एक्स - रे फ़ोटोइलैक्ट्रॉन स्पेक्ट्रोस्कोपी: Difference between revisions

From Vigyanwiki
No edit summary
No edit summary
 
(28 intermediate revisions by 5 users not shown)
Line 1: Line 1:
{{Short description|Spectroscopic technique}}
[[File:system2.gif|thumb|238x238px|[[एकरंगा]] एक्सपीएस सिस्टम के मूल घटक।]]चुकि एक विशेष तरंग दैर्ध्य पर एक्स-किरण की ऊर्जा ज्ञात है (α एक्स- किरण , Eफोटॉन = 1486.7 इलेक्ट्रान वोल्ट के लिए), और क्योंकि उत्सर्जित इलेक्ट्रॉनों की गतिज ऊर्जा को मापा जा सकता है, अतः उत्सर्जित इलेक्ट्रॉनों में से प्रत्येक की इलेक्ट्रॉन बंधन ऊर्जा  प्रकाश वैद्युत  प्रभाव समीकरण का उपयोग करके निर्धारित हो सकती है    
[[File:system2.gif|thumb|350px|[[एकरंगा]] XPS सिस्टम के मूल घटक।]][[एक्स-रे]] फोटो[[इलेक्ट्रॉन]] स्पेक्ट्रोस्कोपी (एक्सपीएस) एक सतह-संवेदनशील मात्रात्मक स्पेक्ट्रोस्कोपिक तकनीक है जो [[प्रकाश विद्युत प्रभाव]] पर आधारित है जो सामग्री (प्राथमिक संरचना) के भीतर मौजूद तत्वों की पहचान कर सकती है या इसकी सतह को आवरण युक्त कर रही है, साथ ही साथ उनकी रासायनिक स्थिति और सामग्री में इलेक्ट्रॉनिक अवस्थाओं,  समग्र इलेक्ट्रॉनिक संरचना और घनत्व बारे में जानकारी प्रदान करती है। । XPS एक शक्तिशाली मापन तकनीक है क्योंकि यह न केवल यह दर्शाता है कि कौन से तत्व मौजूद हैं, बल्कि यह भी कि वे किन अन्य तत्वों से जुड़े हैं। तकनीक का उपयोग सतह के पार तात्विक संरचना की रेखा रेखाचित्र में या आयन-बीम नक़्क़ाशी के साथ संयुक्त होने पर गहराई से रूपरेखा में किया जा सकता है। यह अक्सर उनके रूप में प्राप्त अवस्था में या क्रैकिंग, स्क्रैपिंग, गर्मी के संपर्क में, प्रतिक्रियाशील गैसों या विलयन, पराबैंगनी प्रकाश, या [[आयन आरोपण]] के दौरान सामग्री में रासायनिक प्रक्रियाओं का अध्ययन करने के लिए लागू होता है।    


एक्सपीएस [[प्रकाश उत्सर्जन स्पेक्ट्रोस्कोपी]] के परिवार से संबंधित है जिसमें एक्स-रे के बीम के साथ सामग्री को विकिरणित करके इलेक्ट्रॉन जनसंख्या स्पेक्ट्रा प्राप्त किया जाता है। [[रासायनिक अवस्था]]ओं का अनुमान [[गतिज ऊर्जा]] के मापन और उत्सर्जित इलेक्ट्रॉनों की संख्या से लगाया जाता है। XPS को उच्च वैक्यूम (अवशिष्ट गैस दबाव p ~ 10−6 Pa) या अल्ट्रा-हाई वैक्यूम (p <10−7 Pa) स्थितियों की आवश्यकता होती है, हालांकि विकास का एक वर्तमान क्षेत्र परिवेश-दबाव XPS है, जिसमें नमूनों का विश्लेषण कुछ दसियों मिलीबार दबावों पर किया जाता है।
== <math>E_\text{binding} = E_\text{photon} - \left(E_\text{kinetic} + \phi\right)</math>, ==
 
जहां ''E''<sub>binding</sub> रासायनिक क्षमता के सापेक्ष मापे गए इलेक्ट्रॉन की बंधन ऊर्जा (B E) है, ''E''<sub>फ़ोटॉन</sub> उपयोग किए जा रहे एक्स-किरण  फोटॉनों की ऊर्जा है, ''E''<sub>गतिज</sub> इलेक्ट्रॉन की गतिज ऊर्जा है जैसा कि उपकरण द्वारा मापा जाता है और सामग्री की विशिष्ट सतह के लिए [[समारोह का कार्य|कार्य फलन]] जैसा शब्द है, जिसमें वास्तविक माप में [[वोल्टा क्षमता|वोल्ट क्षमता]] के कारण उपकरण के कार्य फलन द्वारा एक छोटा सुधार सम्मिलित है, यह समीकरण अनिवार्य रूप से ऊर्जा समीकरण का संरक्षण है। कार्य फलन-जैसी अवधि {\displaystyle \phi }\phi को एक समायोज्य सहायक सुधार कारक के रूप में माना जा सकता है जो फोटोइलेक्ट्रॉन द्वारा दी गई गतिज ऊर्जा के कुछ eV के लिए वर्णन किया जाता है क्योंकि यह बल्क से उत्सर्जित होता है और डिटेक्टर द्वारा अवशोषित होता है। यह एक स्थिरांक है जिसे अभ्यास में शायद ही कभी समायोजित करने की आवश्यकता होती है।  
जब प्रयोगशाला एक्स-रे स्रोतों का उपयोग किया जाता है, तो एक्सपीएस आसानी से [[हाइड्रोजन]] और [[हीलियम]] को छोड़कर सभी तत्वों का पता लगा लेता है। पता लगाने की सीमा पार्ट्स प्रति मिलियन(पीपीएम) में है, लेकिन भागों प्रति मिलियन (पीपीएम) लंबे संग्रह समय और शीर्ष सतह पर सान्द्रता के साथ प्राप्त करने योग्य हैं।
 
XPS नियमित रूप से [[अकार्बनिक यौगिक]], धातु [[मिश्र धातु]]ओं का विश्लेषण करने के लिए उपयोग किया जाता है।<ref>{{Cite journal |last1=Li|first1=Yang|last2=He|first2=Yongyong|last3=Qiu|first3=Jianxun|last4=Zhao|first4=Jun|last5=Ye|first5=Qianwen|last6=Zhu|first6=Yijie|last7=Mao|first7=Junyuan|date=2018|title=सक्रिय स्क्रीन प्लाज्मा उपचार द्वारा अनाकार/नैनोक्रिस्टलाइन ऑक्सी-नाइट्राइड चरणों के जमाव के माध्यम से ऑस्टेनिटिक स्टेनलेस स्टील के पिटिंग संक्षारण प्रतिरोध में वृद्धि|journal=Materials Research|volume=21|issue=6|doi=10.1590/1980-5373-mr-2017-0697|issn=1516-1439|doi-access=free}}</ref> अर्धचालक,<ref>{{Cite journal|last1=Rahmayeni|last2=Alfina |first2=Aimi|last3=Stiadi|first3=Yeni|last4= Lee|first4=Hye Jin|last5=Zulhadjri|date=2019|title=ZnO-CoFe2O4 सेमीकंडक्टर फोटोकैटलिस्ट्स का ग्रीन सिंथेसिस और लक्षण वर्णन Rambutan (नेफेलियम लैपेसियम एल।) पील एक्सट्रैक्ट का उपयोग करके तैयार किया गया|journal=Materials Research |volume= 22|issue=5|doi=10.1590/1980-5373-mr-2019-0228|issn=1516-1439|doi-access=free}}</ref> [[पॉलीमर]], [[तत्व (रसायन विज्ञान)|तत्व]], [[उत्प्रेरक]],<ref>{{Cite journal|last1=Gumerova|first1=Nadiia I. |last2= Rompel|first2=Annette |date=2018-02-07 |title=इलेक्ट्रॉन-समृद्ध पॉलीऑक्सोमेटलेट्स का संश्लेषण, संरचना और अनुप्रयोग|journal=Nature Reviews Chemistry|volume= 2|issue=2|pages=1–20 |doi=10.1038/s41570-018-0112 |issn=2397-3358|url=https://phaidra.univie.ac.at/o:869585 }}</ref><ref>{{Cite journal|date=2014|title=चरण-शुद्ध MoVTeNb M1 ऑक्साइड उत्प्रेरक पर प्रोपेन ऑक्सीकरण में प्रतिक्रिया नेटवर्क|url=https://pure.mpg.de/rest/items/item_1896844_6/component/file_1896843/content|journal= Journal of Catalysis|volume=311|pages=369–385|doi= 10.1016/j.jcat.2013.12.008|hdl=11858/00-001M-0000-0014-F434-5|last1=Naumann d'Alnoncourt|first1=Raoul|last2=Csepei |first2= Lénárd-István|last3=Hävecker|first3=Michael|last4= Girgsdies |first4= Frank|last5=Schuster|first5=Manfred E.|last6=Schlögl|first6=Robert|last7=Trunschke|first7=Annette|hdl-access=free}}</ref><ref>{{Cite journal|date=2012|title=ऐक्रेलिक एसिड के लिए प्रोपेन के चयनात्मक ऑक्सीकरण में ऑपरेशन के दौरान चरण-शुद्ध M1 MoVTeNb ऑक्साइड की सतह रसायन|url=https://pure.mpg.de/rest/items/item_1108560_8/component/file_1402724/content |journal=J. Catal.|volume= 285|pages=48–60|doi=10.1016/j.jcat.2011.09.012|hdl=11858/00-001M-0000-0012-1BEB-F |last1=Hävecker|first1= Michael|last2=Wrabetz|first2=Sabine|last3=Kröhnert|first3=Jutta|last4=Csepei|first4=Lenard-Istvan|last5=Naumann d'Alnoncourt|first5=Raoul|last6=Kolen'Ko|first6=Yury V.|last7=Girgsdies|first7=Frank|last8= Schlögl|first8=Robert |last9=Trunschke|first9=Annette|hdl-access=free}}</ref><ref>{{Cite journal|last1=Voiry|first1=Damien|last2= Shin|first2=Hyeon Suk |last3=Loh|first3=Kian Ping|last4=Chhowalla|first4=Manish|date=January 2018|title=हाइड्रोजन के विकास और CO2 की कमी के लिए निम्न-आयामी उत्प्रेरक|journal=Nature Reviews Chemistry|volume=2|issue=1|pages= 0105 |doi=10.1038/s41570-017-0105 |issn=2397-3358}}</ref> चश्मा, मिट्टी के पात्र, [[रंग]], कागज, [[स्याही]], [[लकड़ी]], पौधे के हिस्से, सौंदर्य प्रसाधन  मेकअप, [[दांत]], हड्डियां, [[प्रत्यारोपण (दवा)]], जैव सामग्री,<ref>Ray, S. and A.G. Shard, Quantitative Analysis of Adsorbed Proteins by X-ray Photoelectron Spectroscopy. Analytical Chemistry, 2011. 83(22): p. 8659-8666.</ref> [[परत]],<ref>{{Cite journal|last1=Vashishtha|first1=Nitesh|last2=Sapate|first2=Sanjay |last3= Vashishtha |first3=Nitesh|last4= Sapate|first4= Sanjay|date=2019|title=थर्मली स्प्रेड कार्बाइड आधारित कोटिंग्स के पहनने की प्रतिक्रिया पर प्रायोगिक मापदंडों का प्रभाव|journal=Materials Research|volume=22|issue=1|doi=10.1590/1980-5373-mr-2018-0475 |issn=1516-1439|doi-access=free}}</ref> चिपचिपा [[तेल]], [[गोंद]], आयन-संशोधित सामग्री<ref>"Structural, functional and magnetic ordering modifications in graphene oxide and graphite by 100 MeV gold ion irradiation". Vacuum. 182: 109700. 2020-12-01. doi:10.1016/j.vacuum.2020.109700</ref>, कुछ हद तक कम नियमित रूप से XPS का उपयोग [[हाइड्रोजेल]] और जैविक नमूनों जैसी सामग्रियों के [[हाइड्रेट]] रूपों का विश्लेषण करने के लिए किया जाता है, उन्हें एक अतिशुद्ध वातावरण में उनके हाइड्रेटेड अवस्था में जमा करके और बर्फ की बहुपरतों को विश्लेषण से पहले दूर करने की अनुमति देता है।
 
 
<!-- Move somewhere else:
This means if you have a metal oxide and you want to know if the metal is in a +1 or +2 state, using XPS will allow you to find that ratio. However at most the instrument will only probe 20 nm into a sample. that escape from the top 10 nm of the material. X -->
 
== बुनियादी भौतिकी ==
[[Image:XPS PHYSICS.png|thumb|350px|एक्सपीएस भौतिकी - फोटोइलेक्ट्रिक प्रभाव।]]क्योंकि विशिष्ट तरंगदैर्घ्य वाले एक्स-रे की ऊर्जा (Al K<sub>α</sub> एक्स-रे, ''E''<sub>photon</sub> = 1486.7 eV) ज्ञात होती है, क्योंकि उत्सर्जित इलेक्ट्रॉनों की गतिज ऊर्जा को मापा जाता है, उत्सर्जित इलेक्ट्रॉनों में से प्रत्येक की इलेक्ट्रॉन बंधन ऊर्जा को फोटोइलेक्ट्रिक प्रभाव समीकरण का उपयोग करके निर्धारित किया जा सकता है, 
 
:<math>E_\text{binding} = E_\text{photon} - \left(E_\text{kinetic} + \phi\right)</math>,
 
जहां ''E''<sub>binding</sub> रासायनिक क्षमता, ''E'' के सापेक्ष मापी गई इलेक्ट्रॉन की बंधन ऊर्जा (बीई) है ''E''<sub>photon</sub> उपयोग किए जा रहे एक्स-रे फोटॉनों की ऊर्जा है, ''E''<sub>kinetic</sub> उपकरण द्वारा मापी गई इलेक्ट्रॉन की गतिज ऊर्जा है और <math> \phi </math> सामग्री की विशिष्ट सतह के लिए एक [[समारोह का कार्य|कार्य फलन]] जैसा शब्द है, जिसमें वास्तविक माप में [[वोल्टा क्षमता|वोल्ट क्षमता]] के कारण उपकरण के कार्य फलन द्वारा एक छोटा सुधार सम्मिलित होता है। यह समीकरण अनिवार्य रूप से ऊर्जा संरक्षण का समीकरण है। कार्य फलन जैसा शब्द <math> \phi </math> एक समायोज्य यंत्र सुधार कारक के रूप में सोचा जा सकता है जो फोटोइलेक्ट्रॉन द्वारा दी गई गतिज ऊर्जा के कुछ ईवी के लिए उत्तरदायी है क्योंकि यह बल्क से उत्सर्जित होता है और डिटेक्टर द्वारा अवशोषित होता है। यह एक स्थिरांक है जिसे अभ्यास में शायद ही कभी समायोजित करने की आवश्यकता होती है।  


== इतिहास ==
== इतिहास ==
[[File:Silver Target in XPS Spectrometer cropped.jpg|thumb|350x350px|एक पुराने प्रकार के, गैर-मोनोक्रोमैटिक XPS सिस्टम के अंदर का दृश्य।|alt=]]
[[File:Silver Target in XPS Spectrometer cropped.jpg|thumb|237x237px|एक पुराने प्रकार के, गैरएकवर्णी एक्सपीएस व्यवस्था के अंदर का दृश्य।|alt=]]
[[File:Example of an XPS tool.jpg|thumb|एक्स-रे फोटोइलेक्ट्रॉन स्पेक्ट्रोमीटर का उदाहरण]]1887 में, [[हेनरिक रुडोल्फ हर्ट्ज़]] ने फोटोइलेक्ट्रिक प्रभाव की खोज की लेकिन व्याख्या नहीं कर सके, जिसे बाद में 1905 में [[अल्बर्ट आइंस्टीन]] (1921 ) ने फोटोइलेक्ट्रिक प्रभाव की व्याख्या की इसके लिए उनको [[भौतिकी में नोबेल पुरस्कार]] द्वारा सम्मानित गया था। आइंस्टीन के प्रकाशन के दो साल बाद, 1907 में, पी.डी. इनेस ने विल्हेम रॉन्टगन रॉन्टगन ट्यूब, [[हेल्महोल्ट्ज़ कॉइल्स]], एक चुंबकीय क्षेत्र गोलार्द्ध (एक इलेक्ट्रॉन गतिज ऊर्जा विश्लेषक), और फोटोग्राफिक प्लेटों के साथ प्रयोग किया, जिससे उत्सर्जित इलेक्ट्रॉनों के व्यापक बैंड को वेग के कार्य के रूप में रिकॉर्ड किया जा सके, प्रभावी रूप से पहले XPS स्पेक्ट्रम की रिकॉर्डिंग की गई। [[हेनरी मोस्ले]], रॉलिन्सन और रॉबिन्सन सहित अन्य शोधकर्ताओं ने बैंड में विवरणों को छांटने के लिए स्वतंत्र रूप से विभिन्न प्रयोग किए।{{citation needed|date=July 2019}} [[द्वितीय विश्व युद्ध]] के बाद, [[काई सिगबान]] और [[अपसला]] ([[स्वीडन]]) में उनके शोध समूह ने उपकरण में कई महत्वपूर्ण सुधार किए, और 1954 में [[सोडियम क्लोराइड]] (NaCl) का पहला उच्च-ऊर्जा-रिज़ॉल्यूशन XPS स्पेक्ट्रम दर्ज किया, जिससे XPS की क्षमता का पता चला।<ref>{{cite journal|doi= 10.1016/S0029-5582(56)80022-9|title=β-रे स्पेक्ट्रोस्कोपी 1 : 10<sup>5</sup> की परिशुद्ध रेंज में| year=1956|last1=Siegbahn|first1=K.|last2=Edvarson|first2=K. I. Al|journal=Nuclear Physics|volume=1|pages=137–159|issue= 8|bibcode = 1956NucPh...1..137S }}</ref> कुछ वर्षों बाद 1967 में, सिगबैन ने XPS का एक व्यापक अध्ययन प्रकाशित किया, जिससे XPS की उपयोगिता की तुरंत पहचान हो गई और साथ ही पहला [[हार्ड एक्स-रे]] उत्सर्जन प्रयोग, जिसे उन्होंने रासायनिक विश्लेषण के लिए इलेक्ट्रॉन स्पेक्ट्रोस्कोपी के रूप में संदर्भित किया ( ईएससीए)।<ref>{{Cite book |first=Kai |last=Siegbahn |url=http://worldcat.org/oclc/310539900 |title=इलेक्ट्रॉन स्पेक्ट्रोस्कोपी के माध्यम से ईएससीए परमाणु, आणविक और ठोस राज्य संरचना अध्ययन: उप्साला के रॉयल सोसाइटी ऑफ साइंस #एन्स को प्रस्तुत किया गया, 3 दिसंबर, 1965|date=1967 |publisher=Almqvist & Wiksell |oclc=310539900}}</ref> अमेरिका में [[हेवलेट पैकर्ड]] में इंजीनियरों के एक छोटे समूह (माइक केली, चार्ल्स ब्रायसन, लेवियर फेय, रॉबर्ट चानी) ने सिगबैन के सहयोग से 1969 में पहला वाणिज्यिक मोनोक्रोमैटिक एक्सपीएस उपकरण तैयार किया। सिगबैन को 1981 में भौतिकी के लिए नोबेल पुरस्कार मिला , XPS को एक उपयोगी विश्लेषणात्मक उपकरण के रूप में विकसित करने के उनके व्यापक प्रयासों को स्वीकार करने के लिए।<ref>[http://nobelprize.org/nobel_prizes/physics/laureates/1981/siegbahn-lecture.html Electron Spectroscopy for Atoms, Molecules and Condensed Matter], Nobel Lecture, December 8, 1981</ref> सीगबैन के काम के समानांतर, [[इंपीरियल कॉलेज लंदन]] (और बाद में [[ऑक्सफोर्ड विश्वविद्यालय]] में) में डेविड डब्ल्यू टर्नर ने हीलियम लैंप का उपयोग करके आणविक प्रजातियों के लिए [[पराबैंगनी फोटोइलेक्ट्रॉन स्पेक्ट्रोस्कोपी]] (यूपीएस) विकसित किया।<ref>{{cite journal|doi=10.1063/1.1733134|title=फोटोइलेक्ट्रॉन ऊर्जा मापन द्वारा आयनीकरण क्षमता का निर्धारण|year=1962|last1=Turner|first1=D. W.|last2=Jobory|first2=M. I. Al|journal=The Journal of Chemical Physics|volume=37|pages=3007|bibcode = 1962JChPh..37.3007T|issue=12 }}</ref>
[[File:Example of an XPS tool.jpg|thumb|एक्स किरण प्रकाशिक इलेक्ट्रॉन स्पेक्ट्रोमीटर का उदाहरण|237x237px]]1887 में, [[हेनरिक रुडोल्फ हर्ट्ज़]] ने फोटोइलेक्ट्रिक प्रभाव की खोज की लेकिन व्याख्या नहीं कर सके, जिसे बाद में 1905 में [[अल्बर्ट आइंस्टीन]] (1921 में भौतिकी में नोबेल पुरस्कार) द्वारा समझाया गया था। आइंस्टीन के प्रकाशन के दो साल बाद 1907 में पी.डी. इनेस ने विल्हेम रॉन्टगन रॉन्टगन नलिका , [[हेल्महोल्ट्ज़ कॉइल्स|हेल्महोल्ट्ज़ कुंडली]] , एक चुंबकीय क्षेत्र गोलार्द्ध (एक इलेक्ट्रॉन गतिज ऊर्जा विश्लेषक), और छायाचित्रित प्लेटों के साथ प्रयोग किया, जिससे उत्सर्जित इलेक्ट्रॉनों के व्यापक धारियों को वेग फलन के रूप में अभिलेखबद्ध किया जा सके, जिससे प्रभावी रूप से पहले एक्सपीएस( XPS ) वर्णक्रम का अभिलेखन किया गया  । [[हेनरी मोस्ले]] और रॉबिन्सन सहित अन्य शोधकर्ताओं ने बन्ध में विवरणों को छांटने के लिए स्वतंत्र रूप से विभिन्न प्रयोग किए।{{citation needed|date=July 2019}} [[द्वितीय विश्व युद्ध]] के बाद, [[काई सिगबान]] और [[अपसला]] ([[स्वीडन]]) में उनके शोध समूह ने उपकरण में कई महत्वपूर्ण सुधार किए, और 1954 में [[सोडियम क्लोराइड]] (NaCl) का पहला उच्च-ऊर्जा- विश्लेषण एक्सपीएस वर्णक्रम दर्ज किया, जिससे एक्सपीएस की क्षमता का पता चला।<ref>{{cite journal|doi= 10.1016/S0029-5582(56)80022-9|title=β-रे स्पेक्ट्रोस्कोपी 1 : 10<sup>5</sup> की परिशुद्ध रेंज में| year=1956|last1=Siegbahn|first1=K.|last2=Edvarson|first2=K. I. Al|journal=Nuclear Physics|volume=1|pages=137–159|issue= 8|bibcode = 1956NucPh...1..137S }}</ref> कुछ वर्षों बाद 1967 में, सिगबैन ने एक्सपीएस का एक व्यापक अध्ययन प्रकाशित किया, जिससे एक्सपीएस की उपयोगिता की तुरंत पहचान हो गई और साथ ही पहला [[हार्ड एक्स-रे|हार्ड एक्स-किरण]] उत्सर्जन प्रयोग किया गया, जिसे उन्होंने रासायनिक विश्लेषण के लिए इलेक्ट्रॉन स्पेक्ट्रोस्कोपी (ईएससीए) के रूप में संदर्भित किया।<ref>{{Cite book |first=Kai |last=Siegbahn |url=http://worldcat.org/oclc/310539900 |title=इलेक्ट्रॉन स्पेक्ट्रोस्कोपी के माध्यम से ईएससीए परमाणु, आणविक और ठोस राज्य संरचना अध्ययन: उप्साला के रॉयल सोसाइटी ऑफ साइंस #एन्स को प्रस्तुत किया गया, 3 दिसंबर, 1965|date=1967 |publisher=Almqvist & Wiksell |oclc=310539900}}</ref> अमेरिका में [[हेवलेट पैकर्ड]] में इंजीनियरों के एक छोटे समूह (माइक केली, चार्ल्स ब्रायसन, लेवियर फेय, रॉबर्ट चानी) ने सिगबैन के सहयोग से 1969 में पहला वाणिज्यिक एकवर्णी एक्सपीएस उपकरण तैयार किया।सिगबैन को नोबेल पुरस्कार मिला।1981 में सिगबैन को भौतिकी के लिए, एक्सपीएस को एक उपयोगी विश्लेषणात्मक उपकरण के रूप में विकसित करने के उनके व्यापक प्रयासों को स्वीकार करने के लिए  नोबेल पुरस्कार मिला।<ref>[http://nobelprize.org/nobel_prizes/physics/laureates/1981/siegbahn-lecture.html Electron Spectroscopy for Atoms, Molecules and Condensed Matter], Nobel Lecture, December 8, 1981</ref> सिगबैन के काम के समानांतर, [[इंपीरियल कॉलेज लंदन]] (और बाद में [[ऑक्सफोर्ड विश्वविद्यालय]] में) में डेविड डब्ल्यू टर्नर ने हीलियम लैंप का उपयोग करके आणविक प्रजातियों के लिए [[पराबैंगनी फोटोइलेक्ट्रॉन स्पेक्ट्रोस्कोपी|पराबैंगनी प्रकाशिक इलेक्ट्रॉन]] स्पेक्ट्रम विज्ञान (यूपीएस) विकसित किया।<ref>{{cite journal|doi=10.1063/1.1733134|title=फोटोइलेक्ट्रॉन ऊर्जा मापन द्वारा आयनीकरण क्षमता का निर्धारण|year=1962|last1=Turner|first1=D. W.|last2=Jobory|first2=M. I. Al|journal=The Journal of Chemical Physics|volume=37|pages=3007|bibcode = 1962JChPh..37.3007T|issue=12 }}</ref>
 
