0102-X See section 3.2.