=== नाप- ===
[[File:wide.jpg|thumb|350px|कुछ हद तक गंदे सिलिकॉन वेफर का वाइड-स्कैन या सर्वेक्षण स्पेक्ट्रम, जिसमें सभी तत्व मौजूद हैं। एक सर्वेक्षण स्पेक्ट्रम सामान्यतः अधिकांश एक्सपीएस विश्लेषणों का शुरुआती बिंदु होता है। यह एक बाद के उच्च-रिज़ॉल्यूशनएक्सपीएस  स्पेक्ट्रा अधिग्रहण को स्थापित करने की अनुमति देता है। इनसेट परमाणु प्रजातियों, उनके परमाणु प्रतिशत और विशिष्ट बंधन ऊर्जा ओं को इंगित करने वाली एक परिमाण तालिका दिखाता है।]]एक एक्सपीएस स्पेक्ट्रम एक विशिष्ट बंधन ऊर्जा पर पाए गए इलेक्ट्रॉनों की संख्या का एक आलेख है। प्रत्येक तत्व एक्सपीएस चोटियों का एक सेट उत्पन्न करता है। ये चोटियाँ परमाणुओं के भीतर इलेक्ट्रॉनों के इलेक्ट्रॉन विन्यास के अनुरूप हैं, जैसे, 1s, 2s, 2p, 3s, आदि। प्रत्येक चोटी में पाए गए इलेक्ट्रॉनों की संख्या सीधे एक्सपीएस प्रतिदर्शी मात्रा के भीतर तत्व की मात्रा से संबंधित है। परमाणु प्रतिशत मान उत्पन्न करने के लिए, प्रत्येक अपरिष्कृत एक्सपीएस संकेत को एक सापेक्ष संवेदनशीलता कारक (RSF) द्वारा तीव्रता को विभाजित करके ठीक किया जाता है, और सभी तत्वों का पता लगाया जाता है। चूंकि हाइड्रोजन का पता नहीं चला है अतः इन परमाणु प्रतिशतों में हाइड्रोजन सम्मिलित नहीं है।


== नाप ==
== मात्रात्मक सटीकता और सटीकता  - ==
[[File:wide.jpg|thumb|350px|कुछ हद तक गंदे सिलिकॉन वेफर का वाइड-स्कैन या सर्वेक्षण स्पेक्ट्रम, जिसमें सभी तत्व मौजूद हैं। एक सर्वेक्षण स्पेक्ट्रम आमतौर पर अधिकांश एक्सपीएस विश्लेषणों का शुरुआती बिंदु होता है। यह एक बाद के उच्च-रिज़ॉल्यूशन XPS स्पेक्ट्रा अधिग्रहण को स्थापित करने की अनुमति देता है। इनसेट परमाणु प्रजातियों, उनके परमाणु प्रतिशत और विशिष्ट बंधन ऊर्जा ओं को इंगित करने वाली एक परिमाण तालिका दिखाता है।]]एक एक्सपीएस स्पेक्ट्रम एक विशिष्ट बंधनऊर्जा  पर पाए गए इलेक्ट्रॉनों की संख्या का एक प्लॉट है। प्रत्येक तत्व विशेषता XPS चोटियों का एक सेट उत्पन्न करता है। ये चोटियाँ परमाणुओं के भीतर इलेक्ट्रॉनों के इलेक्ट्रॉन विन्यास के अनुरूप हैं, जैसे, 1s, 2s, 2p, 3s, आदि। प्रत्येक चोटी में पाए गए इलेक्ट्रॉनों की संख्या सीधे XPS नमूनाकरण मात्रा के भीतर तत्व की मात्रा से संबंधित है। परमाणु प्रतिशत मान उत्पन्न करने के लिए, प्रत्येक अपरिष्कृत XPS सिग्नल को एक सापेक्ष संवेदनशीलता कारक (RSF) द्वारा तीव्रता को विभाजित करके ठीक किया जाता है, और सभी तत्वों का पता लगाया जाता है। चूंकि हाइड्रोजन का पता नहीं चला है, इन परमाणु प्रतिशतों में हाइड्रोजन शामिल नहीं है
एक्सपीएस व्यापक रूप से एक अनुभवजन्य सूत्र उत्पन्न करने के लिए उपयोग किया जाता है क्योंकि यह सजातीय ठोस-राज्य सामग्री से आसानी से उत्कृष्ट मात्रात्मक सटीकता प्राप्त करता है। पूर्ण परिमाणीकरण के लिए प्रमाणित (या स्वतंत्र रूप से सत्यापित) मानक नमूनों के उपयोग की आवश्यकता होती है, और आम तौर पर अधिक चुनौतीपूर्ण और कम सामान्य होता है।सापेक्ष परिमाणीकरण में एक सेट में कई नमूनों के बीच तुलना शामिल होती है, जिसके लिए एक या अधिक विश्लेषण अलग-अलग होते हैं जबकि अन्य सभी घटक (नमूना मैट्रिक्स) स्थिर होते हैं। मात्रात्मक सटीकता कई मापदंडों पर निर्भर करती है जैसे: संकेतक-शोर अनुपात, शिखर तीव्रता, सापेक्ष संवेदनशीलता कारकों की सटीकता, इलेक्ट्रॉन संचरण फलन के लिए सुधार, सतह मात्रा समरूपता, इलेक्ट्रॉन की ऊर्जा निर्भरता के लिए सुधार औसत मुक्त पथ, और नमूना गिरावट की डिग्री विश्लेषण के कारण।सर्वोत्कृष्ट स्थितियों  के अंतर्गत, प्रमुख XPS चोटियों से परिकलित परमाणु प्रतिशत मानों की मात्रात्मक सटीकता प्रत्येक चोटी के लिए 90-95% है। कमजोर XPS संकेतक के लिए मात्रात्मक सटीकता, जिसकी चरम तीव्रता सबसे मजबूत संकेतक का 10-20% है, सही मूल्य का 60-80% है, और संकेतक--शोर अनुपात में सुधार के लिए उपयोग किए जाने वाले प्रयास की मात्रा पर निर्भर करता है ( उदाहरण के लिए  संकेतक औसत द्वारा)। मात्रात्मक परिशुद्धता (माप को दोहराने और समान परिणाम प्राप्त करने की क्षमता) मात्रात्मक परिणामों की उचित प्रेषण  के लिए एक आवश्यक विचार है।                                                                                                                                                                                                                                                                                                                 


=== पता लगाने की सीमा ===
=== पता लगाने की सीमा- ===
रुचि की प्रमुख स्थिति और पृष्ठभूमि संकेत स्तर के क्रॉस सेक्शन के साथ पता लगाने की सीमा बहुत भिन्न हो सकती है। सामान्य तौर पर, फोटोइलेक्ट्रॉन क्रॉस सेक्शन परमाणु संख्या के साथ बढ़ते हैं। द्वितीयक उत्सर्जित इलेक्ट्रॉनों के कारण मैट्रिक्स घटकों की परमाणु संख्या के साथ-साथ बाध्यकारी ऊर्जा के साथ पृष्ठभूमि बढ़ती है। उदाहरण के लिए सिलिकॉन पर सोने के मामले में जहां उच्च क्रॉस सेक्शन एयू4एफ शिखर प्रमुख सिलिकॉन चोटियों की तुलना में उच्च गतिज ऊर्जा पर है, यह बहुत कम पृष्ठभूमि पर बैठता है और उचित अधिग्रहण समय के साथ 1ppm या बेहतर की पहचान सीमा प्राप्त की जा सकती है। सोने पर सिलिकॉन के विपरीत, जहां मामूली क्रॉस सेक्शन Si2p लाइनें बड़ी पृष्ठभूमि पर Au4f लाइनों के नीचे बैठती हैं, उसी अधिग्रहण समय के लिए पता लगाने की सीमा बहुत खराब होगी। व्यावहारिक विश्लेषण के लिए पहचान की सीमा को अक्सर 0.1-1.0% परमाणु प्रतिशत (0.1% = 1 भाग प्रति हजार = 1000 भाग प्रति मिलियन) के रूप में उद्धृत किया जाता है, लेकिन कई परिस्थितियों में निम्न सीमा प्राप्त की जा सकती है।
संसूचन की मुख्य स्थिति और पृष्ठभूमि संकेत स्तर के अनुप्रस्थ परिच्छेद के साथ पता लगाने की सीमा बहुत भिन्न हो सकती है। सामान्यतः प्रकाशिक इलेक्ट्रॉन अनुप्रस्थ परिच्छेद परमाणु संख्या के साथ बढ़ते हैं। द्वितीयक उत्सर्जित इलेक्ट्रॉनों के कारण मैट्रिक्स घटकों की परमाणु संख्या के साथ-साथ बाध्यकारी ऊर्जा के साथ पृष्ठभूमि बढ़ती है। उदाहरण के   लिए, सिलिकॉन पर सोने के परीक्षण में जहां उच्च अनुप्रस्थ परिच्छेद एयू4एफ चोटी प्रमुख सिलिकॉन चोटियों की तुलना में उच्च गतिज ऊर्जा पर है, यह बहुत कम पर बैठता हैऔर उचित अधिग्रहण समय के साथ 1ppm या बेहतर की पहचान सीमा प्राप्त की जा सकती है। सोने पर सिलिकॉन के विपरीत, जहां साधारण अनुप्रस्थ परिच्छेद  सिलिकॉन 2p रेखाएं बड़ी पृष्ठभूमि पर Au 4f लाइनों के नीचे बैठती हैं, उसी अधिग्रहण समय के लिए पता लगाने की सीमा बहुत खराब होगी। व्यावहारिक विश्लेषण के लिए पहचान की सीमा को प्रायः 0.1-1.0% परमाणु प्रतिशत (0.1% = 1 भाग प्रति हजार = 1000 भाग प्रति मिलियन) के रूप में उद्धृत किया जाता है, लेकिन कई परिस्थितियों में निम्न सीमा प्राप्त की जा सकती है।


=== विश्लेषण के दौरान गिरावट ===
=== विश्लेषण के दौरान गिरावट ===
अवक्रमण उपयोग की गई एक्स-रे की तरंग दैर्ध्य, एक्स-रे की कुल खुराक, सतह के तापमान और वैक्यूम के स्तर पर सामग्री की संवेदनशीलता पर निर्भर करता है। धातु, मिश्र धातु, चीनी मिट्टी की चीज़ें और अधिकांश ग्लास गैर-मोनोक्रोमैटिक या मोनोक्रोमैटिक एक्स-रे द्वारा औसत रूप से खराब नहीं होते हैं। कुछ, लेकिन सभी नहीं, पॉलिमर, उत्प्रेरक, कुछ अत्यधिक ऑक्सीजन युक्त यौगिक, विभिन्न अकार्बनिक यौगिक और सूक्ष्म जीव हैं। गैर-मोनोक्रोमैटिक एक्स-रे स्रोत उच्च ऊर्जा वाले ब्रेम्सस्ट्रालुंग एक्स-रे (ऊर्जा के 1-15 केवी) की एक महत्वपूर्ण मात्रा का उत्पादन करते हैं जो विभिन्न सामग्रियों की सतह रसायन विज्ञान को सीधे नीचा दिखाते हैं। गैर-मोनोक्रोमैटिक एक्स-रे स्रोत भी नमूने की सतह पर एक महत्वपूर्ण मात्रा में गर्मी (100 से 200 डिग्री सेल्सियस) उत्पन्न करते हैं क्योंकि एक्स-रे उत्पन्न करने वाला एनोड आमतौर पर केवल 1 से {{convert|5|cm|0|abbr=on}} नमूने से दूर गर्मी का यह स्तर, जब ब्रेम्सस्ट्रालुंग एक्स-रे के साथ संयुक्त होता है, तो कुछ सामग्रियों के लिए गिरावट की मात्रा और दर को बढ़ाने के लिए कार्य करता है। मोनोक्रोमैटाइज़्ड एक्स-रे स्रोत, क्योंकि वे नमूने से दूर (50-100 सेमी) दूर हैं, ध्यान देने योग्य गर्मी प्रभाव उत्पन्न नहीं करते हैं। उनमें, एक क्वार्ट्ज मोनोक्रोमेटर सिस्टम एक्स-रे बीम से ब्रेम्सस्ट्रालुंग एक्स-रे को अलग करता है, जिसका अर्थ है कि नमूना केवल एक्स-रे ऊर्जा के एक संकीर्ण बैंड के संपर्क में है। उदाहरण के लिए, यदि एल्यूमीनियम के-अल्फा एक्स-रे का उपयोग किया जाता है, तो आंतरिक ऊर्जा बैंड में 0.43 eV का FWHM होता है, जो 1,486.7 eV (E/ΔE = 3,457) पर केंद्रित होता है। यदि मैग्नीशियम के-अल्फा एक्स-रे का उपयोग किया जाता है, तो आंतरिक ऊर्जा बैंड में 0.36 eV का FWHM होता है, जो 1,253.7 eV (E/ΔE = 3,483) पर केंद्रित होता है। ये आंतरिक एक्स-रे लाइन की चौड़ाई हैं; नमूना उजागर होने वाली ऊर्जा की सीमा एक्स-रे मोनोक्रोमेटर की गुणवत्ता और अनुकूलन पर निर्भर करती है। क्योंकि निर्वात विभिन्न गैसों (जैसे, O<sub>2</sub>, CO) और तरल पदार्थ (जैसे, पानी, शराब, सॉल्वैंट्स, आदि) जो शुरू में नमूने की सतह के भीतर या उसके अंदर फंस गए थे, सतह की रसायन विज्ञान और आकारिकी तब तक बदलती रहेगी जब तक कि सतह एक स्थिर स्थिति प्राप्त नहीं कर लेती। इस प्रकार की गिरावट का पता लगाना कभी-कभी मुश्किल होता है।
अधःपतन उपयोग की गई एक्स-किरण  की तरंग दैर्ध्य, एक्स-किरण की कुल मात्रा, सतह के तापमान और निर्वात के स्तर पर सामग्री की संवेदनशीलता पर निर्भर करती  है। धातु, मिश्र धातु, चीनी मिट्टी की चीज़ें और अधिकांश शीशे गैर एकवर्णी या एकवर्णी  एक्स -किरण द्वारा औसत रूप से खराब नहीं होते हैं। बहुलक, उत्प्रेरक, कुछ अत्यधिक ऑक्सीजन युक्त यौगिक, विभिन्न अकार्बनिक यौगिक और सूक्ष्म जीव हैं। गैर- एकवर्णी एक्स- किरण स्रोत उच्च ऊर्जा वाले ब्रेम्सस्ट्रालुंग एक्स-किरण (ऊर्जा के 1-15 केवी) की एक महत्वपूर्ण मात्रा का उत्पादन करते हैं जो विभिन्न सामग्रियों की सतह को सीधे नीचा दिखाते हैं। गैर-मोनोक्रोमैटिक एक्स-किरण स्रोत भी नमूने की सतह पर एक महत्वपूर्ण मात्रा में ऊष्मा (100 से 200 डिग्री सेल्सियस) उत्पन्न करते हैं क्योंकि एक्स-किरण उत्पन्न करने वाला एनोड सामान्यतः केवल 1 से {{convert|5|cm|0|abbr=on}} नमूने से दूर ऊष्मा का यह स्तर, जब ब्रेम्सस्ट्रालुंग एक्स किरण के साथ संयुक्त होता है, तो कुछ सामग्रियों के लिए गिरावट की मात्रा और दर को बढ़ाने के लिए कार्य करता है। एकवर्णी एक्स -किरण स्रोत भी नमूने की सतह पर एक महत्वपूर्ण मात्रा में गर्मी (100 से 200 डिग्री सेल्सियस) उत्पन्न करते हैं क्योंकि एक्स-किरण उत्पन्न करने वाला एनोड सामान्यतः केवल 1 से 5 सेमी (2 इंच) दूर होता है। क्योंकि वे नमूने से (50-100 सेमी) दूर हैं, ध्यान देने योग्य ऊष्मा प्रभाव उत्पन्न नहीं करते हैं। उनमें, एक क्वार्ट्ज एकवर्णक प्रणाली एक्स- किरण बीम से ब्रेम्सस्ट्रालुंग एक्स-किरण को अलग करता है, जिसका अर्थ है कि प्रतिरूप केवल एक्स-किरण ऊर्जा के एक संकीर्ण बंध  के संपर्क में है। उदाहरण के लिए, यदि एल्यूमीनियम के-अल्फा एक्स-किरण का उपयोग किया जाता है, तो आंतरिक ऊर्जा बंध में 0.43 eV का FWHM होता है, जो 1,486.7 eV (E/ΔE = 3,457) पर केंद्रित होता है। यदि मैग्नीशियम के-अल्फा एक्स-किरण का उपयोग किया जाता है, तो आंतरिक ऊर्जा बंध  में 0.36 eV का FWHM होता है, जो 1,253.7 eV (E/ΔE = 3,483) पर केंद्रित होता है। ये आंतरिक एक्स-किरण  सीमा की चौड़ाई हैं प्रतिरूप अनावृत होने वाली ऊर्जा की सीमा एक्स- किरण एकवर्णक  की गुणवत्ता और अनुकूलन पर निर्भर करती है।क्योंकि निर्वात विभिन्न गैसों (जैसे, O2, CO) और तरल पदार्थ (जैसे, पानी, शराब, सॉल्वैंट्स, आदि) को हटा देता है, जो शुरू में प्रतिरूप की सतह पर या उसके भीतर फंस गए थे, सतह का रसायन और आकृति विज्ञान जारी रहेगा। तब तक बदलें जब तक कि सतह एक स्थिर अवस्था प्राप्त कर ले। इस प्रकार की गिरावट का पता लगाना कभी-कभी मुश्किल होता है।
 
=== मापा क्षेत्र ===
मापा क्षेत्र उपकरण डिजाइन पर निर्भर करता है। न्यूनतम विश्लेषण क्षेत्र 10 से 200 माइक्रोमीटर तक होता है। एक्स-रे के एकवर्णी पुंज के लिए सबसे बड़ा आकार 1–5 मिमी होता है। गैर-मोनोक्रोमैटिक बीम 10–50 मिमी व्यास के होते हैं। एक्स-रे स्रोत के रूप में सिंक्रोट्रॉन विकिरण का उपयोग करके नवीनतम इमेजिंग एक्सपीएस उपकरणों पर 200 एनएम या उससे कम के स्पेक्ट्रोस्कोपिक छवि रिज़ॉल्यूशन स्तर प्राप्त किए गए हैं।
 
=== नमूना आकार सीमा ===


उपकरण छोटे (मिमी रेंज) और बड़े नमूने (सेमी रेंज) स्वीकार करते हैं, उदा। वेफर्स। सीमित कारक नमूना धारक का डिज़ाइन, नमूना स्थानांतरण और निर्वात कक्ष का आकार है। एक बड़े क्षेत्र का विश्लेषण करने के लिए बड़े नमूनों को बाद में x और y दिशा में ले जाया जाता है। {{Citation needed|date=June 2015}}
=== माप क्षेत्र- ===
माप क्षेत्र उपकरण डिजाइन पर निर्भर करता है। न्यूनतम विश्लेषण क्षेत्र 10 से 200 माइक्रोमीटर तक होता है। एक्स-किरण के एकवर्णी पुंज के लिए सबसे बड़ा आकार 1-5 मिमी है।गैर-एकवर्णक किरण 10-50 मिमी व्यास के होते हैं। एक्स-किरण स्रोत के रूप में सिंक्रोट्रॉन विकिरण का उपयोग करके नवीनतम  प्रतिबिंबन XPS  उपकरणों पर 200 nm  या उससे कम के स्पेक्ट्रोस्कोपिक प्रतिबिम्ब विश्लेषण स्तर प्राप्त किए गए हैं।


=== प्रतिदर्शी आकार सीमा- ===


=== विश्लेषण समय ===
उपकरण छोटे (मिमी रेंज) और बड़े नमूने (सेमी रेंज) स्वीकार करते हैं, इसके कारक प्रतिदर्शी धारक का डिज़ाइन, प्रतिदर्शी स्थानांतरण और XPS कक्ष का आकार है। एक बड़े क्षेत्र का विश्लेषण करने के लिए बड़े  को  प्रतिदर्शी को बाद में x और y दिशा में ले जाया जाता है। {{Citation needed|date=June 2015}}
आमतौर पर व्यापक सर्वेक्षण स्कैन के लिए 1-20 मिनट तक जो सभी पता लगाने योग्य तत्वों की मात्रा को मापता है, आमतौर पर उच्च रिज़ॉल्यूशन स्कैन के लिए 1-15 मिनट जो रासायनिक स्थिति के अंतर को प्रकट करता है (गणना क्षेत्र परिणाम के लिए एक उच्च संकेत / शोर अनुपात के लिए अक्सर कई स्वीप की आवश्यकता होती है) ब्याज के क्षेत्र में), एक गहराई प्रोफ़ाइल के लिए 1-4 घंटे जो 4-5 तत्वों को नक़्क़ाशीदार गहराई के कार्य के रूप में मापता है (यह प्रक्रिया समय सबसे अधिक भिन्न हो सकता है क्योंकि कई कारक भूमिका निभाएंगे)
=== विश्लेषण काल  - ===
सामान्यतः व्यापक सर्वेक्षण अवलोकन के लिए 1-20 मिनट तक जो सभी पता लगाने योग्य तत्वों की मात्रा को मापता है, सामान्यतः उच्च विश्लेषण अवलोकन के लिए 1-15 मिनट जो रासायनिक स्थिति के अंतर को प्रकट करता है (गणना क्षेत्र परिणाम के लिए एक उच्च संकेत / शोर अनुपात के लिए प्रायः कई स्वीप की आवश्यकता होती है) महत्व के क्षेत्र में एक गहराई रूपरेखा के लिए 1-4 घंटे जो 4-5 तत्वों को नक़्क़ाशीदार गहराई के कार्य के रूप में मापता है (यह प्रक्रिया समय सबसे अधिक भिन्न हो सकता है क्योंकि कई कारक भूमिका निभाएंगे)


== सतह संवेदनशीलता ==
=== सतह संवेदनशीलता- ===
XPS केवल उन इलेक्ट्रॉनों का पता लगाता है जो वास्तव में नमूने से उपकरण के निर्वात में भाग गए हैं। नमूने से बचने के लिए, एक फोटोइलेक्ट्रॉन को नमूने के माध्यम से यात्रा करनी चाहिए। फोटो-उत्सर्जित इलेक्ट्रॉन सामग्री के भीतर विभिन्न उत्तेजित अवस्थाओं में अयोग्य टकराव, पुनर्संयोजन, नमूने के उत्तेजना, पुनः प्राप्त करने या फंसने से गुजर सकते हैं, जो सभी फोटोइलेक्ट्रॉनों से बचने की संख्या को कम कर सकते हैं। ये प्रभाव एक घातीय क्षीणन समारोह के रूप में दिखाई देते हैं क्योंकि गहराई बढ़ जाती है, सतह पर एनालिटिक्स से पता लगाए गए संकेतों को नमूना सतह के नीचे गहरे एनालिटिक्स से मिले संकेतों की तुलना में अधिक मजबूत बनाता है। इस प्रकार, XPS द्वारा मापा गया संकेत एक घातीय रूप से सतह-भारित संकेत है, और इस तथ्य का उपयोग स्तरित सामग्रियों में विश्लेषण गहराई का अनुमान लगाने के लिए किया जा सकता है।
XPS केवल उन इलेक्ट्रॉनों का पता लगाता है जो वास्तव में प्रतिरूप से उपकरण के निर्वात में भाग निकले हैं।प्रतिरूप  से बचने के लिए, एक फोटोइलेक्ट्रॉन को प्रतिरूप के माध्यम से संचारण करना चाहिए। फोटो-उत्सर्जित इलेक्ट्रॉन सामग्री के भीतर विभिन्न उत्तेजित अवस्थाओं में अप्रत्यस्थ टकराव, पुनर्संयोजन,प्रतिरूप की उत्तेजना, पुनः प्राप्त करने या फंसने से गुजर सकते हैं, जो सभी फोटोइलेक्ट्रॉनों से बचने की संख्या को कम कर सकते हैं।ये प्रभाव एक घातीय संकीर्णन फलन के रूप में दिखाई देते हैं क्योंकि गहराई बढ़ जाती है, सतह पर विश्लेषण से पता लगाए गए संकेतों को प्रतिरूप सतह के नीचे गहरे विश्लेषण से मिले संकेतों की तुलना में अधिक मजबूत बनाता है। इस प्रकार, XPS द्वारा मापा गया संकेत एक घातीय रूप से सतह-भारित संकेत है, और इस तथ्य का उपयोग स्तरित सामग्रियों में विश्लेषण गहराई का अनुमान लगाने के लिए किया जा सकता है।


== रासायनिक अवस्थाएँ और रासायनिक बदलाव ==
=== रासायनिक अवस्थाएँ और रासायनिक बदलाव- ===
[[File:hires.jpg|thumb|350px|Si 2p सिग्नल की ऊर्जा सीमा में ऑक्सीकृत सिलिकॉन वेफर का उच्च-रिज़ॉल्यूशन स्पेक्ट्रम। कच्चे डेटा स्पेक्ट्रम (लाल) को पांच घटकों या रासायनिक अवस्थाओं के साथ फिट किया गया है, A से E तक। Si (SiO2) के अधिक ऑक्सीकृत रूप<sub>x</sub>, x = 1-2) 103.67 eV पर केंद्रित व्यापक विशेषता में उच्च बंधन ऊर्जा  पर दिखाई देते हैं। सिलिकॉन का तथाकथित धात्विक रूप, जो ऑक्सीकृत सिलिकॉन की एक ऊपरी परत के नीचे रहता है, 100.30 eV (Si 2p) पर दोहरी चोटियों का एक सेट प्रदर्शित करता है।<sub>1/2</sub>) और 99.69 eV (Si 2p<sub>3/2</sub>). तथ्य यह है कि ऑक्सीकृत सी के ओवरलेयर के माध्यम से धातु सिलिकॉन सिग्नल देखा जा सकता है, यह दर्शाता है कि सिलिकॉन ऑक्साइड परत अपेक्षाकृत पतली (2-3 एनएम) है। परत की मोटाई और गहराई का अनुमान लगाने के लिए अक्सर XPS में ओवरलेयर द्वारा गहरी परतों से XPS संकेतों के क्षीणन का उपयोग किया जाता है।|alt=]]रासायनिक स्थिति की जानकारी उत्पन्न करने की क्षमता, यानी नमूने के सबसे ऊपर के कुछ नैनोमीटर से प्रश्न में परमाणु प्रजातियों का स्थानीय संबंध वातावरण, सतह के रसायन विज्ञान को समझने के लिए XPS को एक अनूठा और मूल्यवान उपकरण बनाता है। स्थानीय बंधन वातावरण औपचारिक ऑक्सीकरण राज्य से प्रभावित होता है, इसके निकटतम-पड़ोसी परमाणुओं की पहचान, और निकटतम-पड़ोसी या अगले-निकटतम-पड़ोसी परमाणुओं के संबंध संकरण। उदाहरण के लिए, जबकि सी की नाममात्र बंधन ऊर्जा <sub>1''s''</sub> इलेक्ट्रॉन 284.6 ईवी है, वास्तविक बंधन ऊर्जा में सूक्ष्म लेकिन प्रतिलिपि प्रस्तुत करने योग्य बदलाव, तथाकथित रासायनिक बदलाव ([[एनएमआर स्पेक्ट्रोस्कोपी]] के अनुरूप), रासायनिक स्थिति की जानकारी प्रदान करते हैं।{{citation needed|date=July 2019}}
[[File:hires.jpg|thumb|350px|Si 2p सिग्नल की ऊर्जा सीमा में ऑक्सीकृत सिलिकॉन पटलिका का उच्च-विश्लेषण  स्पेक्ट्रम। कच्चे आँकड़े स्पेक्ट्रम (लाल) को पांच घटकों या रासायनिक अवस्थाओं के साथ उपयुक्त किया गया है, A से E तक। Si (SiO2) के अधिक ऑक्सीकृत रूप<sub>x</sub>, x = 1-2) 103.67 eV पर केंद्रित व्यापक विशेषता में उच्च बंधन ऊर्जा  पर दिखाई देते हैं। सिलिकॉन का तथाकथित धात्विक रूप, जो ऑक्सीकृत सिलिकॉन की एक ऊपरी परत के नीचे रहता है, 100.30 eV (Si 2p) पर दोहरी चोटियों का एक सेट प्रदर्शित करता है।<sub>1/2</sub>) और 99.69 eV (Si 2p<sub>3/2</sub>). तथ्य यह है कि ऑक्सीकृत सी के उपरिस्तरितर के माध्यम से धातु सिलिकॉन संकेत  देखा जा सकता है, यह दर्शाता है कि सिलिकॉन ऑक्साइड परत अपेक्षाकृत पतली (2-3 एनएम) है। परत की मोटाई और गहराई का अनुमान लगाने के लिए प्रायः XPS में उपरिस्तरितर द्वारा गहरी परतों सेXPS  संकेतों के क्षीणन का उपयोग किया जाता है।|alt=]]रासायनिक स्थिति की जानकारी उत्पन्न करने की क्षमता, यानी नमूने के शीर्षतम कुछ नैनोमीटर से प्रश्न में एक परमाणु प्रजाति का स्थानीय संबंध वातावरण, सतह के रसायन विज्ञान को समझने के लिए XPS को एक अनूठा और मूल्यवान उपकरण बनाता है।स्थानीय बंधन वातावरण औपचारिक ऑक्सीकरण अवस्था से प्रभावित होता है, उदाहरण के लिए इसके निकटतम-पड़ोसी परमाणुओं की पहचान, और निकटतम-पड़ोसी या अगले-निकटतम-पड़ोसी परमाणुओं के संबंध संकरण। जबकि C<sub>1''s''</sub> की नाममात्र बंधन ऊर्जा  इलेक्ट्रॉन की नाममात्र बाध्यकारी ऊर्जा 284.6 eVहै, वास्तविक बाध्यकारी ऊर्जा में सूक्ष्म लेकिन प्रतिलिपि प्रस्तुत करने योग्य बदलाव, तथाकथित रासायनिक बदलाव (NMR स्पेक्ट्रोस्कोपी के अनुरूप), रासायनिक स्थिति की जानकारी प्रदान करते हैं। {{citation needed|date=July 2019}}
कार्बन के लिए रासायनिक-राज्य विश्लेषण का व्यापक रूप से उपयोग किया जाता है। यह कार्बन की रासायनिक अवस्थाओं की उपस्थिति या अनुपस्थिति को बढ़ती बंधन ऊर्जा  के अनुमानित क्रम में प्रकट करता है, जैसे: कार्बाइड (-सी)<sup>2−</sup>), साइलेन्स (-Si-CH<sub>3</sub>), मेथिलीन/मिथाइल/हाइड्रोकार्बन (-CH<sub>2</sub>-सीएच<sub>2</sub>-, सीएच<sub>3</sub>-सीएच<sub>2</sub>-, और -CH=CH-), अमीन (-CH<sub>2</sub>राष्ट्रीय राजमार्ग<sub>2</sub>), अल्कोहल (-C-OH), कीटोन (-C=O), ऑर्गेनिक एस्टर (-COOR), कार्बोनेट (-CO<sub>3</sub><sup>2−</sup>), मोनोफ्लोरो-हाइड्रोकार्बन (-CFH-CH<sub>2</sub>-), difluoro-हाइड्रोकार्बन (-CF<sub>2</sub>-सीएच<sub>2</sub>-), और ट्राइफ्लोरोकार्बन (-CH<sub>2</sub>-सीएफ<sub>3</sub>), थोड़े नाम देने के लिए।{{citation needed|date=July 2019}}
कार्बन के लिए रासायनिक-अवस्था विश्लेषण का व्यापक रूप से उपयोग किया जाता है। यह कार्बन की रासायनिक अवस्थाओं की उपस्थिति या अनुपस्थिति को बढ़ती बंधन ऊर्जा  के अनुमानित क्रम में प्रकट करता है, जैसे: कार्बाइड (-'''C'''<sup>2−</sup>), साइलेन्स (-Si-CH<sub>3</sub>), मेथिलीन/मिथाइल/हाइड्रोकार्बन (-'''C'''H<sub>2</sub>-'''C'''H<sub>2</sub>-, '''C'''H<sub>3</sub>-CH<sub>2</sub>-, and -'''C'''H='''C'''H-),एमीन (-'''C'''H<sub>2</sub>-NH<sub>2</sub>) , एल्कोहल (-C-OH), कीटोन (-C=O), कार्बनिक एस्टर (-COOR), कार्बोनेट (-CO<sub>3</sub><sup>2−</sup>), मोनोफ्लोरो-हाइड्रोकार्बन (-CFH-CH<sub>2</sub>-),डाईफ्लोरो -हाइड्रोकार्बन(-'''C'''F<sub>2</sub>-CH<sub>2</sub>-) ,और ट्राइफ्लोरोकार्बन (CH<sub>2</sub>-'''C'''F<sub>3</sub>){{citation needed|date=July 2019}}सिलिकॉन  पटलिका की सतह के रासायनिक स्थिति विश्लेषण से विभिन्न औपचारिक ऑक्सीकरण अवस्थाओं के कारण रासायनिक बदलाव का पता चलता है, जैसे: n-डोप्ड सिलिकॉन और p-डोप्ड सिलिकॉन (धात्विक सिलिकॉन), सिलिकॉन सबऑक्साइड (Si2O), सिलिकॉन मोनोऑक्साइड (SiO), Si2O3 , और सिलिकॉन डाइऑक्साइड (SiO2)इसका एक उदाहरण "Si 2p सिग्नल की ऊर्जा सीमा में एक ऑक्सीकृत सिलिकॉन पटलिका के उच्च- विश्लेषण स्पेक्ट्रम" चित्र में देखा जा सकता है।
सिलिकॉन वेफर की सतह के रासायनिक स्थिति विश्लेषण से विभिन्न औपचारिक ऑक्सीकरण अवस्थाओं के कारण रासायनिक बदलाव का पता चलता है, जैसे: एन-डॉप्ड सिलिकॉन और पी-डोप्ड सिलिकॉन (धात्विक सिलिकॉन), सिलिकॉन सबऑक्साइड (सी)<sub>2</sub>O), सिलिकॉन मोनोऑक्साइड (SiO), Si<sub>2</sub>O<sub>3</sub>, और सिलिकॉन डाइऑक्साइड (SiO<sub>2</sub>). इसका एक उदाहरण Si 2p सिग्नल की ऊर्जा सीमा में एक ऑक्सीकृत सिलिकॉन वेफर के उच्च-रिज़ॉल्यूशन स्पेक्ट्रम के चित्र में देखा गया है।


== इंस्ट्रुमेंटेशन ==
=== उपकरण- ===
एक्सपीएस प्रणाली के मुख्य घटक एक्स-रे का स्रोत हैं, [[धातु में]] मैग्नेटिक शील्डिंग के साथ एक अल्ट्रा-हाई वैक्यूम (यूएचवी) कक्ष, एक इलेक्ट्रॉन संग्रह लेंस, एक इलेक्ट्रॉन ऊर्जा विश्लेषक, एक इलेक्ट्रॉन डिटेक्टर प्रणाली, एक नमूना परिचय कक्ष , सैंपल माउंट, सैंपल को गर्म करने या ठंडा करने की क्षमता वाला एक सैंपल स्टेज और स्टेज मैनिपुलेटर्स का एक सेट।
XPS प्रणाली के मुख्य घटक एक्स-किरण का स्रोत हैं, [[धातु में]] चुम्बकीय परिरक्षिका के साथ एक अति उच्च  निर्वात (UHV) कक्ष, एक इलेक्ट्रॉन संग्रह लेंस, एक इलेक्ट्रॉन ऊर्जा विश्लेषक, एक इलेक्ट्रॉन संसूचक  प्रणाली, एक नमूना प्रस्तावना कक्ष , नमूना आरोह, नमूने  को गर्म करने या ठंडा करने की क्षमता वाला एक नमूना कार्य क्षेत्र और कार्य क्षेत्र परिचालक का एक ढ़ाँचा।


एक्सपीएस के लिए सबसे प्रचलित इलेक्ट्रॉन स्पेक्ट्रोमीटर [[गोलार्ध इलेक्ट्रॉन ऊर्जा विश्लेषक]] है। उनके पास उच्च ऊर्जा संकल्प और उत्सर्जित इलेक्ट्रॉनों का स्थानिक चयन है। कभी-कभी, हालांकि, बहुत सरल इलेक्ट्रॉन ऊर्जा फिल्टर - बेलनाकार दर्पण विश्लेषक का उपयोग किया जाता है, जो अक्सर सतह की मौलिक संरचना की जांच के लिए होता है। वे उच्च गणना दरों और उच्च कोणीय/ऊर्जा संकल्प की आवश्यकता के बीच व्यापार-बंद का प्रतिनिधित्व करते हैं। इस प्रकार में दो सह-अक्षीय सिलेंडर होते हैं जो नमूने के सामने रखे जाते हैं, आंतरिक को सकारात्मक क्षमता पर रखा जाता है, जबकि बाहरी सिलेंडर को नकारात्मक क्षमता पर रखा जाता है। केवल सही ऊर्जा वाले इलेक्ट्रॉन ही इस सेटअप से गुजर सकते हैं और अंत में पता लगाए जाते हैं। गणना दर अधिक है लेकिन संकल्प (ऊर्जा और कोण दोनों में) खराब है।
XPS के लिए सबसे प्रचलित इलेक्ट्रॉन स्पेक्ट्रोमीटर गोलार्ध इलेक्ट्रॉन विश्लेषक है। उनके पास उच्च ऊर्जा संकल्प और उत्सर्जित इलेक्ट्रॉनों का स्थानिक चयन है। कभी-कभी बहुत सरल इलेक्ट्रॉन ऊर्जा निस्यंदन यंत्र - बेलनाकार दर्पण विश्लेषक का उपयोग किया जाता है, जो प्राय: सतह की मौलिक संरचना की जांच के लिए होता है।वे उच्च गणना दरों और उच्च कोणीय/ऊर्जा संकल्प की आवश्यकता के बीच अदला - बदली का प्रतिनिधित्व करते हैं। इसमें दो सह-अक्षीय सिलेंडर होते हैं जो नमूने के सामने रखे जाते हैं, आंतरिक सिलेंडर को सकारात्मक क्षमता पर रखा जाता है, जबकि बाहरी सिलेंडर को नकारात्मक क्षमता पर रखा जाता है। केवल सही ऊर्जा वाले इलेक्ट्रॉन ही इस व्यवस्था से गुजर सकते हैं और अंत में पता लगाया जाता हैं।कि गणना दर अधिक है लेकिन विश्लेषण (ऊर्जा और कोण दोनों में) खराब है।


[[इलेक्ट्रॉन गुणक]]ों का उपयोग करके इलेक्ट्रॉनों का पता लगाया जाता है: एकल ऊर्जा का पता लगाने के लिए एकल चैनलट्रॉन, या समानांतर अधिग्रहण के लिए चैनलट्रॉन और माइक्रोचैनल प्लेट्स की सरणी। इन उपकरणों में एक ग्लास चैनल होता है जिसके अंदर एक प्रतिरोधक कोटिंग होती है। सामने और अंत के बीच एक उच्च वोल्टेज लगाया जाता है। एक आने वाले इलेक्ट्रॉन को दीवार पर त्वरित किया जाता है, जहां यह अधिक इलेक्ट्रॉनों को हटा देता है, इस तरह से एक इलेक्ट्रॉन हिमस्खलन बनाया जाता है, जब तक कि मापने योग्य वर्तमान नाड़ी प्राप्त नहीं हो जाती।{{citation needed|date=October 2019}}
इलेक्ट्रॉन गुणक का उपयोग करके इलेक्ट्रॉनों का पता लगाया जाता है: एकल ऊर्जा का पता लगाने के लिए एकल  चैनलट्रॉन, या समानांतर अधिग्रहण के लिए चैनलट्रॉन और माइक्रोचैनल प्लेट्स के संकलन का उपयोग किया जाता है । इन उपकरणों में एक शीशे का चैनल होता है जिसके अंदर एक प्रतिरोधक लेपन होता  है। सामने और अंत के बीच एक उच्च वोल्टेज लगाया जाता है। एक आने वाले इलेक्ट्रॉन को दीवार पर त्वरित किया जाता है, जहां यह अधिक इलेक्ट्रॉनों को हटा देता है, इस तरह से एक इलेक्ट्रॉन हिमस्खलन पैदा होता है, जब तक कि एक मापने योग्य वर्तमान नाड़ी प्राप्त नहीं हो जाती।
=== प्रयोगशाला आधारित -XPS ===
प्रयोगशाला प्रणालियों में, या तो 10–30 मिमी बीम व्यास गैर एकवर्णी-  Al  Kα या Mg Kα एनोड विकिरण का उपयोग किया जाता है, या एक केंद्रित 20-500 माइक्रोमीटर व्यास बीम एकल तरंग दैर्ध्य Al Kα  एकवर्णित विकिरण।एकवर्णी Al Kα X- किरण सामान्य रूप से <1010>  निर्देशन के साथ प्राकृतिक, क्रिस्टलीय क्वार्ट्ज की एक पतली चक्रिका से गैर एकवर्णी- एक्स- किरण के बीम को विवर्तित और केंद्रित करके उत्पादित किया जाता है।परिणामी तरंग दैर्ध्य 8.3386 एंगस्ट्रॉम (0.83386 nm) है जो 1486.7eV  की फोटॉन ऊर्जा के अनुरूप है। एल्युमिनियम Kα एक्स-किरण  की आंतरिक पूर्ण चौड़ाई 0.43 eV की आधी अधिकतम (FWHM) है, जो 1486.7 eV (E/ΔE = 3457) पर केंद्रित है।  एक अच्छी तरह से अनुकूलित एकवर्णक के लिए, एल्यूमीनियम की ऊर्जा चौड़ाई Kα एक्स-किरण 0.16 eV है, लेकिन सामान्य इलेक्ट्रॉन ऊर्जा विश्लेषक (स्पेक्ट्रोमीटर) में ऊर्जा विस्तार FWHM = 0.25 eV  पर एक परम ऊर्जा  विश्लेषण उत्पन्न करता है,  जो वास्तव में, अधिकांश व्यावसायिक प्रणालियों का अंतिम ऊर्जा विश्लेषण है। व्यावहारिक प्रतिदिन की परिस्थितियों में काम करते समय, उच्च ऊर्जा-विश्लेषण समायोजन विभिन्न शुद्ध तत्वों और कुछ यौगिकों के लिए 0.4 और 0.6 eV के बीच शिखर की चौड़ाई (FWHM) उत्पन्न करेंगी। उदाहरण के लिए,एकवर्णित एल्यूमीनियम Kα एक्स-किरण  का उपयोग करके 20 eV की ऊर्जा पर 1 मिनट में प्राप्त स्पेक्ट्रम में, साफ सिल्वर झिल्ली या पन्नी  के लिए Ag 3d5/2 शिखर  में 0.45 eV का FWHM होगा। गैर-एकवर्णी मैग्नीशियम एक्स-किरण  में 9.89 एंगस्ट्रॉम (0.989 एनएम) की तरंग दैर्ध्य होती है जो कि{{citation needed|date=July 2019}} जो 1253 ईवी की फोटॉन ऊर्जा से मेल खाती है। गैर-मोनोक्रोमेटेड एक्स-रे की ऊर्जा चौड़ाई लगभग 0.70 ईवी है, जो वास्तव में गैर-मोनोक्रोमैटिक एक्स-रे का उपयोग करने वाली प्रणाली का अंतिम ऊर्जा संकल्प है।{{citation needed|date=July 2019}}।गैर-एकवर्णी एक्स किरण की ऊर्जा चौड़ाई मोटे तौर पर 0.70 eV है, जो वास्तव में गैर-एकवर्णी एक्स-किरण का उपयोग करने वाली प्रणाली का अंतिम ऊर्जा विश्लेषण है। गैर- एकवर्णी एक्स-किरण स्रोत उपयोग नहीं करते हैं किसी भी क्रिस्टल को एक्स-किरण को अलग करने के लिए जो सभी प्राथमिक एक्स-किरणों और उच्च-ऊर्जा ब्रेम्सस्ट्रालुंग एक्स-किरण(1-12keV ) की पूरी श्रृंखला को सतह तक पहुंचने की अनुमति देता है। गैर- एकवर्णी Mg Kα स्रोत का उपयोग करते समय  ऊर्जा संकल्प (FWHM) 0.9–1.0 eV है, जिसमें s शामिल है।


=== [[सिंक्रोटॉन]] आधारित XPS- ===
बड़े पैमाने पर सिंक्रोट्रॉन विकिरण सुविधाओं के विकास से पिछले दशकों में एक सफलता मिली है। यहां, एक संचयन वलय के अंदर कक्षा में रखे सापेक्षिक इलेक्ट्रॉनों के गुच्छों को एक उच्च चमक और उच्च फ्लक्स फोटॉन बीम का उत्पादन करने के लिए विगलर्स और अनडुलेटर्स जैसे झुकने वाले चुंबक या सम्मिलन उपकरणों के माध्यम से त्वरित किया जाता है। बीम सामान्यतः  एनोड-आधारित स्रोतों द्वारा उत्पादित परिमाण की तुलना में अधिक तीव्र और बेहतर संपार्श्विक के आदेश हैं सिंक्रोट्रॉन विकिरण भी व्यापक तरंग दैर्ध्य  क्षेत्र पर समस्वरणीय  है, और इसे कई अलग-अलग तरीकों से ध्रुवीकृत किया जा सकता है। इस तरह, फोटॉन को एक विशेष कोर स्तर की जांच के लिए आदर्श  प्रकाशिक आयनन व्यापक प्रतिनिधित्व देने के लिए चुना जा सकता है। उच्च फोटॉन फ्लक्स, इसके अलावा, कम घनत्व वाली परमाणु प्रजातियों, जैसे आणविक और परमाणु अधिशोषित से भी XPS प्रयोग करना संभव बनाता है।


=== प्रयोगशाला आधारित एक्सपीएस ===
=== डेटा प्रोसेसिंग- ===
प्रयोगशाला प्रणालियों में, या तो 10–30 मिमी बीम व्यास गैर-एकवर्णी Al K<sub>α</sub> या एमजी के<sub>α</sub> एनोड विकिरण का उपयोग किया जाता है, या एक केंद्रित 20-500 [[माइक्रोमीटर]] व्यास बीम एकल तरंग दैर्ध्य अल के<sub>α</sub> मोनोक्रोमेटेड विकिरण। मोनोक्रोमैटिक अल के<sub>α</sub> एक्स-रे सामान्य रूप से एक मिलर इंडेक्स के साथ प्राकृतिक, क्रिस्टलीय [[क्वार्ट्ज]] की पतली डिस्क के गैर-मोनोक्रोमैटिक एक्स-रे के बीम को विवर्तन और ध्यान केंद्रित करके उत्पादित किया जाता है। <1010> अभिविन्यास। परिणामी तरंग दैर्ध्य 8.3386 एंगस्ट्रॉम (0.83386 एनएम) है जो 1486.7 ईवी की फोटॉन ऊर्जा के अनुरूप है। एल्युमिनियम के<sub>α</sub> एक्स-रे में आंतरिक #पूर्ण चौड़ाई आधी अधिकतम (FWHM) पर होती है। 0.43 eV की आधी अधिकतम (FWHM) पर पूर्ण चौड़ाई, 1486.7 eV (E/ΔE = 3457) पर केंद्रित होती है।{{citation needed|date=July 2019}} एक अच्छी तरह से अनुकूलित मोनोक्रोमेटर के लिए, मोनोक्रोमेटेड एल्यूमीनियम K की ऊर्जा चौड़ाई<sub>α</sub> एक्स-रे 0.16 ईवी है, लेकिन आम इलेक्ट्रॉन ऊर्जा विश्लेषक (स्पेक्ट्रोमीटर) में ऊर्जा विस्तार एफडब्ल्यूएचएम = 0.25 ईवी के आदेश पर एक परम ऊर्जा संकल्प पैदा करता है, जो वास्तव में, अधिकांश वाणिज्यिक प्रणालियों का अंतिम ऊर्जा संकल्प है। व्यावहारिक, रोजमर्रा की परिस्थितियों में काम करते समय, उच्च ऊर्जा-रिज़ॉल्यूशन सेटिंग्स विभिन्न शुद्ध तत्वों और कुछ यौगिकों के लिए 0.4 और 0.6 eV के बीच चोटी की चौड़ाई (FWHM) उत्पन्न करेंगी। उदाहरण के लिए, मोनोक्रोमेटेड एल्यूमीनियम के का उपयोग करके 20 ईवी की पास ऊर्जा पर 1 मिनट में प्राप्त स्पेक्ट्रम में<sub>α</sub> एक्स-रे, एजी 3 डी<sub>5/2</sub> साफ सिल्वर फिल्म या पन्नी के लिए पीक में आमतौर पर 0.45 eV का FWHM होगा।{{citation needed|date=July 2019}} गैर-मोनोक्रोमैटिक मैग्नीशियम एक्स-रे में 9.89 एंगस्ट्रॉम (0.989 एनएम) की तरंग दैर्ध्य होती है जो 1253 ईवी की फोटॉन ऊर्जा से मेल खाती है। गैर-मोनोक्रोमेटेड एक्स-रे की ऊर्जा चौड़ाई लगभग 0.70 ईवी है, जो वास्तव में गैर-मोनोक्रोमैटिक एक्स-रे का उपयोग करने वाली प्रणाली का अंतिम ऊर्जा संकल्प है।{{citation needed|date=July 2019}} गैर-मोनोक्रोमैटिक एक्स-रे स्रोत एक्स-रे को अलग करने के लिए किसी भी क्रिस्टल का उपयोग नहीं करते हैं जो सभी प्राथमिक एक्स-रे लाइनों और उच्च-ऊर्जा [[ब्रेम्सरेडिएशन]] एक्स-रे (1-12 केवी) की पूरी श्रृंखला को सतह तक पहुंचने की अनुमति देता है। गैर-मोनोक्रोमैटिक एमजी के का उपयोग करते समय परम ऊर्जा संकल्प (एफडब्ल्यूएचएम)।<sub>α</sub> स्रोत 0.9-1.0 ईवी है, जिसमें स्पेक्ट्रोमीटर-प्रेरित विस्तार से कुछ योगदान शामिल है।{{citation needed|date=July 2019}}


=== शिखर की पहचान - ===
किसी एक तत्व द्वारा उत्पादित  शिखरों की संख्या 1 से 20 से अधिक भिन्न होती है। बाध्यकारी ऊर्जाओं की सारणी जो किसी दिए गए तत्व द्वारा उत्पादित प्रत्येक शिखर के आवरण और घुमाव-कक्षा की पहचान करती हैं, आधुनिक XPS उपकरणों के साथ शामिल हैं, और विभिन्न पुस्तिकाएं और वेबसाइटो में पाई जा सकती हैं।  चूंकि ये प्रयोगात्मक रूप से निर्धारित ऊर्जा विशिष्ट तत्वों की विशेषता है, इसलिए उन्हें अज्ञात मौलिक संरचना वाली सामग्री में प्रयोगात्मक रूप से मापा और शिखरों की पहचान करने के लिए सीधे उपयोग किया जा सकता है।


=== [[सिंक्रोटॉन]] आधारित एक्सपीएस ===
शिखर की पहचान की प्रक्रिया शुरू करने से पहले, विश्लेषक को यह निर्धारित करना चाहिए कि असंसाधित सर्वेक्षण स्पेक्ट्रम (0-1400 eV) की बाध्यकारी ऊर्जा सकारात्मक या नकारात्मक सतह आवेश के कारण स्थानांतरित नहीं हुई है या नहीं। यह प्रायः  दो शिखरों की  दृष्टि से  किया जाता है जो कार्बन और ऑक्सीजन की उपस्थिति के कारण होती हैं।
बड़े पैमाने पर सिंक्रोट्रॉन विकिरण सुविधाओं के विकास से पिछले दशकों में एक सफलता मिली है। यहां, एक स्टोरेज रिंग के अंदर कक्षा में रखे गए सापेक्षिक इलेक्ट्रॉनों के गुच्छों को झुकने वाले मैग्नेट या सम्मिलन उपकरणों जैसे [[विगलर ​​(सिंक्रोट्रॉन)]] और उडुलेटर के माध्यम से एक उच्च प्रतिभा और उच्च फ्लक्स फोटॉन बीम का उत्पादन करने के लिए त्वरित किया जाता है। बीम आम तौर पर एनोड-आधारित स्रोतों द्वारा उत्पादित परिमाण की तुलना में अधिक तीव्र और बेहतर संपार्श्विक के आदेश हैं। सिंक्रोट्रॉन विकिरण भी व्यापक तरंग दैर्ध्य रेंज पर ट्यून करने योग्य है, और इसे कई अलग-अलग तरीकों से ध्रुवीकृत किया जा सकता है। इस तरह, फोटॉन को एक विशेष कोर स्तर की जांच के लिए इष्टतम फोटोआयनाइजेशन क्रॉस-सेक्शन देने के लिए चुना जा सकता है। उच्च फोटॉन फ्लक्स, इसके अलावा, कम घनत्व वाली परमाणु प्रजातियों, जैसे आणविक और परमाणु सोखना से भी XPS प्रयोग करना संभव बनाता है।


== डेटा प्रोसेसिंग ==
=== प्रभारी संदर्भित ऊष्मारोधक  - ===
आवेश को संदर्भित करने की आवश्यकता तब होती है जब एक नमूना विस्तृतआवेश उच्च संवेदनशीलता (कम ऊर्जा विश्लेषण) सर्वेक्षण स्पेक्ट्रा (0-1100 eV), और संकीर्ण जाँच, रासायनिक सार्थक बाध्यकारी ऊर्जा प्राप्त करने के लिए प्रयोगात्मक बाध्यकारी ऊर्जाओं के आवेश प्रेरित बदलाव से ग्रस्त स्थिति(उच्च ऊर्जा विश्लेषण)स्पेक्ट्रा  होते है। आवेश प्रेरित स्थानांतरण सामान्यतः सतह से जुड़े कम वोल्टेज (-1 से -20 eV) इलेक्ट्रॉनों की अधिकता या शीर्ष 1-12 nm के भीतर इलेक्ट्रॉनों की कमी (1 से 15 eV) फोटो-उत्सर्जित इलेक्ट्रॉनों के नुकसान के कारण होती है। यदि संयोग से, सतह का आवेश अत्यधिक सकारात्मक है, तो स्पेक्ट्रम ढलावदार पहाड़ियों की एक श्रृंखला के रूप में प्रकट हो सकता है,प्रखर शिखरों  के रूप में नहीं जैसा कि उदाहरण स्पेक्ट्रम में दिखाया गया है।


=== चोटी की पहचान ===
प्रायोगिक रूप से मापे गए  शिखरों में से प्रत्येक में एक आवेश, सुधार कारक जोड़कर आवेश सन्दर्भन किया जाता है। चूँकि विभिन्न हाइड्रोकार्बन प्रजातियाँ सभी वायु-उजागर सतहों पर दिखाई देती हैं, हाइड्रोकार्बन C (1s) XPS शिखर की बाध्यकारी ऊर्जा का उपयोग गैर-प्रवाहकीय नमूनों या सुचालको से प्राप्त सभी ऊर्जाओं को ठीक करने के लिए किया जाता है जिन्हें नमूना आरोह से जानबूझकर पृथक किया गया है।शिखर सामान्यतः 284.5 eV और 285.5 eV के बीच पाया जाता है। 284.8eV बाध्यकारी ऊर्जा नियमित रूप से आवेश संदर्भित इंसुलेटर के लिए संदर्भ बाध्यकारी ऊर्जा के रूप में उपयोग की जाती है, ताकि आवेश सुधार कारक 284.8 eVऔर प्रयोगात्मक रूप से मापा गया  C(1s) शिखर स्थिति के बीच का अंतर हो।
किसी एक तत्व द्वारा उत्पादित चोटियों की संख्या 1 से 20 से अधिक भिन्न होती है। बंधन ऊर्जा ओं की सारणी जो किसी दिए गए तत्व द्वारा उत्पादित प्रत्येक चोटी के खोल और स्पिन-ऑर्बिट की पहचान करती हैं, आधुनिक एक्सपीएस उपकरणों के साथ शामिल हैं, और विभिन्न में पाई जा सकती हैं हैंडबुक और वेबसाइटें।<ref>{{Cite web|title=एक्स-रे डेटा बुकलेट|url=https://xdb.lbl.gov/|access-date=2020-06-20|website=xdb.lbl.gov}}</ref><ref>{{cite web|title=तत्वों और मूल आक्साइड की पुस्तिका|url=http://www.xpsdata.com/XI_BE_Lookup_table.pdf|access-date=8 December 2012|publisher=XPS International, Inc.}}</ref> चूंकि ये प्रयोगात्मक रूप से निर्धारित ऊर्जा विशिष्ट तत्वों की विशेषता है, इसलिए उन्हें अज्ञात मौलिक संरचना वाले सामग्री के प्रयोगात्मक रूप से मापा चोटियों की पहचान करने के लिए सीधे उपयोग किया जा सकता है।


चोटी की पहचान की प्रक्रिया शुरू करने से पहले, विश्लेषक को यह निर्धारित करना चाहिए कि असंसाधित सर्वेक्षण स्पेक्ट्रम (0-1400 eV) की बंधन ऊर्जा  सकारात्मक या नकारात्मक सतह आवेश के कारण स्थानांतरित नहीं हुई है या नहीं। यह अक्सर दो चोटियों की तलाश करके किया जाता है जो कार्बन और ऑक्सीजन की उपस्थिति के कारण होती हैं।
प्रवाहकीय सामग्री और कंडक्टरों के अधिकांश मूल आक्साइड को कभी भी आवेश संदर्भ की आवश्यकता नहीं होनी चाहिए। प्रवाहकीय सामग्री को कभी भी आवेश संदर्भित नहीं किया जाना चाहिए जब तक कि नमूने की सबसे ऊपरी परत में मोटी गैर-प्रवाहकीय झिल्ली न हो। आवेश प्रभाव, यदि आवश्यक हो, तो इलेक्ट्रॉन फ्लड गन, यूवी रोशनी, कम वोल्टेज आर्गन आयन बीम से कम वोल्टेज (1-20 ईवी) इलेक्ट्रॉन बीम के उपयोग से सतह पर उपयुक्त कम ऊर्जा शुल्क प्रदान करके निम्न वोल्टेज इलेक्ट्रॉन बीम (1-10 eV),  द्वारक मास्क,निम्न-वोल्टेज इलेक्ट्रॉन बीम के साथ जालीदार  आवरण आदि के साथ भी मुआवजा दिया जा सकता है।


=== प्रभारी संदर्भित इंसुलेटर ===
===शिखर-समंजन-===
चार्ज रेफरेंसिंग की आवश्यकता तब होती है जब एक नमूना वाइड-स्कैन, उच्च संवेदनशीलता (कम ऊर्जा रिज़ॉल्यूशन) सर्वेक्षण स्पेक्ट्रा (0-1100 eV), और संकीर्ण-स्कैन, रासायनिक दोनों से सार्थक बंधन ऊर्जा  प्राप्त करने के लिए प्रयोगात्मक बंधन ऊर्जा ओं के चार्ज प्रेरित बदलाव से ग्रस्त होता है। राज्य (उच्च ऊर्जा संकल्प) स्पेक्ट्रा। चार्ज प्रेरित स्थानांतरण सामान्य रूप से सतह से जुड़े कम वोल्टेज (-1 से -20 eV) इलेक्ट्रॉनों की मामूली अधिकता, या इलेक्ट्रॉनों की मामूली कमी (+1 से +15 eV) के शीर्ष 1-12 एनएम के भीतर होता है। फोटो-उत्सर्जित इलेक्ट्रॉनों के नुकसान के कारण नमूना। यदि, संयोग से, सतह का चार्ज अत्यधिक सकारात्मक है, तो स्पेक्ट्रम रोलिंग पहाड़ियों की एक श्रृंखला के रूप में प्रकट हो सकता है, तेज चोटियों के रूप में नहीं जैसा कि उदाहरण स्पेक्ट्रम में दिखाया गया है।


प्रायोगिक रूप से मापी गई चोटियों में से प्रत्येक में एक चार्ज सुधार कारक जोड़कर चार्ज रेफरेंसिंग की जाती है। चूँकि विभिन्न हाइड्रोकार्बन प्रजातियाँ सभी वायु-उजागर सतहों पर दिखाई देती हैं, हाइड्रोकार्बन C (1s) XPS शिखर की बंधन ऊर्जा  का उपयोग गैर-प्रवाहकीय नमूनों या कंडक्टरों से प्राप्त सभी ऊर्जाओं को ठीक करने के लिए किया जाता है जिन्हें नमूना माउंट से जानबूझकर पृथक किया गया है। शिखर सामान्यतः 284.5 eV और 285.5 eV के बीच पाया जाता है। 284.8 ईवी बंधन ऊर्जा  नियमित रूप से चार्ज संदर्भित इंसुलेटर के लिए संदर्भ बंधन ऊर्जा  के रूप में उपयोग की जाती है, ताकि चार्ज सुधार कारक 284.8 ईवी और प्रयोगात्मक रूप से मापा गया सी (1 एस) शिखर स्थिति के बीच का अंतर हो।
*
 
* शिखर-समंजन उच्च ऊर्जा विश्लेषण  XPS स्पेक्ट्रा की प्रक्रिया वैज्ञानिक ज्ञान और अनुभव का मिश्रण है। प्रक्रिया उपकरण प्रारूप, उपकरण घटकों, प्रयोगात्मक समायोजन और नमूना परिवर्ती से प्रभावित होती है।. किसी भी शिखर समायोजन प्रयास को शुरू करने से पहले,  शिखर समायोजन का प्रदर्शन करने वाले विश्लेषक को यह जानने की जरूरत है कि क्या नमूने का सबसे ऊपरी 15 नम सजातीय सामग्री होने की उम्मीद है या सामग्रियों का मिश्रण होने की उम्मीद है। यदि शीर्ष 15nm  एक सजातीय सामग्री है जिसमें केवल बहुत कम मात्रा में कार्बन और अवशोषक गैसें हैं, तो विश्लेषक  शिखर समायोजन प्रक्रिया को बढ़ाने के लिए सैद्धांतिक शिखर क्षेत्र अनुपात का उपयोग कर सकते हैं। शिखर समायोजन के परिणाम समग्र शिखर की चौड़ाई (अधिकतम आधे पर FWHM ), संभावित रासायनिक बदलाव,  शिखर के आकार, उपकरण रूपरेखा कारकों और प्रयोगात्मक समायोजन, साथ ही नमूना गुणों से प्रभावित होते हैं:
प्रवाहकीय सामग्री और कंडक्टरों के अधिकांश मूल आक्साइड को कभी भी चार्ज संदर्भ की आवश्यकता नहीं होनी चाहिए। प्रवाहकीय सामग्री को कभी भी चार्ज संदर्भित नहीं किया जाना चाहिए जब तक कि नमूने की सबसे ऊपरी परत में मोटी गैर-प्रवाहकीय फिल्म न हो। चार्जिंग प्रभाव, यदि आवश्यक हो, तो इलेक्ट्रॉन फ्लड गन, यूवी रोशनी, कम वोल्टेज आर्गन आयन बीम से कम वोल्टेज (1-20 ईवी) इलेक्ट्रॉन बीम के उपयोग से सतह पर उपयुक्त कम ऊर्जा शुल्क प्रदान करके भी मुआवजा दिया जा सकता है। लो-वोल्टेज इलेक्ट्रॉन बीम (1-10 eV), अपर्चर मास्क, लो-वोल्टेज इलेक्ट्रॉन बीम के साथ मेश स्क्रीन आदि के साथ।
** आधे अधिकतम (एफडब्ल्यूएचएम) मूल्यों पर कुल आयाम  रासायनिक अवस्था परिवर्तन और भौतिक प्रभावों के उपयोगी संकेतक हैं। उनकी वृद्धि रासायनिक बंधों की संख्या में परिवर्तन, नमूना स्थिति में परिवर्तन (एक्स-किरण क्षति) या सतह के विभेदक आवेश (सतह की आवेश अवस्था में स्थानीयकृत अंतर) का संकेत दे सकती है। यद्यपि FWHM  संसूचक पर भी निर्भर करता है, और प्रतिरूप आवेश होने के कारण बढ़ भी सकता है।एकवर्णी Al K -अल्फा एक्स-किरण स्रोत सहित  XPS पर उच्च ऊर्जा  विश्लेषण प्रयोग समायोजन का उपयोग करते समय, प्रमुख XPS शिखरों का FWHM  0.3 eV से 1.7 eV तक होता है। निम्नलिखित प्रमुख XPS संकेतों से FWHM का एक सरल सारांश है  शुद्ध धातुओं से मुख्य धातु शिखरों (जैसे 1s, 2p3, 3d5, 4f7) में FWHMs होते हैं जो 0.30 eV से 1.0 eV तक होते हैं मुख्य धातु शिखर (जैसे 1s, 2p3, 3d5, 4f7) बाइनरी धातु ऑक्साइड से FWHMs हैं जो 0.9 eV से 1.7 eV तक O (1s) शिखर से हैं बाह्य हाइड्रोकार्बन से C (1s) शिखर में FWHMs होते हैं, जो सामान्य रूप से 1.0 eV से 1.4 eV तक होते हैं।
 
** रासायनिक स्थानान्तरण मूल्य निकटतम-पड़ोसी परमाणुओं के बीच इलेक्ट्रॉन बंधन ध्रुवीकरण की कोटि पर निर्भर करता है। एक विशिष्ट रासायनिक बदलाव शुद्ध तत्व के एक रूप के BE बनाम एक विशिष्ट रासायनिकअवस्था के BE  मूल्यों में अंतर है, या उस तत्व के एक विशेष सहमत-रासायनिक अवस्था में अंतर है। शिखर-समंजन  अपरिष्कृत रासायनिक अवस्था स्पेक्ट्रम से प्राप्त घटक  शिखरों  को  नमूने की मात्रा के भीतर विभिन्न रासायनिक अवस्थाओं  की उपस्थिति के लिए सौंपा जा सकता है
===पीक-फिटिंग===
** शिखर आकार उपकरण मापदंडों, प्रयोगात्मक मापदंडों और नमूना विशेषताओं पर निर्भर करता हैं।
पीक-फिटिंग हाई एनर्जी रेजोल्यूशन XPS स्पेक्ट्रा की प्रक्रिया वैज्ञानिक ज्ञान और अनुभव का मिश्रण है। प्रक्रिया उपकरण डिजाइन, उपकरण घटकों, प्रयोगात्मक सेटिंग्स और नमूना चर से प्रभावित होती है। किसी भी पीक-फिट प्रयास को शुरू करने से पहले, पीक-फिट का प्रदर्शन करने वाले विश्लेषक को यह जानने की जरूरत है कि क्या नमूने का सबसे ऊपरी 15 एनएम सजातीय सामग्री होने की उम्मीद है या सामग्रियों का मिश्रण होने की उम्मीद है। यदि शीर्ष 15 एनएम एक सजातीय सामग्री है जिसमें केवल बहुत ही कम मात्रा में कार्बन और सोखने वाली गैसें हैं, तो विश्लेषक चोटी-फिटिंग प्रक्रिया को बढ़ाने के लिए सैद्धांतिक शिखर क्षेत्र अनुपात का उपयोग कर सकते हैं। पीक फिटिंग के परिणाम समग्र चोटी की चौड़ाई (अधिकतम आधे पर, एफडब्ल्यूएचएम), संभावित रासायनिक बदलाव, चोटी के आकार, उपकरण डिजाइन कारकों और प्रयोगात्मक सेटिंग्स, साथ ही नमूना गुणों से प्रभावित होते हैं:
** उपकरण रूपरेखा कारकों में इस्तेमाल की गई एक्स-किरण ( एकवर्णी Al , गैर-एकवर्णी Mg , सिंक्रोट्रॉन Ag, Zr,) की पंक्ति चौड़ाई और शुद्धता के साथ-साथ इलेक्ट्रॉन विश्लेषक के गुण सम्मिलित  हैं।
 
**इलेक्ट्रॉन विश्लेषक का समायोजन (जैसे निर्गत ऊर्जा , पथ आकार )
* आधी अधिकतम (एफडब्ल्यूएचएम) मूल्यों पर पूरी चौड़ाई रासायनिक अवस्था परिवर्तन और भौतिक प्रभावों के उपयोगी संकेतक हैं। उनकी वृद्धि रासायनिक बंधों की संख्या में परिवर्तन, नमूना स्थिति में परिवर्तन (एक्स-रे क्षति) या सतह के विभेदक चार्ज (सतह की आवेश अवस्था में स्थानीयकृत अंतर) का संकेत दे सकती है। हालांकि, एफडब्ल्यूएचएम डिटेक्टर पर भी निर्भर करता है, और सैंपल चार्ज होने के कारण बढ़ भी सकता है। मोनोक्रोमैटिक अल के-अल्फा एक्स-रे स्रोत से लैस एक्सपीएस पर उच्च ऊर्जा रिज़ॉल्यूशन प्रयोग सेटिंग्स का उपयोग करते समय, प्रमुख एक्सपीएस चोटियों का एफडब्ल्यूएचएम 0.3 ईवी से 1.7 ईवी तक होता है। निम्नलिखित प्रमुख XPS संकेतों से FWHM का एक सरल सारांश है:{{citation needed|date=July 2019}} शुद्ध धातुओं से मुख्य धातु चोटियों (जैसे 1s, 2p3, 3d5, 4f7) में FWHMs होते हैं जो 0.30 eV से 1.0 eV तक होते हैं बाइनरी मेटल ऑक्साइड से मुख्य धातु चोटियों (जैसे 1s, 2p3, 3d5, 4f7) में FWHMs होते हैं जो 0.9 eV से होते हैं से 1.7 eV बाइनरी मेटल ऑक्साइड से O (1s) शिखर में FWHMs होते हैं, जो सामान्य रूप से 1.0 eV से 1.4 eV तक होते हैं। C (1s) शिखर से एडवेंचर हाइड्रोकार्बन में FWHM होते हैं, जो सामान्य रूप से 1.0 eV से 1.4 eV तक होते हैं।
**शिखर समायोजन को प्रभावित करने वाले  कारक विश्लेषण की मात्रा (आयन नक़्क़ाशी, या लेजर सफाई से) के भीतर भौतिक दोषों की संख्या  और नमूने का  भौतिक रूप (एकल क्रिस्टल, पॉलिश, पाउडर, जीर्णशीर्ण )हैं।
* रासायनिक बदलाव मान निकटतम-पड़ोसी परमाणुओं के बीच इलेक्ट्रॉन बंधन ध्रुवीकरण की डिग्री पर निर्भर करता है। एक विशिष्ट रासायनिक बदलाव शुद्ध तत्व के एक रूप के बीई बनाम एक विशिष्ट रासायनिक राज्य के बीई मूल्यों में अंतर है, या उस तत्व के एक विशेष सहमत-रासायनिक राज्य में अंतर है। शिखर-फिटिंग कच्चे रासायनिक राज्य स्पेक्ट्रम से प्राप्त घटक चोटियों को नमूने के नमूने की मात्रा के भीतर विभिन्न रासायनिक राज्यों की उपस्थिति के लिए सौंपा जा सकता है।
* पीक आकार उपकरण पैरामीटर, प्रयोगात्मक पैरामीटर और नमूना विशेषताओं पर निर्भर करते हैं।
* उपकरण डिजाइन कारकों में इस्तेमाल की गई एक्स-रे (मोनोक्रोमैटिक अल, गैर-मोनोक्रोमैटिक एमजी, सिंक्रोट्रॉन, एजी, जेडआर) की लाइनविड्थ और शुद्धता के साथ-साथ इलेक्ट्रॉन विश्लेषक के गुण शामिल हैं।
* इलेक्ट्रॉन विश्लेषक की सेटिंग (जैसे पास एनर्जी, स्टेप साइज)
* शिखर फिटिंग को प्रभावित करने वाले नमूना कारक विश्लेषण मात्रा (आयन नक़्क़ाशी, या लेजर सफाई से) के भीतर भौतिक दोषों की संख्या हैं, और नमूने का बहुत ही भौतिक रूप (एकल क्रिस्टल, पॉलिश, पाउडर, जंग लगा हुआ)


== सैद्धांतिक पहलू ==
== सैद्धांतिक पहलू ==
Line 98: Line 79:


:<math> h\nu =|E_{b}^{v}|+E_{kin} </math>
:<math> h\nu =|E_{b}^{v}|+E_{kin} </math>
कहाँ पे <math>h\nu</math> फोटॉन ऊर्जा है, <math>|E_{b}^{v}|</math> आयनीकरण से पहले इलेक्ट्रॉन बीई (निर्वात स्तर के संबंध में बंधन ऊर्जा ) है, और <math>E_{kin}</math> फोटोइलेक्ट्रॉन की गतिज ऊर्जा है। यदि फर्मी स्तर के संबंध में संदर्भ लिया जाता है (जैसा कि आमतौर पर [[फोटोइलेक्ट्रॉन स्पेक्ट्रोस्कोपी]] में किया जाता है) <math>|E_{b}^{v}|</math> फर्मी स्तर के सापेक्ष बंधन ऊर्जा  (बीई) के योग से प्रतिस्थापित किया जाना चाहिए, <math>|E_{b}^{F}|</math>, और नमूना कार्य समारोह, <math>\Phi_{0}</math> .
जहां पर <math>h\nu</math> फोटॉन ऊर्जा है, <math>|E_{b}^{v}|</math> आयनीकरण से पहले इलेक्ट्रॉन बीई (एक्सपीएस स्तर के संबंध में बंधन ऊर्जा) है, और <math>E_{kin}</math> फोटोइलेक्ट्रॉन की गतिज ऊर्जा है। यदि फर्मी स्तर के संबंध में संदर्भ लिया जाता है (जैसा कि सामान्यतः [[फोटोइलेक्ट्रॉन स्पेक्ट्रोस्कोपी]] में किया जाता है) <math>|E_{b}^{v}|</math> फर्मी स्तर के सापेक्ष बंधन ऊर्जा  (बीई) के योग से प्रतिस्थापित किया जाना चाहिए, <math>|E_{b}^{F}|</math>, और नमूना कार्य समारोह, <math>\Phi_{0}</math> .


सैद्धांतिक दृष्टिकोण से, एक ठोस से फोटो उत्सर्जन प्रक्रिया को एक अर्धशास्त्रीय दृष्टिकोण के साथ वर्णित किया जा सकता है, जहां विद्युत चुम्बकीय क्षेत्र को अभी भी शास्त्रीय रूप से व्यवहार किया जाता है, जबकि पदार्थ के लिए क्वांटम-मैकेनिकल विवरण का उपयोग किया जाता है।
सैद्धांतिक दृष्टिकोण से, एक ठोस से फोटो उत्सर्जन प्रक्रिया को एक अर्धशास्त्रीय दृष्टिकोण के साथ वर्णित किया जा सकता है, जहां विद्युत चुम्बकीय क्षेत्र को अभी भी शास्त्रीय रूप से व्यवहार किया जाता है, जबकि पदार्थ के लिए क्वांटम-मैकेनिकल विवरण का उपयोग किया जाता है।
Line 105: Line 86:
:<math> i\hbar \frac{\partial \psi}{\partial t}=\left[\frac{1}{2m}\left(\mathbf{\hat{p}}-\frac{e}{c}\mathbf{\hat{A}}\right)^2+ \hat{V} \right]\psi=\hat{H}\psi </math>,
:<math> i\hbar \frac{\partial \psi}{\partial t}=\left[\frac{1}{2m}\left(\mathbf{\hat{p}}-\frac{e}{c}\mathbf{\hat{A}}\right)^2+ \hat{V} \right]\psi=\hat{H}\psi </math>,


कहाँ पे <math>\psi</math> इलेक्ट्रॉन तरंग समारोह है, <math>\mathbf{A}</math> विद्युत चुम्बकीय क्षेत्र की वेक्टर क्षमता है और <math>V</math> ठोस की अविचलित क्षमता है।
जहां पर <math>\psi</math> इलेक्ट्रॉन तरंग समारोह है, <math>\mathbf{A}</math> विद्युत चुम्बकीय क्षेत्र की वेक्टर क्षमता है और <math>V</math> ठोस की अविचलित क्षमता है।
कूलम्ब गेज में (<math>\nabla \cdot \mathbf{A}=0</math>), सदिश क्षमता संवेग संचालक के साथ आवागमन करती है
कूलम्ब गेज में (<math>\nabla \cdot \mathbf{A}=0</math>), सदिश क्षमता संवेग संचालक के साथ आवागमन करती है
(<math>[\mathbf{\hat{p}}, \mathbf{\hat{A}}]=0 </math>), ताकि हैमिल्टनियन में ब्रैकेट में अभिव्यक्ति सरल हो जाए:
(<math>[\mathbf{\hat{p}}, \mathbf{\hat{A}}]=0 </math>), ताकि हैमिल्टनियन में ब्रैकेट में अभिव्यक्ति सरल हो जाए:
Line 120: Line 101:
:<math> \frac{d\omega}{dt}\propto \frac{2\pi}{\hbar}|\langle \psi_{f}|\hat{H}'|\psi_{i} \rangle |^2 \delta (E_{f}-E_{i}-h\nu) </math>,
:<math> \frac{d\omega}{dt}\propto \frac{2\pi}{\hbar}|\langle \psi_{f}|\hat{H}'|\psi_{i} \rangle |^2 \delta (E_{f}-E_{i}-h\nu) </math>,


कहाँ पे <math>E_{i}</math> तथा <math>E_{f}</math> क्रमशः प्रारंभिक और अंतिम अवस्था में अविचलित हैमिल्टन के आइगेनवेल्यू हैं, और <math>h\nu</math> फोटॉन ऊर्जा है। फर्मी का गोल्डन रूल इस अनुमान का उपयोग करता है कि गड़बड़ी अनंत समय के लिए सिस्टम पर काम करती है। यह सन्निकटन तब मान्य होता है जब सिस्टम पर गड़बड़ी का कार्य संक्रमण के लिए आवश्यक समय से बहुत बड़ा होता है। यह समझा जाना चाहिए कि इस समीकरण को राज्यों के घनत्व के साथ एकीकृत करने की जरूरत है <math>\rho(E)</math> जो देता है:<ref name="Fermi's Golden Rule">{{cite book|last1=Sakurai|first1=J.|title=[[आधुनिक क्वांटम यांत्रिकी]]|date=1995|publisher=Addison-Wesley Publishing Company|isbn=0-201-53929-2|edition=Rev.|page=[https://archive.org/details/modernquantummec00saku/page/n344 332]}}</ref>
जहां पर <math>E_{i}</math> तथा <math>E_{f}</math> क्रमशः प्रारंभिक और अंतिम अवस्था में अविचलित हैमिल्टन के आइगेनवेल्यू हैं, और <math>h\nu</math> फोटॉन ऊर्जा है। फर्मी का गोल्डन रूल इस अनुमान का उपयोग करता है कि गड़बड़ी अनंत समय के लिए सिस्टम पर काम करती है। यह सन्निकटन तब मान्य होता है जब सिस्टम पर गड़बड़ी का कार्य संक्रमण के लिए आवश्यक समय से बहुत बड़ा होता है। यह समझा जाना चाहिए कि इस समीकरण को अवस्थाों के घनत्व के साथ एकीकृत करने की जरूरत है <math>\rho(E)</math> जो देता है:<ref name="Fermi's Golden Rule">{{cite book|last1=Sakurai|first1=J.|title=[[आधुनिक क्वांटम यांत्रिकी]]|date=1995|publisher=Addison-Wesley Publishing Company|isbn=0-201-53929-2|edition=Rev.|page=[https://archive.org/details/modernquantummec00saku/page/n344 332]}}</ref>
:<math> \frac{d\omega}{dt}\propto \frac{2\pi}{\hbar}|\langle \psi_{f}|\hat{H}'|\psi_{i} \rangle |^2 \rho(E_{f})=|M_{fi}|^2 \rho(E_{f}) </math>
:<math> \frac{d\omega}{dt}\propto \frac{2\pi}{\hbar}|\langle \psi_{f}|\hat{H}'|\psi_{i} \rangle |^2 \rho(E_{f})=|M_{fi}|^2 \rho(E_{f}) </math>
एक वास्तविक प्रकाश उत्सर्जन प्रयोग में जमीनी अवस्था कोर इलेक्ट्रॉन बीई की सीधे जांच नहीं की जा सकती है, क्योंकि बीई मापा जाता है
एक वास्तविक प्रकाश उत्सर्जन प्रयोग में जमीनी अवस्था कोर इलेक्ट्रॉन बीई की सीधे जांच नहीं की जा सकती है, क्योंकि बीई मापा जाता है
प्रारंभिक अवस्था और अंतिम अवस्था दोनों प्रभावों को शामिल करता है, और परिमित कोर-होल जीवनकाल के कारण वर्णक्रमीय लिनिविथ को चौड़ा किया जाता है (<math>\tau</math>).
प्रारंभिक अवस्था और अंतिम अवस्था दोनों प्रभावों को सम्मिलित  करता है, और परिमित कोर-होल जीवनकाल के कारण वर्णक्रमीय लिनिविथ को चौड़ा किया जाता है (<math>\tau</math>).


समय डोमेन में कोर होल के लिए एक घातीय क्षय संभावना मानते हुए (<math> \propto \exp{-t/\tau} </math>), एफडब्ल्यूएचएम (हाफ मैक्सिमम पर फुल विड्थ) के साथ स्पेक्ट्रल फंक्शन का लोरेंट्ज़ियन आकार होगा। <math>\Gamma</math> के द्वारा दिया गया:
समय डोमेन में कोर होल के लिए एक घातीय क्षय संभावना मानते हुए (<math> \propto \exp{-t/\tau} </math>), एफडब्ल्यूएचएम (हाफ मैक्सिमम पर फुल विड्थ) के साथ स्पेक्ट्रल फंक्शन का लोरेंट्ज़ियन आकार होगा। <math>\Gamma</math> के द्वारा दिया गया:
Line 131: Line 112:


<math> \Gamma \tau \geq \hbar </math>
<math> \Gamma \tau \geq \hbar </math>
प्रकाश उत्सर्जन की घटना परमाणु को अत्यधिक उत्तेजित कोर आयनित अवस्था में छोड़ देती है, जिससे यह विकिरण (प्रतिदीप्ति) या गैर-विकिरण (आमतौर पर बरमा क्षय द्वारा) का क्षय कर सकता है।
प्रकाश उत्सर्जन की घटना परमाणु को अत्यधिक उत्तेजित कोर आयनित अवस्था में छोड़ देती है, जिससे यह विकिरण (प्रतिदीप्ति) या गैर-विकिरण (सामान्यतः बरमा क्षय द्वारा) का क्षय कर सकता है।
लोरेंत्ज़ियन ब्रॉडिंग के अलावा, गॉसियन ब्रॉडिंग से फोटोमिशन स्पेक्ट्रा भी प्रभावित होता है, जिसका योगदान इसके द्वारा व्यक्त किया जा सकता है
लोरेंत्ज़ियन ब्रॉडिंग के अलावा, गॉसियन ब्रॉडिंग से फोटोमिशन स्पेक्ट्रा भी प्रभावित होता है, जिसका योगदान इसके द्वारा व्यक्त किया जा सकता है


Line 143: Line 124:
एक ठोस में, अप्रत्यास्थ प्रकीर्णन घटनाएँ भी प्रकाश-उत्सर्जन प्रक्रिया में योगदान करती हैं, जिससे इलेक्ट्रॉन-छेद जोड़े उत्पन्न होते हैं जो मुख्य प्रकाश-उत्सर्जन शिखर के उच्च बीई पक्ष पर एक अप्रत्यास्थ पूंछ के रूप में दिखाई देते हैं। वास्तव में यह इलेक्ट्रॉन अप्रत्यास्थ माध्य मुक्त पथ (आईएमएफपी) की गणना की अनुमति देता है। यह बीयर-लैंबर्ट कानून के आधार पर तैयार किया जा सकता है, जो बताता है
एक ठोस में, अप्रत्यास्थ प्रकीर्णन घटनाएँ भी प्रकाश-उत्सर्जन प्रक्रिया में योगदान करती हैं, जिससे इलेक्ट्रॉन-छेद जोड़े उत्पन्न होते हैं जो मुख्य प्रकाश-उत्सर्जन शिखर के उच्च बीई पक्ष पर एक अप्रत्यास्थ पूंछ के रूप में दिखाई देते हैं। वास्तव में यह इलेक्ट्रॉन अप्रत्यास्थ माध्य मुक्त पथ (आईएमएफपी) की गणना की अनुमति देता है। यह बीयर-लैंबर्ट कानून के आधार पर तैयार किया जा सकता है, जो बताता है
:<math>I(z) = I_0e^{-z/\lambda}</math>
:<math>I(z) = I_0e^{-z/\lambda}</math>
कहाँ पे <math>\lambda</math> आईएमएफपी है और <math>z</math> नमूने के लंबवत अक्ष है। वास्तव में यह आम तौर पर मामला है कि आईएमएफपी केवल कमजोर सामग्री पर निर्भर है, बल्कि फोटोइलेक्ट्रॉन गतिज ऊर्जा पर दृढ़ता से निर्भर है। मात्रात्मक रूप से हम संबंधित कर सकते हैं <math>E_\text{kin}</math> आईएमएफपी द्वारा<ref>{{cite book |last1=Attard |first1=Gary |last2=Barnes |first2=Colin |date=1998 |title=सतह|publisher=Oxford Chemistry Primers |page=27 |isbn=978-0198556862 }}</ref><ref>{{cite web|url = http://www.lasurface.com/xps/imfp.php |title = एक्सपीएस: द मीन फ्री पाथ|website = lasurface.com}}</ref>
जहां पर <math>\lambda</math> आईएमएफपी है और <math>z</math> नमूने के लंबवत अक्ष है। वास्तव में यह आम तौर पर मामला है कि आईएमएफपी केवल कमजोर सामग्री पर निर्भर है, बल्कि फोटोइलेक्ट्रॉन गतिज ऊर्जा पर दृढ़ता से निर्भर है। मात्रात्मक रूप से हम संबंधित कर सकते हैं <math>E_\text{kin}</math> आईएमएफपी द्वारा<ref>{{cite book |last1=Attard |first1=Gary |last2=Barnes |first2=Colin |date=1998 |title=सतह|publisher=Oxford Chemistry Primers |page=27 |isbn=978-0198556862 }}</ref><ref>{{cite web|url = http://www.lasurface.com/xps/imfp.php |title = एक्सपीएस: द मीन फ्री पाथ|website = lasurface.com}}</ref>
:<math>
:<math>
\lambda(\text{nm}) = [538a]\left( E_\text{kin}\right)^{-2} + [0.41a^{3/2}]\left(E_\text{kin}\right)^{1/2}
\lambda(\text{nm}) = [538a]\left( E_\text{kin}\right)^{-2} + [0.41a^{3/2}]\left(E_\text{kin}\right)^{1/2}
</math>
</math>
कहाँ पे <math>a</math> घनत्व द्वारा गणना के अनुसार औसत परमाणु व्यास है <math>a=\rho^{-1/3}</math>. उपरोक्त सूत्र सीह और डेंच द्वारा विकसित किया गया था।
जहां पर <math>a</math> घनत्व द्वारा गणना के अनुसार औसत परमाणु व्यास है <math>a=\rho^{-1/3}</math>. उपरोक्त सूत्र सीह और डेंच द्वारा विकसित किया गया था।


==== प्लास्मोनिक प्रभाव ====
==== प्लास्मोनिक प्रभाव ====
कुछ मामलों में, प्लास्मोन उत्तेजनाओं के कारण ऊर्जा हानि की विशेषताएं भी देखी जाती हैं। यह या तो कोर होल क्षय के कारण होने वाला एक अंतिम राज्य प्रभाव हो सकता है, जो ठोस (आंतरिक [[plasmon]]) में परिमाणित इलेक्ट्रॉन तरंग उत्तेजना उत्पन्न करता है, या यह उत्सर्जक से सतह (बाहरी प्लास्मोंस) तक यात्रा करने वाले फोटोइलेक्ट्रॉनों द्वारा प्रेरित उत्तेजनाओं के कारण हो सकता है।
कुछ मामलों में, प्लास्मोन उत्तेजनाओं के कारण ऊर्जा हानि की विशेषताएं भी देखी जाती हैं। यह या तो कोर होल क्षय के कारण होने वाला एक अंतिम अवस्था प्रभाव हो सकता है, जो ठोस (आंतरिक [[plasmon|प्लास्मोन]]) में परिमाणित इलेक्ट्रॉन तरंग उत्तेजना उत्पन्न करता है, या यह उत्सर्जक से सतह (बाहरी प्लास्मोंस) तक यात्रा करने वाले फोटोइलेक्ट्रॉनों द्वारा प्रेरित उत्तेजनाओं के कारण हो सकता है। प्रथम-परत परमाणुओं की कम [[समन्वय संख्या]] के कारण, बल्क और सतह परमाणुओं की प्लाज्मा आवृत्ति निम्नलिखित समीकरण से संबंधित होती है:  
प्रथम-परत परमाणुओं की कम [[समन्वय संख्या]] के कारण, बल्क और सतह परमाणुओं की प्लाज्मा आवृत्ति निम्नलिखित समीकरण से संबंधित होती है:
:<math> \omega_\text{surface} = \frac{\omega_\text{bulk}}{\sqrt{2}}</math>,
:<math> \omega_\text{surface} = \frac{\omega_\text{bulk}}{\sqrt{2}}</math>,
ताकि सतह और बल्क प्लास्मों को आसानी से एक दूसरे से अलग किया जा सके।
एक ठोस में प्लास्मोन अवस्था सामान्यतः सतह पर स्थानीयकृत होते हैं, और आईएमएफपी को दृढ़ता से प्रभावित कर सकते हैं। ताकि सतह और बल्क प्लास्मों को आसानी से एक दूसरे से अलग किया जा सके।
एक ठोस में प्लास्मोन राज्य आमतौर पर सतह पर स्थानीयकृत होते हैं, और आईएमएफपी को दृढ़ता से प्रभावित कर सकते हैं।


==== कंपन प्रभाव ====
==== कंपन प्रभाव ====
तापमान पर निर्भर परमाणु जाली कंपन, या [[फोनन]], कोर स्तर के घटकों को विस्तृत कर सकते हैं और एक्स-रे फोटोइलेक्ट्रॉन विवर्तन (एक्सपीडी) प्रयोग में हस्तक्षेप पैटर्न को क्षीण कर सकते हैं। कंपन प्रभाव के लिए खाते का सबसे सरल तरीका बिखरे हुए एकल-फोटोइलेक्ट्रॉन तरंग फ़ंक्शन को गुणा करना है <math>\phi_{j}</math> डेबी-वालर कारक द्वारा:
तापमान पर निर्भर परमाणु जलक कंपन, या फोनोन, कोर स्तर के घटकों को विस्तृत कर सकते हैं और एक्स-रे फोटोइलेक्ट्रॉन विवर्तन (एक्सपीडी) प्रयोग में व्यतिकरण प्रतिरूप को क्षीण कर सकते हैं। कंपन संबंधी प्रभावों का लेखा-जोखा रखने का सबसे आसान तरीका है बिखरे हुए एकल-फोटोइलेक्ट्रॉन वेव फलन को डिबाइ -वॉलर फैक्टर कारक <math>\phi_{j}</math> से गुणा करना:
:<math>W_{j}= \exp{(-\Delta k_{j}^2 \bar{U_{j}^2})}</math>,
:<math>W_{j}= \exp{(-\Delta k_{j}^2 \bar{U_{j}^2})}</math>,
कहाँ पे <math>\Delta k_{j}^2</math> बिखरने के कारण तरंग सदिश भिन्नता का वर्ग परिमाण है,
जहां पर <math>\Delta k_{j}^2</math> प्रकीर्णन के कारण तरंग सदिश भिन्नता का वर्ग परिमाण है, तथा <math>\bar{U_{j}^2}</math> तापमान-निर्भर एक आयामी कंपन माध्य वर्ग विस्थापन है <math>j^{th}</math> उत्सर्जक है। डेबी मॉडल में, माध्य वर्ग विस्थापन की गणना डेबी तापमान <math>\Theta_{D}</math> के रूप में की जाती है, जैसे:
तथा <math>\bar{U_{j}^2}</math> का तापमान-निर्भर एक आयामी कंपन माध्य वर्ग विस्थापन है <math>j^{th}</math> उत्सर्जक। डेबी मॉडल में, माध्य वर्ग विस्थापन की गणना डेबी तापमान के रूप में की जाती है, <math>\Theta_{D}</math>, जैसा:
:<math> \bar{U_{j}^2}(T) = 9 \hbar ^2 T^2 / m k_{B} \Theta_{D} </math>  
:<math> \bar{U_{j}^2}(T) = 9 \hbar ^2 T^2 / m k_{B} \Theta_{D} </math>
 
 
== यह भी देखें ==
== यह भी देखें ==
* [[सामग्री विश्लेषण विधियों की सूची]]
* [[सामग्री विश्लेषण विधियों की सूची]]
Line 182: Line 158:
==अग्रिम पठन==
==अग्रिम पठन==
*''XPS Spectra, Databases, Spectra and Application Notes'', [http://www.xpsdata.com]
*''XPS Spectra, Databases, Spectra and Application Notes'', [http://www.xpsdata.com]
*''Handbooks of Monochromatic XPS Spectra - Fully Annotated, PDF of Volumes 1 and 2'', B.V.Crist, published by XPS International LLC, 2005, Mountain View, CA, USA
*''Handbooks of Monochromaticएक्सपीएस  Spectra - Fully Annotated, PDF of Volumes 1 and 2'', B.V.Crist, published byएक्सपीएस  International LLC, 2005, Mountain View, CA, USA
*''Handbooks of Monochromatic XPS Spectra, Volumes 1-5'', B.V.Crist, published by XPS International LLC, 2004, Mountain View, CA, USA
*''Handbooks of Monochromaticएक्सपीएस  Spectra, Volumes 1-5'', B.V.Crist, published byएक्सपीएस  International LLC, 2004, Mountain View, CA, USA
*''Surface Analysis by Auger and X-ray Photoelectron Spectroscopy'', ed. J.T.Grant and D.Briggs, published by IM Publications, 2003, Chichester, UK
*''Surface Analysis by Auger and X-ray Photoelectron Spectroscopy'', ed. J.T.Grant and D.Briggs, published by IM Publications, 2003, Chichester, UK
*''An Introduction to Surface Analysis by XPS and AES'', J.F.Watts, J.Wolstenholme, published by Wiley & Sons, 2003, Chichester, UK, {{ISBN|978-0-470-84713-8}}
*''An Introduction to Surface Analysis byएक्सपीएस  and AES'', J.F.Watts, J.Wolstenholme, published by Wiley & Sons, 2003, Chichester, UK, {{ISBN|978-0-470-84713-8}}
*''Practical Surface Analysis by Auger and X-ray Photoelectron Spectroscopy'', 2nd edition, ed. M.P.Seah and D.Briggs, published by Wiley & Sons, 1992, Chichester, UK
*''Practical Surface Analysis by Auger and X-ray Photoelectron Spectroscopy'', 2nd edition, ed. M.P.Seah and D.Briggs, published by Wiley & Sons, 1992, Chichester, UK
*''Practical Surface Analysis by Auger and X-ray Photoelectron Spectroscopy'', ed. M.P.Seah and D.Briggs, published by Wiley & Sons, 1983, Chichester, UK {{ISBN|0-471-26279-X}}
*''Practical Surface Analysis by Auger and X-ray Photoelectron Spectroscopy'', ed. M.P.Seah and D.Briggs, published by Wiley & Sons, 1983, Chichester, UK {{ISBN|0-471-26279-X}}
*''Surface Chemical Analysis — Vocabulary'', ISO 18115 : 2001, [[International Organization for Standardization]] (ISO), TC/201, Switzerland, [http://www.iso.ch]
*''Surface Chemical Analysis — Vocabulary'', ISO 18115 : 2001, [[International Organization for Standardization]] (ISO), TC/201, Switzerland, [http://www.iso.ch]
*''Handbook of X-ray Photoelectron Spectroscopy'', J.F.Moulder, W.F.Stickle, P.E.Sobol, and K.D.Bomben, published by Perkin-Elmer Corp., 1992, Eden Prairie, MN, USA
*''Handbook of X-ray Photoelectron Spectroscopy'', J.F.Moulder, W.F.Stickle, P.E.Sobol, and K.D.Bomben, published by Perkin-Elmer Corp., 1992, Eden Prairie, MN, USA
==इस पेज में लापता आंतरिक लिंक की सूची==
*पहचान सीमा
*भाग प्रति हजार
*भाग प्रति दस लाख
*सेमीकंडक्टर
*हड्डी
*कांच
*कागज़
*चीनी मिट्टी
*प्रसाधन सामग्री
*इलेक्ट्रॉन बंधन ऊर्जा
*ऊर्जा संरक्षण
*नोबेल पुरुस्कार
*बंधन ऊर्जा
*ऋणावेशित सूक्ष्म अणु का विन्यास
*शोर अनुपात का संकेत
*लहरदार
*अधिकतम अर्ध पर पूरी चौड़ाई
*बेलोचदार मतलब मुक्त पथ
*औसत वर्ग विस्थापन
==बाहरी संबंध==
==बाहरी संबंध==
*[http://www.xpsdata.com] XPS Spectra, Databases, Spectra and Application Notes
*[http://www.xpsdata.com]एक्सपीएस  Spectra, Databases, Spectra and Application Notes
*[http://www.elettra.trieste.it/lightsources/labs-and-services/surface-lab/x-ray-photoelectron-spectroscopy.html X-Ray Photoelectron Spectroscopy] Overview
*[http://www.elettra.trieste.it/lightsources/labs-and-services/surface-lab/x-ray-photoelectron-spectroscopy.html X-Ray Photoelectron Spectroscopy] Overview
*[http://www.elettra.trieste.it/lightsources/labs-and-services/surface-lab/instrument-description.html The conventional X-Ray source at the Surface Science Laboratory]  - Instrumental description and guided tour
*[http://www.elettra.trieste.it/lightsources/labs-and-services/surface-lab/instrument-description.html The conventional X-Ray source at the Surface Science Laboratory]  - Instrumental description and guided tour
*[http://www.elettra.trieste.it/elettra-beamlines/superesca.html The SuperESCA beamline @ Elettra] Welcome to the Fast XPS beamline!
*[http://www.elettra.trieste.it/elettra-beamlines/superesca.html The SuperESCA beamline @ Elettra] Welcome to the Fastएक्सपीएस  beamline!
*[http://www2.warwick.ac.uk/fac/sci/physics/research/condensedmatt/surface/exp/xps/links/ Monochromated XPS] Technique background information, useful analysis resources and monochromated XPS equipment description.
*[http://www2.warwick.ac.uk/fac/sci/physics/research/condensedmatt/surface/exp/xps/links/ Monochromatedएक्सपीएस] Technique background information, useful analysis resources and monochromatedएक्सपीएस  equipment description.


{{Branches of spectroscopy}}
{{Branches of spectroscopy}}
{{X-ray science}}
[[Category:All articles with unsourced statements]]
[[Category:Articles with invalid date parameter in template]]
[[Category:Articles with unsourced statements from July 2019]]
[[Category:Articles with unsourced statements from June 2015]]
[[Category:Chemistry navigational boxes]]
[[Category:Collapse templates]]
[[Category:Created On 12/12/2022]]
[[Category:Lua-based templates]]
[[Category:Machine Translated Page]]
[[Category:Navigational boxes| ]]
[[Category:Navigational boxes without horizontal lists]]
[[Category:Pages with script errors]]
[[Category:Short description with empty Wikidata description]]
[[Category:Sidebars with styles needing conversion]]
[[Category:Template documentation pages|Documentation/doc]]
[[Category:Templates Vigyan Ready]]
[[Category:Templates generating microformats]]
[[Category:Templates that add a tracking category]]
[[Category:Templates that are not mobile friendly]]
[[Category:Templates that generate short descriptions]]
[[Category:Templates using TemplateData]]
[[Category:Wikipedia metatemplates]]
[[Category:आण्विक भौतिकी]]
[[Category:इलेक्ट्रॉन स्पेक्ट्रोस्कोपी]]
[[Category:उत्सर्जन स्पेक्ट्रोस्कोपी]]
[[Category:परमाणु भौतिकी]]
[[Category:परमाणु भौतिकी]]
[[Category: आण्विक भौतिकी]]
[[Category:भूतल विज्ञान]]
[[Category:उत्सर्जन स्पेक्ट्रोस्कोपी]]
[[Category: भूतल विज्ञान]]
[[Category:इलेक्ट्रॉन स्पेक्ट्रोस्कोपी]]
 
 
[[Category: Machine Translated Page]]
[[Category:Created On 12/12/2022]]

Latest revision as of 11:26, 14 September 2023

एकरंगा एक्सपीएस सिस्टम के मूल घटक।

चुकि एक विशेष तरंग दैर्ध्य पर एक्स-किरण की ऊर्जा ज्ञात है (α एक्स- किरण , Eफोटॉन = 1486.7 इलेक्ट्रान वोल्ट के लिए), और क्योंकि उत्सर्जित इलेक्ट्रॉनों की गतिज ऊर्जा को मापा जा सकता है, अतः उत्सर्जित इलेक्ट्रॉनों में से प्रत्येक की इलेक्ट्रॉन बंधन ऊर्जा प्रकाश वैद्युत प्रभाव समीकरण का उपयोग करके निर्धारित हो सकती है

,

जहां Ebinding रासायनिक क्षमता के सापेक्ष मापे गए इलेक्ट्रॉन की बंधन ऊर्जा (B E) है, Eफ़ोटॉन उपयोग किए जा रहे एक्स-किरण फोटॉनों की ऊर्जा है, Eगतिज इलेक्ट्रॉन की गतिज ऊर्जा है जैसा कि उपकरण द्वारा मापा जाता है और सामग्री की विशिष्ट सतह के लिए कार्य फलन जैसा शब्द है, जिसमें वास्तविक माप में वोल्ट क्षमता के कारण उपकरण के कार्य फलन द्वारा एक छोटा सुधार सम्मिलित है, यह समीकरण अनिवार्य रूप से ऊर्जा समीकरण का संरक्षण है। कार्य फलन-जैसी अवधि {\displaystyle \phi }\phi को एक समायोज्य सहायक सुधार कारक के रूप में माना जा सकता है जो फोटोइलेक्ट्रॉन द्वारा दी गई गतिज ऊर्जा के कुछ eV के लिए वर्णन किया जाता है क्योंकि यह बल्क से उत्सर्जित होता है और डिटेक्टर द्वारा अवशोषित होता है। यह एक स्थिरांक है जिसे अभ्यास में शायद ही कभी समायोजित करने की आवश्यकता होती है।

इतिहास

एक पुराने प्रकार के, गैरएकवर्णी एक्सपीएस व्यवस्था के अंदर का दृश्य।
एक्स किरण प्रकाशिक इलेक्ट्रॉन स्पेक्ट्रोमीटर का उदाहरण

1887 में, हेनरिक रुडोल्फ हर्ट्ज़ ने फोटोइलेक्ट्रिक प्रभाव की खोज की लेकिन व्याख्या नहीं कर सके, जिसे बाद में 1905 में अल्बर्ट आइंस्टीन (1921 में भौतिकी में नोबेल पुरस्कार) द्वारा समझाया गया था। आइंस्टीन के प्रकाशन के दो साल बाद 1907 में पी.डी. इनेस ने विल्हेम रॉन्टगन रॉन्टगन नलिका , हेल्महोल्ट्ज़ कुंडली , एक चुंबकीय क्षेत्र गोलार्द्ध (एक इलेक्ट्रॉन गतिज ऊर्जा विश्लेषक), और छायाचित्रित प्लेटों के साथ प्रयोग किया, जिससे उत्सर्जित इलेक्ट्रॉनों के व्यापक धारियों को वेग फलन के रूप में अभिलेखबद्ध किया जा सके, जिससे प्रभावी रूप से पहले एक्सपीएस( XPS ) वर्णक्रम का अभिलेखन किया गया । हेनरी मोस्ले और रॉबिन्सन सहित अन्य शोधकर्ताओं ने बन्ध में विवरणों को छांटने के लिए स्वतंत्र रूप से विभिन्न प्रयोग किए।[citation needed] द्वितीय विश्व युद्ध के बाद, काई सिगबान और अपसला (स्वीडन) में उनके शोध समूह ने उपकरण में कई महत्वपूर्ण सुधार किए, और 1954 में सोडियम क्लोराइड (NaCl) का पहला उच्च-ऊर्जा- विश्लेषण एक्सपीएस वर्णक्रम दर्ज किया, जिससे एक्सपीएस की क्षमता का पता चला।[1] कुछ वर्षों बाद 1967 में, सिगबैन ने एक्सपीएस का एक व्यापक अध्ययन प्रकाशित किया, जिससे एक्सपीएस की उपयोगिता की तुरंत पहचान हो गई और साथ ही पहला हार्ड एक्स-किरण उत्सर्जन प्रयोग किया गया, जिसे उन्होंने रासायनिक विश्लेषण के लिए इलेक्ट्रॉन स्पेक्ट्रोस्कोपी (ईएससीए) के रूप में संदर्भित किया।[2] अमेरिका में हेवलेट पैकर्ड में इंजीनियरों के एक छोटे समूह (माइक केली, चार्ल्स ब्रायसन, लेवियर फेय, रॉबर्ट चानी) ने सिगबैन के सहयोग से 1969 में पहला वाणिज्यिक एकवर्णी एक्सपीएस उपकरण तैयार किया।सिगबैन को नोबेल पुरस्कार मिला।1981 में सिगबैन को भौतिकी के लिए, एक्सपीएस को एक उपयोगी विश्लेषणात्मक उपकरण के रूप में विकसित करने के उनके व्यापक प्रयासों को स्वीकार करने के लिए नोबेल पुरस्कार मिला।[3] सिगबैन के काम के समानांतर, इंपीरियल कॉलेज लंदन (और बाद में ऑक्सफोर्ड विश्वविद्यालय में) में डेविड डब्ल्यू टर्नर ने हीलियम लैंप का उपयोग करके आणविक प्रजातियों के लिए पराबैंगनी प्रकाशिक इलेक्ट्रॉन स्पेक्ट्रम विज्ञान (यूपीएस) विकसित किया।[4]

नाप-

कुछ हद तक गंदे सिलिकॉन वेफर का वाइड-स्कैन या सर्वेक्षण स्पेक्ट्रम, जिसमें सभी तत्व मौजूद हैं। एक सर्वेक्षण स्पेक्ट्रम सामान्यतः अधिकांश एक्सपीएस विश्लेषणों का शुरुआती बिंदु होता है। यह एक बाद के उच्च-रिज़ॉल्यूशनएक्सपीएस स्पेक्ट्रा अधिग्रहण को स्थापित करने की अनुमति देता है। इनसेट परमाणु प्रजातियों, उनके परमाणु प्रतिशत और विशिष्ट बंधन ऊर्जा ओं को इंगित करने वाली एक परिमाण तालिका दिखाता है।

एक एक्सपीएस स्पेक्ट्रम एक विशिष्ट बंधन ऊर्जा पर पाए गए इलेक्ट्रॉनों की संख्या का एक आलेख है। प्रत्येक तत्व एक्सपीएस चोटियों का एक सेट उत्पन्न करता है। ये चोटियाँ परमाणुओं के भीतर इलेक्ट्रॉनों के इलेक्ट्रॉन विन्यास के अनुरूप हैं, जैसे, 1s, 2s, 2p, 3s, आदि। प्रत्येक चोटी में पाए गए इलेक्ट्रॉनों की संख्या सीधे एक्सपीएस प्रतिदर्शी मात्रा के भीतर तत्व की मात्रा से संबंधित है। परमाणु प्रतिशत मान उत्पन्न करने के लिए, प्रत्येक अपरिष्कृत एक्सपीएस संकेत को एक सापेक्ष संवेदनशीलता कारक (RSF) द्वारा तीव्रता को विभाजित करके ठीक किया जाता है, और सभी तत्वों का पता लगाया जाता है। चूंकि हाइड्रोजन का पता नहीं चला है अतः इन परमाणु प्रतिशतों में हाइड्रोजन सम्मिलित नहीं है।

मात्रात्मक सटीकता और सटीकता -

एक्सपीएस व्यापक रूप से एक अनुभवजन्य सूत्र उत्पन्न करने के लिए उपयोग किया जाता है क्योंकि यह सजातीय ठोस-राज्य सामग्री से आसानी से उत्कृष्ट मात्रात्मक सटीकता प्राप्त करता है। पूर्ण परिमाणीकरण के लिए प्रमाणित (या स्वतंत्र रूप से सत्यापित) मानक नमूनों के उपयोग की आवश्यकता होती है, और आम तौर पर अधिक चुनौतीपूर्ण और कम सामान्य होता है।सापेक्ष परिमाणीकरण में एक सेट में कई नमूनों के बीच तुलना शामिल होती है, जिसके लिए एक या अधिक विश्लेषण अलग-अलग होते हैं जबकि अन्य सभी घटक (नमूना मैट्रिक्स) स्थिर होते हैं। मात्रात्मक सटीकता कई मापदंडों पर निर्भर करती है जैसे: संकेतक-शोर अनुपात, शिखर तीव्रता, सापेक्ष संवेदनशीलता कारकों की सटीकता, इलेक्ट्रॉन संचरण फलन के लिए सुधार, सतह मात्रा समरूपता, इलेक्ट्रॉन की ऊर्जा निर्भरता के लिए सुधार औसत मुक्त पथ, और नमूना गिरावट की डिग्री विश्लेषण के कारण।सर्वोत्कृष्ट स्थितियों  के अंतर्गत, प्रमुख XPS चोटियों से परिकलित परमाणु प्रतिशत मानों की मात्रात्मक सटीकता प्रत्येक चोटी के लिए 90-95% है। कमजोर XPS संकेतक के लिए मात्रात्मक सटीकता, जिसकी चरम तीव्रता सबसे मजबूत संकेतक का 10-20% है, सही मूल्य का 60-80% है, और संकेतक--शोर अनुपात में सुधार के लिए उपयोग किए जाने वाले प्रयास की मात्रा पर निर्भर करता है ( उदाहरण के लिए  संकेतक औसत द्वारा)। मात्रात्मक परिशुद्धता (माप को दोहराने और समान परिणाम प्राप्त करने की क्षमता) मात्रात्मक परिणामों की उचित प्रेषण  के लिए एक आवश्यक विचार है।

पता लगाने की सीमा-

संसूचन की मुख्य स्थिति और पृष्ठभूमि संकेत स्तर के अनुप्रस्थ परिच्छेद के साथ पता लगाने की सीमा बहुत भिन्न हो सकती है। सामान्यतः प्रकाशिक इलेक्ट्रॉन अनुप्रस्थ परिच्छेद परमाणु संख्या के साथ बढ़ते हैं। द्वितीयक उत्सर्जित इलेक्ट्रॉनों के कारण मैट्रिक्स घटकों की परमाणु संख्या के साथ-साथ बाध्यकारी ऊर्जा के साथ पृष्ठभूमि बढ़ती है। उदाहरण के लिए, सिलिकॉन पर सोने के परीक्षण में जहां उच्च अनुप्रस्थ परिच्छेद एयू4एफ चोटी प्रमुख सिलिकॉन चोटियों की तुलना में उच्च गतिज ऊर्जा पर है, यह बहुत कम पर बैठता हैऔर उचित अधिग्रहण समय के साथ 1ppm या बेहतर की पहचान सीमा प्राप्त की जा सकती है। सोने पर सिलिकॉन के विपरीत, जहां साधारण अनुप्रस्थ परिच्छेद सिलिकॉन 2p रेखाएं बड़ी पृष्ठभूमि पर Au 4f लाइनों के नीचे बैठती हैं, उसी अधिग्रहण समय के लिए पता लगाने की सीमा बहुत खराब होगी। व्यावहारिक विश्लेषण के लिए पहचान की सीमा को प्रायः 0.1-1.0% परमाणु प्रतिशत (0.1% = 1 भाग प्रति हजार = 1000 भाग प्रति मिलियन) के रूप में उद्धृत किया जाता है, लेकिन कई परिस्थितियों में निम्न सीमा प्राप्त की जा सकती है।

विश्लेषण के दौरान गिरावट

अधःपतन उपयोग की गई एक्स-किरण की तरंग दैर्ध्य, एक्स-किरण की कुल मात्रा, सतह के तापमान और निर्वात के स्तर पर सामग्री की संवेदनशीलता पर निर्भर करती है। धातु, मिश्र धातु, चीनी मिट्टी की चीज़ें और अधिकांश शीशे गैर एकवर्णी या एकवर्णी एक्स -किरण द्वारा औसत रूप से खराब नहीं होते हैं। बहुलक, उत्प्रेरक, कुछ अत्यधिक ऑक्सीजन युक्त यौगिक, विभिन्न अकार्बनिक यौगिक और सूक्ष्म जीव हैं। गैर- एकवर्णी एक्स- किरण स्रोत उच्च ऊर्जा वाले ब्रेम्सस्ट्रालुंग एक्स-किरण (ऊर्जा के 1-15 केवी) की एक महत्वपूर्ण मात्रा का उत्पादन करते हैं जो विभिन्न सामग्रियों की सतह को सीधे नीचा दिखाते हैं। गैर-मोनोक्रोमैटिक एक्स-किरण स्रोत भी नमूने की सतह पर एक महत्वपूर्ण मात्रा में ऊष्मा (100 से 200 डिग्री सेल्सियस) उत्पन्न करते हैं क्योंकि एक्स-किरण उत्पन्न करने वाला एनोड सामान्यतः केवल 1 से 5 cm (2 in) नमूने से दूर ऊष्मा का यह स्तर, जब ब्रेम्सस्ट्रालुंग एक्स किरण के साथ संयुक्त होता है, तो कुछ सामग्रियों के लिए गिरावट की मात्रा और दर को बढ़ाने के लिए कार्य करता है। एकवर्णी एक्स -किरण स्रोत भी नमूने की सतह पर एक महत्वपूर्ण मात्रा में गर्मी (100 से 200 डिग्री सेल्सियस) उत्पन्न करते हैं क्योंकि एक्स-किरण उत्पन्न करने वाला एनोड सामान्यतः केवल 1 से 5 सेमी (2 इंच) दूर होता है। क्योंकि वे नमूने से (50-100 सेमी) दूर हैं, ध्यान देने योग्य ऊष्मा प्रभाव उत्पन्न नहीं करते हैं। उनमें, एक क्वार्ट्ज एकवर्णक प्रणाली एक्स- किरण बीम से ब्रेम्सस्ट्रालुंग एक्स-किरण को अलग करता है, जिसका अर्थ है कि प्रतिरूप केवल एक्स-किरण ऊर्जा के एक संकीर्ण बंध के संपर्क में है। उदाहरण के लिए, यदि एल्यूमीनियम के-अल्फा एक्स-किरण का उपयोग किया जाता है, तो आंतरिक ऊर्जा बंध में 0.43 eV का FWHM होता है, जो 1,486.7 eV (E/ΔE = 3,457) पर केंद्रित होता है। यदि मैग्नीशियम के-अल्फा एक्स-किरण का उपयोग किया जाता है, तो आंतरिक ऊर्जा बंध  में 0.36 eV का FWHM होता है, जो 1,253.7 eV (E/ΔE = 3,483) पर केंद्रित होता है। ये आंतरिक एक्स-किरण  सीमा की चौड़ाई हैं प्रतिरूप अनावृत होने वाली ऊर्जा की सीमा एक्स- किरण एकवर्णक  की गुणवत्ता और अनुकूलन पर निर्भर करती है।क्योंकि निर्वात विभिन्न गैसों (जैसे, O2, CO) और तरल पदार्थ (जैसे, पानी, शराब, सॉल्वैंट्स, आदि) को हटा देता है, जो शुरू में प्रतिरूप की सतह पर या उसके भीतर फंस गए थे, सतह का रसायन और आकृति विज्ञान जारी रहेगा। तब तक बदलें जब तक कि सतह एक स्थिर अवस्था प्राप्त न कर ले। इस प्रकार की गिरावट का पता लगाना कभी-कभी मुश्किल होता है।

माप क्षेत्र-

माप क्षेत्र उपकरण डिजाइन पर निर्भर करता है। न्यूनतम विश्लेषण क्षेत्र 10 से 200 माइक्रोमीटर तक होता है। एक्स-किरण के एकवर्णी पुंज के लिए सबसे बड़ा आकार 1-5 मिमी है।गैर-एकवर्णक किरण 10-50 मिमी व्यास के होते हैं। एक्स-किरण स्रोत के रूप में सिंक्रोट्रॉन विकिरण का उपयोग करके नवीनतम  प्रतिबिंबन XPS  उपकरणों पर 200 nm  या उससे कम के स्पेक्ट्रोस्कोपिक प्रतिबिम्ब विश्लेषण स्तर प्राप्त किए गए हैं।

प्रतिदर्शी आकार सीमा-

उपकरण छोटे (मिमी रेंज) और बड़े नमूने (सेमी रेंज) स्वीकार करते हैं, इसके कारक प्रतिदर्शी धारक का डिज़ाइन, प्रतिदर्शी स्थानांतरण और XPS कक्ष का आकार है। एक बड़े क्षेत्र का विश्लेषण करने के लिए बड़े को प्रतिदर्शी को बाद में x और y दिशा में ले जाया जाता है।[citation needed]

विश्लेषण काल -

सामान्यतः व्यापक सर्वेक्षण अवलोकन के लिए 1-20 मिनट तक जो सभी पता लगाने योग्य तत्वों की मात्रा को मापता है, सामान्यतः उच्च विश्लेषण अवलोकन के लिए 1-15 मिनट जो रासायनिक स्थिति के अंतर को प्रकट करता है (गणना क्षेत्र परिणाम के लिए एक उच्च संकेत / शोर अनुपात के लिए प्रायः कई स्वीप की आवश्यकता होती है) महत्व के क्षेत्र में एक गहराई रूपरेखा के लिए 1-4 घंटे जो 4-5 तत्वों को नक़्क़ाशीदार गहराई के कार्य के रूप में मापता है (यह प्रक्रिया समय सबसे अधिक भिन्न हो सकता है क्योंकि कई कारक भूमिका निभाएंगे)

सतह संवेदनशीलता-

XPS केवल उन इलेक्ट्रॉनों का पता लगाता है जो वास्तव में प्रतिरूप से उपकरण के निर्वात में भाग निकले हैं।प्रतिरूप  से बचने के लिए, एक फोटोइलेक्ट्रॉन को प्रतिरूप के माध्यम से संचारण करना चाहिए। फोटो-उत्सर्जित इलेक्ट्रॉन सामग्री के भीतर विभिन्न उत्तेजित अवस्थाओं में अप्रत्यस्थ टकराव, पुनर्संयोजन,प्रतिरूप की उत्तेजना, पुनः प्राप्त करने या फंसने से गुजर सकते हैं, जो सभी फोटोइलेक्ट्रॉनों से बचने की संख्या को कम कर सकते हैं।ये प्रभाव एक घातीय संकीर्णन फलन के रूप में दिखाई देते हैं क्योंकि गहराई बढ़ जाती है, सतह पर विश्लेषण से पता लगाए गए संकेतों को प्रतिरूप सतह के नीचे गहरे विश्लेषण से मिले संकेतों की तुलना में अधिक मजबूत बनाता है। इस प्रकार, XPS द्वारा मापा गया संकेत एक घातीय रूप से सतह-भारित संकेत है, और इस तथ्य का उपयोग स्तरित सामग्रियों में विश्लेषण गहराई का अनुमान लगाने के लिए किया जा सकता है।

रासायनिक अवस्थाएँ और रासायनिक बदलाव-

Si 2p सिग्नल की ऊर्जा सीमा में ऑक्सीकृत सिलिकॉन पटलिका का उच्च-विश्लेषण स्पेक्ट्रम। कच्चे आँकड़े स्पेक्ट्रम (लाल) को पांच घटकों या रासायनिक अवस्थाओं के साथ उपयुक्त किया गया है, A से E तक। Si (SiO2) के अधिक ऑक्सीकृत रूपx, x = 1-2) 103.67 eV पर केंद्रित व्यापक विशेषता में उच्च बंधन ऊर्जा पर दिखाई देते हैं। सिलिकॉन का तथाकथित धात्विक रूप, जो ऑक्सीकृत सिलिकॉन की एक ऊपरी परत के नीचे रहता है, 100.30 eV (Si 2p) पर दोहरी चोटियों का एक सेट प्रदर्शित करता है।1/2) और 99.69 eV (Si 2p3/2). तथ्य यह है कि ऑक्सीकृत सी के उपरिस्तरितर के माध्यम से धातु सिलिकॉन संकेत देखा जा सकता है, यह दर्शाता है कि सिलिकॉन ऑक्साइड परत अपेक्षाकृत पतली (2-3 एनएम) है। परत की मोटाई और गहराई का अनुमान लगाने के लिए प्रायः XPS में उपरिस्तरितर द्वारा गहरी परतों सेXPS संकेतों के क्षीणन का उपयोग किया जाता है।

रासायनिक स्थिति की जानकारी उत्पन्न करने की क्षमता, यानी नमूने के शीर्षतम कुछ नैनोमीटर से प्रश्न में एक परमाणु प्रजाति का स्थानीय संबंध वातावरण, सतह के रसायन विज्ञान को समझने के लिए XPS को एक अनूठा और मूल्यवान उपकरण बनाता है।स्थानीय बंधन वातावरण औपचारिक ऑक्सीकरण अवस्था से प्रभावित होता है, उदाहरण के लिए इसके निकटतम-पड़ोसी परमाणुओं की पहचान, और निकटतम-पड़ोसी या अगले-निकटतम-पड़ोसी परमाणुओं के संबंध संकरण। जबकि C1s की नाममात्र बंधन ऊर्जा इलेक्ट्रॉन की नाममात्र बाध्यकारी ऊर्जा 284.6 eVहै, वास्तविक बाध्यकारी ऊर्जा में सूक्ष्म लेकिन प्रतिलिपि प्रस्तुत करने योग्य बदलाव, तथाकथित रासायनिक बदलाव (NMR स्पेक्ट्रोस्कोपी के अनुरूप), रासायनिक स्थिति की जानकारी प्रदान करते हैं।[citation needed]

कार्बन के लिए रासायनिक-अवस्था विश्लेषण का व्यापक रूप से उपयोग किया जाता है। यह कार्बन की रासायनिक अवस्थाओं की उपस्थिति या अनुपस्थिति को बढ़ती बंधन ऊर्जा के अनुमानित क्रम में प्रकट करता है, जैसे: कार्बाइड (-C2−), साइलेन्स (-Si-CH3), मेथिलीन/मिथाइल/हाइड्रोकार्बन (-CH2-CH2-, CH3-CH2-, and -CH=CH-),एमीन (-CH2-NH2) , एल्कोहल (-C-OH), कीटोन (-C=O), कार्बनिक एस्टर (-COOR), कार्बोनेट (-CO32−), मोनोफ्लोरो-हाइड्रोकार्बन (-CFH-CH2-),डाईफ्लोरो -हाइड्रोकार्बन(-CF2-CH2-) ,और ट्राइफ्लोरोकार्बन (CH2-CF3)।[citation needed]सिलिकॉन  पटलिका की सतह के रासायनिक स्थिति विश्लेषण से विभिन्न औपचारिक ऑक्सीकरण अवस्थाओं के कारण रासायनिक बदलाव का पता चलता है, जैसे: n-डोप्ड सिलिकॉन और p-डोप्ड सिलिकॉन (धात्विक सिलिकॉन), सिलिकॉन सबऑक्साइड (Si2O), सिलिकॉन मोनोऑक्साइड (SiO), Si2O3 , और सिलिकॉन डाइऑक्साइड (SiO2)। इसका एक उदाहरण "Si 2p सिग्नल की ऊर्जा सीमा में एक ऑक्सीकृत सिलिकॉन पटलिका के उच्च- विश्लेषण स्पेक्ट्रम" चित्र में देखा जा सकता है।

उपकरण-

XPS प्रणाली के मुख्य घटक एक्स-किरण का स्रोत हैं, धातु में चुम्बकीय परिरक्षिका के साथ एक अति उच्च निर्वात (UHV) कक्ष, एक इलेक्ट्रॉन संग्रह लेंस, एक इलेक्ट्रॉन ऊर्जा विश्लेषक, एक इलेक्ट्रॉन संसूचक प्रणाली, एक नमूना प्रस्तावना कक्ष , नमूना आरोह, नमूने को गर्म करने या ठंडा करने की क्षमता वाला एक नमूना कार्य क्षेत्र और कार्य क्षेत्र परिचालक का एक ढ़ाँचा।

XPS के लिए सबसे प्रचलित इलेक्ट्रॉन स्पेक्ट्रोमीटर गोलार्ध इलेक्ट्रॉन विश्लेषक है। उनके पास उच्च ऊर्जा संकल्प और उत्सर्जित इलेक्ट्रॉनों का स्थानिक चयन है। कभी-कभी बहुत सरल इलेक्ट्रॉन ऊर्जा निस्यंदन यंत्र - बेलनाकार दर्पण विश्लेषक का उपयोग किया जाता है, जो प्राय: सतह की मौलिक संरचना की जांच के लिए होता है।वे उच्च गणना दरों और उच्च कोणीय/ऊर्जा संकल्प की आवश्यकता के बीच अदला - बदली का प्रतिनिधित्व करते हैं। इसमें दो सह-अक्षीय सिलेंडर होते हैं जो नमूने के सामने रखे जाते हैं, आंतरिक सिलेंडर को सकारात्मक क्षमता पर रखा जाता है, जबकि बाहरी सिलेंडर को नकारात्मक क्षमता पर रखा जाता है। केवल सही ऊर्जा वाले इलेक्ट्रॉन ही इस व्यवस्था से गुजर सकते हैं और अंत में पता लगाया जाता हैं।कि गणना दर अधिक है लेकिन विश्लेषण (ऊर्जा और कोण दोनों में) खराब है।

इलेक्ट्रॉन गुणक का उपयोग करके इलेक्ट्रॉनों का पता लगाया जाता है: एकल ऊर्जा का पता लगाने के लिए एकल  चैनलट्रॉन, या समानांतर अधिग्रहण के लिए चैनलट्रॉन और माइक्रोचैनल प्लेट्स के संकलन का उपयोग किया जाता है । इन उपकरणों में एक शीशे का चैनल होता है जिसके अंदर एक प्रतिरोधक लेपन होता  है। सामने और अंत के बीच एक उच्च वोल्टेज लगाया जाता है। एक आने वाले इलेक्ट्रॉन को दीवार पर त्वरित किया जाता है, जहां यह अधिक इलेक्ट्रॉनों को हटा देता है, इस तरह से एक इलेक्ट्रॉन हिमस्खलन पैदा होता है, जब तक कि एक मापने योग्य वर्तमान नाड़ी प्राप्त नहीं हो जाती।

प्रयोगशाला आधारित -XPS

प्रयोगशाला प्रणालियों में, या तो 10–30 मिमी बीम व्यास गैर एकवर्णी-  Al  Kα या Mg Kα एनोड विकिरण का उपयोग किया जाता है, या एक केंद्रित 20-500 माइक्रोमीटर व्यास बीम एकल तरंग दैर्ध्य Al Kα  एकवर्णित विकिरण।एकवर्णी Al Kα X- किरण सामान्य रूप से <1010>  निर्देशन के साथ प्राकृतिक, क्रिस्टलीय क्वार्ट्ज की एक पतली चक्रिका से गैर एकवर्णी- एक्स- किरण के बीम को विवर्तित और केंद्रित करके उत्पादित किया जाता है।परिणामी तरंग दैर्ध्य 8.3386 एंगस्ट्रॉम (0.83386 nm) है जो 1486.7eV  की फोटॉन ऊर्जा के अनुरूप है। एल्युमिनियम Kα एक्स-किरण  की आंतरिक पूर्ण चौड़ाई 0.43 eV की आधी अधिकतम (FWHM) है, जो 1486.7 eV (E/ΔE = 3457) पर केंद्रित है।  एक अच्छी तरह से अनुकूलित एकवर्णक के लिए, एल्यूमीनियम की ऊर्जा चौड़ाई Kα एक्स-किरण 0.16 eV है, लेकिन सामान्य इलेक्ट्रॉन ऊर्जा विश्लेषक (स्पेक्ट्रोमीटर) में ऊर्जा विस्तार FWHM = 0.25 eV  पर एक परम ऊर्जा  विश्लेषण उत्पन्न करता है, जो वास्तव में, अधिकांश व्यावसायिक प्रणालियों का अंतिम ऊर्जा विश्लेषण है। व्यावहारिक प्रतिदिन की परिस्थितियों में काम करते समय, उच्च ऊर्जा-विश्लेषण समायोजन विभिन्न शुद्ध तत्वों और कुछ यौगिकों के लिए 0.4 और 0.6 eV के बीच शिखर की चौड़ाई (FWHM) उत्पन्न करेंगी। उदाहरण के लिए,एकवर्णित एल्यूमीनियम Kα एक्स-किरण  का उपयोग करके 20 eV की ऊर्जा पर 1 मिनट में प्राप्त स्पेक्ट्रम में, साफ सिल्वर झिल्ली या पन्नी  के लिए Ag 3d5/2 शिखर  में 0.45 eV का FWHM होगा। गैर-एकवर्णी मैग्नीशियम एक्स-किरण  में 9.89 एंगस्ट्रॉम (0.989 एनएम) की तरंग दैर्ध्य होती है जो कि[citation needed] जो 1253 ईवी की फोटॉन ऊर्जा से मेल खाती है। गैर-मोनोक्रोमेटेड एक्स-रे की ऊर्जा चौड़ाई लगभग 0.70 ईवी है, जो वास्तव में गैर-मोनोक्रोमैटिक एक्स-रे का उपयोग करने वाली प्रणाली का अंतिम ऊर्जा संकल्प है।[citation needed]।गैर-एकवर्णी एक्स किरण की ऊर्जा चौड़ाई मोटे तौर पर 0.70 eV है, जो वास्तव में गैर-एकवर्णी एक्स-किरण का उपयोग करने वाली प्रणाली का अंतिम ऊर्जा विश्लेषण है। गैर- एकवर्णी एक्स-किरण स्रोत उपयोग नहीं करते हैं किसी भी क्रिस्टल को एक्स-किरण को अलग करने के लिए जो सभी प्राथमिक एक्स-किरणों और उच्च-ऊर्जा ब्रेम्सस्ट्रालुंग एक्स-किरण(1-12keV ) की पूरी श्रृंखला को सतह तक पहुंचने की अनुमति देता है। गैर- एकवर्णी Mg Kα स्रोत का उपयोग करते समय  ऊर्जा संकल्प (FWHM) 0.9–1.0 eV है, जिसमें s शामिल है।

सिंक्रोटॉन आधारित XPS-

बड़े पैमाने पर सिंक्रोट्रॉन विकिरण सुविधाओं के विकास से पिछले दशकों में एक सफलता मिली है। यहां, एक संचयन वलय के अंदर कक्षा में रखे सापेक्षिक इलेक्ट्रॉनों के गुच्छों को एक उच्च चमक और उच्च फ्लक्स फोटॉन बीम का उत्पादन करने के लिए विगलर्स और अनडुलेटर्स जैसे झुकने वाले चुंबक या सम्मिलन उपकरणों के माध्यम से त्वरित किया जाता है। बीम सामान्यतः  एनोड-आधारित स्रोतों द्वारा उत्पादित परिमाण की तुलना में अधिक तीव्र और बेहतर संपार्श्विक के आदेश हैं सिंक्रोट्रॉन विकिरण भी व्यापक तरंग दैर्ध्य  क्षेत्र पर समस्वरणीय  है, और इसे कई अलग-अलग तरीकों से ध्रुवीकृत किया जा सकता है। इस तरह, फोटॉन को एक विशेष कोर स्तर की जांच के लिए आदर्श  प्रकाशिक आयनन व्यापक प्रतिनिधित्व देने के लिए चुना जा सकता है। उच्च फोटॉन फ्लक्स, इसके अलावा, कम घनत्व वाली परमाणु प्रजातियों, जैसे आणविक और परमाणु अधिशोषित से भी XPS प्रयोग करना संभव बनाता है।

डेटा प्रोसेसिंग-

शिखर की पहचान -

किसी एक तत्व द्वारा उत्पादित  शिखरों की संख्या 1 से 20 से अधिक भिन्न होती है। बाध्यकारी ऊर्जाओं की सारणी जो किसी दिए गए तत्व द्वारा उत्पादित प्रत्येक शिखर के आवरण और घुमाव-कक्षा की पहचान करती हैं, आधुनिक XPS उपकरणों के साथ शामिल हैं, और विभिन्न पुस्तिकाएं और वेबसाइटो में पाई जा सकती हैं।  चूंकि ये प्रयोगात्मक रूप से निर्धारित ऊर्जा विशिष्ट तत्वों की विशेषता है, इसलिए उन्हें अज्ञात मौलिक संरचना वाली सामग्री में प्रयोगात्मक रूप से मापा और शिखरों की पहचान करने के लिए सीधे उपयोग किया जा सकता है।

शिखर की पहचान की प्रक्रिया शुरू करने से पहले, विश्लेषक को यह निर्धारित करना चाहिए कि असंसाधित सर्वेक्षण स्पेक्ट्रम (0-1400 eV) की बाध्यकारी ऊर्जा सकारात्मक या नकारात्मक सतह आवेश के कारण स्थानांतरित नहीं हुई है या नहीं। यह प्रायः  दो शिखरों की  दृष्टि से  किया जाता है जो कार्बन और ऑक्सीजन की उपस्थिति के कारण होती हैं।

प्रभारी संदर्भित ऊष्मारोधक -

आवेश को संदर्भित करने की आवश्यकता तब होती है जब एक नमूना विस्तृतआवेश उच्च संवेदनशीलता (कम ऊर्जा विश्लेषण) सर्वेक्षण स्पेक्ट्रा (0-1100 eV), और संकीर्ण जाँच, रासायनिक सार्थक बाध्यकारी ऊर्जा प्राप्त करने के लिए प्रयोगात्मक बाध्यकारी ऊर्जाओं के आवेश प्रेरित बदलाव से ग्रस्त स्थिति(उच्च ऊर्जा विश्लेषण)स्पेक्ट्रा  होते है। आवेश प्रेरित स्थानांतरण सामान्यतः सतह से जुड़े कम वोल्टेज (-1 से -20 eV) इलेक्ट्रॉनों की अधिकता या शीर्ष 1-12 nm के भीतर इलेक्ट्रॉनों की कमी (1 से 15 eV) फोटो-उत्सर्जित इलेक्ट्रॉनों के नुकसान के कारण होती है। यदि संयोग से, सतह का आवेश अत्यधिक सकारात्मक है, तो स्पेक्ट्रम ढलावदार पहाड़ियों की एक श्रृंखला के रूप में प्रकट हो सकता है,प्रखर शिखरों  के रूप में नहीं जैसा कि उदाहरण स्पेक्ट्रम में दिखाया गया है।

प्रायोगिक रूप से मापे गए  शिखरों में से प्रत्येक में एक आवेश, सुधार कारक जोड़कर आवेश सन्दर्भन किया जाता है। चूँकि विभिन्न हाइड्रोकार्बन प्रजातियाँ सभी वायु-उजागर सतहों पर दिखाई देती हैं, हाइड्रोकार्बन C (1s) XPS शिखर की बाध्यकारी ऊर्जा का उपयोग गैर-प्रवाहकीय नमूनों या सुचालको से प्राप्त सभी ऊर्जाओं को ठीक करने के लिए किया जाता है जिन्हें नमूना आरोह से जानबूझकर पृथक किया गया है।शिखर सामान्यतः 284.5 eV और 285.5 eV के बीच पाया जाता है। 284.8eV बाध्यकारी ऊर्जा नियमित रूप से आवेश संदर्भित इंसुलेटर के लिए संदर्भ बाध्यकारी ऊर्जा के रूप में उपयोग की जाती है, ताकि आवेश सुधार कारक 284.8 eVऔर प्रयोगात्मक रूप से मापा गया  C(1s) शिखर स्थिति के बीच का अंतर हो।

प्रवाहकीय सामग्री और कंडक्टरों के अधिकांश मूल आक्साइड को कभी भी आवेश संदर्भ की आवश्यकता नहीं होनी चाहिए। प्रवाहकीय सामग्री को कभी भी आवेश संदर्भित नहीं किया जाना चाहिए जब तक कि नमूने की सबसे ऊपरी परत में मोटी गैर-प्रवाहकीय झिल्ली न हो। आवेश प्रभाव, यदि आवश्यक हो, तो इलेक्ट्रॉन फ्लड गन, यूवी रोशनी, कम वोल्टेज आर्गन आयन बीम से कम वोल्टेज (1-20 ईवी) इलेक्ट्रॉन बीम के उपयोग से सतह पर उपयुक्त कम ऊर्जा शुल्क प्रदान करके निम्न वोल्टेज इलेक्ट्रॉन बीम (1-10 eV),  द्वारक मास्क,निम्न-वोल्टेज इलेक्ट्रॉन बीम के साथ जालीदार  आवरण आदि के साथ भी मुआवजा दिया जा सकता है।

शिखर-समंजन-

  • शिखर-समंजन उच्च ऊर्जा विश्लेषण  XPS स्पेक्ट्रा की प्रक्रिया वैज्ञानिक ज्ञान और अनुभव का मिश्रण है। प्रक्रिया उपकरण प्रारूप, उपकरण घटकों, प्रयोगात्मक समायोजन और नमूना परिवर्ती से प्रभावित होती है।. किसी भी शिखर समायोजन प्रयास को शुरू करने से पहले,  शिखर समायोजन का प्रदर्शन करने वाले विश्लेषक को यह जानने की जरूरत है कि क्या नमूने का सबसे ऊपरी 15 नम सजातीय सामग्री होने की उम्मीद है या सामग्रियों का मिश्रण होने की उम्मीद है। यदि शीर्ष 15nm  एक सजातीय सामग्री है जिसमें केवल बहुत कम मात्रा में कार्बन और अवशोषक गैसें हैं, तो विश्लेषक  शिखर समायोजन प्रक्रिया को बढ़ाने के लिए सैद्धांतिक शिखर क्षेत्र अनुपात का उपयोग कर सकते हैं। शिखर समायोजन के परिणाम समग्र शिखर की चौड़ाई (अधिकतम आधे पर FWHM ), संभावित रासायनिक बदलाव,  शिखर के आकार, उपकरण रूपरेखा कारकों और प्रयोगात्मक समायोजन, साथ ही नमूना गुणों से प्रभावित होते हैं:
    • आधे अधिकतम (एफडब्ल्यूएचएम) मूल्यों पर कुल आयाम  रासायनिक अवस्था परिवर्तन और भौतिक प्रभावों के उपयोगी संकेतक हैं। उनकी वृद्धि रासायनिक बंधों की संख्या में परिवर्तन, नमूना स्थिति में परिवर्तन (एक्स-किरण क्षति) या सतह के विभेदक आवेश (सतह की आवेश अवस्था में स्थानीयकृत अंतर) का संकेत दे सकती है। यद्यपि FWHM  संसूचक पर भी निर्भर करता है, और प्रतिरूप आवेश होने के कारण बढ़ भी सकता है।एकवर्णी Al K -अल्फा एक्स-किरण स्रोत सहित  XPS पर उच्च ऊर्जा  विश्लेषण प्रयोग समायोजन का उपयोग करते समय, प्रमुख XPS शिखरों का FWHM  0.3 eV से 1.7 eV तक होता है। निम्नलिखित प्रमुख XPS संकेतों से FWHM का एक सरल सारांश है  शुद्ध धातुओं से मुख्य धातु शिखरों (जैसे 1s, 2p3, 3d5, 4f7) में FWHMs होते हैं जो 0.30 eV से 1.0 eV तक होते हैं मुख्य धातु शिखर (जैसे 1s, 2p3, 3d5, 4f7) बाइनरी धातु ऑक्साइड से FWHMs हैं जो 0.9 eV से 1.7 eV तक O (1s) शिखर से हैं बाह्य हाइड्रोकार्बन से C (1s) शिखर में FWHMs होते हैं, जो सामान्य रूप से 1.0 eV से 1.4 eV तक होते हैं।
    • रासायनिक स्थानान्तरण मूल्य निकटतम-पड़ोसी परमाणुओं के बीच इलेक्ट्रॉन बंधन ध्रुवीकरण की कोटि पर निर्भर करता है। एक विशिष्ट रासायनिक बदलाव शुद्ध तत्व के एक रूप के BE बनाम एक विशिष्ट रासायनिकअवस्था के BE  मूल्यों में अंतर है, या उस तत्व के एक विशेष सहमत-रासायनिक अवस्था में अंतर है। शिखर-समंजन  अपरिष्कृत रासायनिक अवस्था स्पेक्ट्रम से प्राप्त घटक  शिखरों  को  नमूने की मात्रा के भीतर विभिन्न रासायनिक अवस्थाओं  की उपस्थिति के लिए सौंपा जा सकता है
    • शिखर आकार उपकरण मापदंडों, प्रयोगात्मक मापदंडों और नमूना विशेषताओं पर निर्भर करता हैं।
    • उपकरण रूपरेखा कारकों में इस्तेमाल की गई एक्स-किरण ( एकवर्णी Al , गैर-एकवर्णी Mg , सिंक्रोट्रॉन Ag, Zr,) की पंक्ति चौड़ाई और शुद्धता के साथ-साथ इलेक्ट्रॉन विश्लेषक के गुण सम्मिलित हैं।
    • इलेक्ट्रॉन विश्लेषक का समायोजन (जैसे निर्गत ऊर्जा , पथ आकार )
    • शिखर समायोजन को प्रभावित करने वाले  कारक विश्लेषण की मात्रा (आयन नक़्क़ाशी, या लेजर सफाई से) के भीतर भौतिक दोषों की संख्या  और नमूने का  भौतिक रूप (एकल क्रिस्टल, पॉलिश, पाउडर, जीर्णशीर्ण )हैं।

सैद्धांतिक पहलू

क्वांटम यांत्रिक उपचार

जब एक प्रकाश उत्सर्जन घटना घटित होती है, तो निम्न ऊर्जा संरक्षण नियम लागू होता है:

जहां पर फोटॉन ऊर्जा है, आयनीकरण से पहले इलेक्ट्रॉन बीई (एक्सपीएस स्तर के संबंध में बंधन ऊर्जा) है, और फोटोइलेक्ट्रॉन की गतिज ऊर्जा है। यदि फर्मी स्तर के संबंध में संदर्भ लिया जाता है (जैसा कि सामान्यतः फोटोइलेक्ट्रॉन स्पेक्ट्रोस्कोपी में किया जाता है) फर्मी स्तर के सापेक्ष बंधन ऊर्जा (बीई) के योग से प्रतिस्थापित किया जाना चाहिए, , और नमूना कार्य समारोह, .

सैद्धांतिक दृष्टिकोण से, एक ठोस से फोटो उत्सर्जन प्रक्रिया को एक अर्धशास्त्रीय दृष्टिकोण के साथ वर्णित किया जा सकता है, जहां विद्युत चुम्बकीय क्षेत्र को अभी भी शास्त्रीय रूप से व्यवहार किया जाता है, जबकि पदार्थ के लिए क्वांटम-मैकेनिकल विवरण का उपयोग किया जाता है। विद्युत चुम्बकीय क्षेत्र के अधीन एक इलेक्ट्रॉन के लिए एक-कण हैमिल्टनियन द्वारा दिया गया है:

,

जहां पर इलेक्ट्रॉन तरंग समारोह है, विद्युत चुम्बकीय क्षेत्र की वेक्टर क्षमता है और ठोस की अविचलित क्षमता है। कूलम्ब गेज में (), सदिश क्षमता संवेग संचालक के साथ आवागमन करती है (), ताकि हैमिल्टनियन में ब्रैकेट में अभिव्यक्ति सरल हो जाए:

दरअसल उपेक्षा कर रहे हैं हैमिल्टनियन शब्द में, हम संभावित फोटोकरंट योगदानों की अवहेलना कर रहे हैं।[5] इस तरह के प्रभाव आम तौर पर थोक में नगण्य होते हैं, लेकिन सतह पर महत्वपूर्ण हो सकते हैं। में द्विघात शब्द इसके बजाय सुरक्षित रूप से उपेक्षित किया जा सकता है, क्योंकि एक विशिष्ट फोटोमिशन प्रयोग में इसका योगदान पहले शब्द की तुलना में कम परिमाण का एक क्रम है।

प्रथम-क्रम गड़बड़ी दृष्टिकोण में, एक-इलेक्ट्रॉन हैमिल्टनियन को दो शब्दों में विभाजित किया जा सकता है, एक अविचलित हैमिल्टनियन , साथ ही एक इंटरैक्शन हैमिल्टनियन , जो विद्युत चुम्बकीय क्षेत्र के प्रभावों का वर्णन करता है:

समय-निर्भर गड़बड़ी सिद्धांत में, एक हार्मोनिक या निरंतर परेशानी के लिए, प्रारंभिक अवस्था के बीच संक्रमण दर और अंतिम स्थिति फर्मी के गोल्डन नियम द्वारा व्यक्त किया गया है:

,

जहां पर तथा क्रमशः प्रारंभिक और अंतिम अवस्था में अविचलित हैमिल्टन के आइगेनवेल्यू हैं, और फोटॉन ऊर्जा है। फर्मी का गोल्डन रूल इस अनुमान का उपयोग करता है कि गड़बड़ी अनंत समय के लिए सिस्टम पर काम करती है। यह सन्निकटन तब मान्य होता है जब सिस्टम पर गड़बड़ी का कार्य संक्रमण के लिए आवश्यक समय से बहुत बड़ा होता है। यह समझा जाना चाहिए कि इस समीकरण को अवस्थाों के घनत्व के साथ एकीकृत करने की जरूरत है जो देता है:[6]

एक वास्तविक प्रकाश उत्सर्जन प्रयोग में जमीनी अवस्था कोर इलेक्ट्रॉन बीई की सीधे जांच नहीं की जा सकती है, क्योंकि बीई मापा जाता है प्रारंभिक अवस्था और अंतिम अवस्था दोनों प्रभावों को सम्मिलित करता है, और परिमित कोर-होल जीवनकाल के कारण वर्णक्रमीय लिनिविथ को चौड़ा किया जाता है ().

समय डोमेन में कोर होल के लिए एक घातीय क्षय संभावना मानते हुए (), एफडब्ल्यूएचएम (हाफ मैक्सिमम पर फुल विड्थ) के साथ स्पेक्ट्रल फंक्शन का लोरेंट्ज़ियन आकार होगा। के द्वारा दिया गया:

फूरियर रूपांतरण के सिद्धांत से, तथा अनिश्चितता संबंध से जुड़े हुए हैं:

प्रकाश उत्सर्जन की घटना परमाणु को अत्यधिक उत्तेजित कोर आयनित अवस्था में छोड़ देती है, जिससे यह विकिरण (प्रतिदीप्ति) या गैर-विकिरण (सामान्यतः बरमा क्षय द्वारा) का क्षय कर सकता है। लोरेंत्ज़ियन ब्रॉडिंग के अलावा, गॉसियन ब्रॉडिंग से फोटोमिशन स्पेक्ट्रा भी प्रभावित होता है, जिसका योगदान इसके द्वारा व्यक्त किया जा सकता है

तीन मुख्य कारक स्पेक्ट्रा के गॉसियन विस्तार में प्रवेश करते हैं: प्रायोगिक ऊर्जा संकल्प, कंपन और अमानवीय विस्तार। पहला प्रभाव फोटॉन बीम की गैर-पूर्ण मोनोक्रोमैटिकिटी के कारण होता है-जिसके परिणामस्वरूप परिमित बैंडविड्थ होता है- और विश्लेषक की सीमित संकल्प शक्ति के कारण होता है। कंपन घटक प्रारंभिक और अंतिम अवस्था दोनों में कम ऊर्जा कंपन मोड के उत्तेजना द्वारा निर्मित होता है। अंत में, स्पेक्ट्रम में अनसुलझे कोर स्तर के घटकों की उपस्थिति से अमानवीय विस्तार हो सकता है।

इलेक्ट्रॉनों के कोर स्तर के प्रकाश उत्सर्जन का सिद्धांत

अस्थिर मतलब मुक्त पथ

एक ठोस में, अप्रत्यास्थ प्रकीर्णन घटनाएँ भी प्रकाश-उत्सर्जन प्रक्रिया में योगदान करती हैं, जिससे इलेक्ट्रॉन-छेद जोड़े उत्पन्न होते हैं जो मुख्य प्रकाश-उत्सर्जन शिखर के उच्च बीई पक्ष पर एक अप्रत्यास्थ पूंछ के रूप में दिखाई देते हैं। वास्तव में यह इलेक्ट्रॉन अप्रत्यास्थ माध्य मुक्त पथ (आईएमएफपी) की गणना की अनुमति देता है। यह बीयर-लैंबर्ट कानून के आधार पर तैयार किया जा सकता है, जो बताता है

जहां पर आईएमएफपी है और नमूने के लंबवत अक्ष है। वास्तव में यह आम तौर पर मामला है कि आईएमएफपी केवल कमजोर सामग्री पर निर्भर है, बल्कि फोटोइलेक्ट्रॉन गतिज ऊर्जा पर दृढ़ता से निर्भर है। मात्रात्मक रूप से हम संबंधित कर सकते हैं आईएमएफपी द्वारा[7][8]

जहां पर घनत्व द्वारा गणना के अनुसार औसत परमाणु व्यास है . उपरोक्त सूत्र सीह और डेंच द्वारा विकसित किया गया था।

प्लास्मोनिक प्रभाव

कुछ मामलों में, प्लास्मोन उत्तेजनाओं के कारण ऊर्जा हानि की विशेषताएं भी देखी जाती हैं। यह या तो कोर होल क्षय के कारण होने वाला एक अंतिम अवस्था प्रभाव हो सकता है, जो ठोस (आंतरिक प्लास्मोन) में परिमाणित इलेक्ट्रॉन तरंग उत्तेजना उत्पन्न करता है, या यह उत्सर्जक से सतह (बाहरी प्लास्मोंस) तक यात्रा करने वाले फोटोइलेक्ट्रॉनों द्वारा प्रेरित उत्तेजनाओं के कारण हो सकता है। प्रथम-परत परमाणुओं की कम समन्वय संख्या के कारण, बल्क और सतह परमाणुओं की प्लाज्मा आवृत्ति निम्नलिखित समीकरण से संबंधित होती है:

,

एक ठोस में प्लास्मोन अवस्था सामान्यतः सतह पर स्थानीयकृत होते हैं, और आईएमएफपी को दृढ़ता से प्रभावित कर सकते हैं। ताकि सतह और बल्क प्लास्मों को आसानी से एक दूसरे से अलग किया जा सके।

कंपन प्रभाव

तापमान पर निर्भर परमाणु जलक कंपन, या फोनोन, कोर स्तर के घटकों को विस्तृत कर सकते हैं और एक्स-रे फोटोइलेक्ट्रॉन विवर्तन (एक्सपीडी) प्रयोग में व्यतिकरण प्रतिरूप को क्षीण कर सकते हैं। कंपन संबंधी प्रभावों का लेखा-जोखा रखने का सबसे आसान तरीका है बिखरे हुए एकल-फोटोइलेक्ट्रॉन वेव फलन को डिबाइ -वॉलर फैक्टर कारक से गुणा करना:

,

जहां पर प्रकीर्णन के कारण तरंग सदिश भिन्नता का वर्ग परिमाण है, तथा तापमान-निर्भर एक आयामी कंपन माध्य वर्ग विस्थापन है उत्सर्जक है। डेबी मॉडल में, माध्य वर्ग विस्थापन की गणना डेबी तापमान के रूप में की जाती है, जैसे:

यह भी देखें

संबंधित तरीके

संदर्भ

  1. Siegbahn, K.; Edvarson, K. I. Al (1956). "β-रे स्पेक्ट्रोस्कोपी 1 : 105 की परिशुद्ध रेंज में". Nuclear Physics. 1 (8): 137–159. Bibcode:1956NucPh...1..137S. doi:10.1016/S0029-5582(56)80022-9.
  2. Siegbahn, Kai (1967). इलेक्ट्रॉन स्पेक्ट्रोस्कोपी के माध्यम से ईएससीए परमाणु, आणविक और ठोस राज्य संरचना अध्ययन: उप्साला के रॉयल सोसाइटी ऑफ साइंस #एन्स को प्रस्तुत किया गया, 3 दिसंबर, 1965. Almqvist & Wiksell. OCLC 310539900.
  3. Electron Spectroscopy for Atoms, Molecules and Condensed Matter, Nobel Lecture, December 8, 1981
  4. Turner, D. W.; Jobory, M. I. Al (1962). "फोटोइलेक्ट्रॉन ऊर्जा मापन द्वारा आयनीकरण क्षमता का निर्धारण". The Journal of Chemical Physics. 37 (12): 3007. Bibcode:1962JChPh..37.3007T. doi:10.1063/1.1733134.
  5. Hüfner, S. (1995). फोटोइलेक्ट्रॉन स्पेक्ट्रोस्कोपी: सिद्धांत और अनुप्रयोग. Springer Verlag.
  6. Sakurai, J. (1995). आधुनिक क्वांटम यांत्रिकी (Rev. ed.). Addison-Wesley Publishing Company. p. 332. ISBN 0-201-53929-2.
  7. Attard, Gary; Barnes, Colin (1998). सतह. Oxford Chemistry Primers. p. 27. ISBN 978-0198556862.
  8. "एक्सपीएस: द मीन फ्री पाथ". lasurface.com.


अग्रिम पठन

  • XPS Spectra, Databases, Spectra and Application Notes, [1]
  • Handbooks of Monochromaticएक्सपीएस Spectra - Fully Annotated, PDF of Volumes 1 and 2, B.V.Crist, published byएक्सपीएस International LLC, 2005, Mountain View, CA, USA
  • Handbooks of Monochromaticएक्सपीएस Spectra, Volumes 1-5, B.V.Crist, published byएक्सपीएस International LLC, 2004, Mountain View, CA, USA
  • Surface Analysis by Auger and X-ray Photoelectron Spectroscopy, ed. J.T.Grant and D.Briggs, published by IM Publications, 2003, Chichester, UK
  • An Introduction to Surface Analysis byएक्सपीएस and AES, J.F.Watts, J.Wolstenholme, published by Wiley & Sons, 2003, Chichester, UK, ISBN 978-0-470-84713-8
  • Practical Surface Analysis by Auger and X-ray Photoelectron Spectroscopy, 2nd edition, ed. M.P.Seah and D.Briggs, published by Wiley & Sons, 1992, Chichester, UK
  • Practical Surface Analysis by Auger and X-ray Photoelectron Spectroscopy, ed. M.P.Seah and D.Briggs, published by Wiley & Sons, 1983, Chichester, UK ISBN 0-471-26279-X
  • Surface Chemical Analysis — Vocabulary, ISO 18115 : 2001, International Organization for Standardization (ISO), TC/201, Switzerland, [2]
  • Handbook of X-ray Photoelectron Spectroscopy, J.F.Moulder, W.F.Stickle, P.E.Sobol, and K.D.Bomben, published by Perkin-Elmer Corp., 1992, Eden Prairie, MN, USA

बाहरी संबंध