द्विपद (बहुपद): Difference between revisions

From Vigyanwiki
No edit summary
No edit summary
 
Line 1: Line 1:
{{Short description|In mathematics, a polynomial with two terms}}
{{Short description|In mathematics, a polynomial with two terms}}
[[बीजगणित]] में, द्विपद फलन एक [[बहुपद]] है जो दो शब्दों का योग है, जिनमें से प्रत्येक [[एकपद|एकपदी]] है।<ref>{{Cite web
[[बीजगणित]] में, '''द्विपद''' फलन एक [[बहुपद]] है जो दो शब्दों का योग है, जिनमें से प्रत्येक [[एकपद|एकपदी]] है।<ref>{{Cite web
   | last = Weisstein
   | last = Weisstein
   | first = Eric
   | first = Eric
Line 10: Line 10:
   | url = http://mathworld.wolfram.com/Binomial.html
   | url = http://mathworld.wolfram.com/Binomial.html
   | doi =  
   | doi =  
   | accessdate = 29 March 2011}}</ref> यह एकपदी के बाद [[विरल बहुपद]] का सबसे सरल प्रकार है।
   | accessdate = 29 March 2011}}</ref> यह एकपदी के पश्चात [[विरल बहुपद]] का सबसे सरल प्रकार है।


== परिभाषा ==
== परिभाषा ==
द्विपद फलन एक बहुपद है जो दो एकपदी का योग है। एकल [[अनिश्चित (चर)]] में द्विपद (जिसे अविभाज्य द्विपद के रूप में भी जाना जाता है) के रूप में लिखा जा सकता है
द्विपद फलन एक बहुपद है जो दो एकपदी का योग है। एकल [[अनिश्चित (चर)|अनिश्चित (वेरिएबल)]] में द्विपद (जिसे अविभाज्य द्विपद के रूप में भी जाना जाता है) के रूप में लिखा जा सकता है
:<math>a x^m - bx^n ,</math>
:<math>a x^m - bx^n ,</math>
जहाँ {{math|''a''}} और {{math|''b''}} [[संख्या|संख्याएँ]] हैं, और {{math|''m''}} और {{math|''n''}} विशिष्ट गैर-ऋणात्मक [[पूर्णांक]] हैं और {{math|''x''}} प्रतीक है जिसे अनिश्चित (चर) या, ऐतिहासिक कारणों से, [[चर (गणित)]] कहा जाता है। [[लॉरेंट बहुपद|लॉरेंट बहुपदों]] के संदर्भ में, लॉरेंट द्विपद, जिसे अधिकांश द्विपद कहा जाता है, समान रूप से परिभाषित किया जाता है, लेकिन प्रतिपादक {{math|''m''}} और {{math|''n''}} ऋणात्मक हो सकता है।
जहाँ {{math|''a''}} और {{math|''b''}} [[संख्या|संख्याएँ]] हैं, और {{math|''m''}} और {{math|''n''}} विशिष्ट गैर-ऋणात्मक [[पूर्णांक]] हैं और {{math|''x''}} प्रतीक है जिसे अनिश्चित (वेरिएबल) या, ऐतिहासिक कारणों से, [[चर (गणित)|वेरिएबल (गणित)]] कहा जाता है। [[लॉरेंट बहुपद|लॉरेंट बहुपदों]] के संदर्भ में, लॉरेंट द्विपद, जिसे अधिकांश द्विपद कहा जाता है, समान रूप से परिभाषित किया जाता है, लेकिन प्रतिपादक {{math|''m''}} और {{math|''n''}} ऋणात्मक हो सकता है।


अधिक सामान्यतः, द्विपद लिखा जा सकता है<ref name=Sturmfels62>{{Cite book
अधिक सामान्यतः, द्विपद लिखा जा सकता है<ref name=Sturmfels62>{{Cite book
Line 55: Line 55:
::<math> x^3 + y^3 = (x + y)(x^2 - xy + y^2) </math>
::<math> x^3 + y^3 = (x + y)(x^2 - xy + y^2) </math>
::<math> x^3 - y^3 = (x - y)(x^2 + xy + y^2) </math>
::<math> x^3 - y^3 = (x - y)(x^2 + xy + y^2) </math>
== यह भी देखें ==
== यह भी देखें ==
*[[वर्ग पूरा करना]]
*[[वर्ग पूरा करना]]
Line 78: Line 66:
==संदर्भ==
==संदर्भ==
* {{cite book |first1=L. |last1=Bostock |author-link1=Linda Bostock |first2=S. |last2=Chandler |author-link2=Sue Chandler |title=Pure Mathematics 1 |isbn=0-85950-092-6 |publisher=[[Oxford University Press]] |date=1978 |page=36}}
* {{cite book |first1=L. |last1=Bostock |author-link1=Linda Bostock |first2=S. |last2=Chandler |author-link2=Sue Chandler |title=Pure Mathematics 1 |isbn=0-85950-092-6 |publisher=[[Oxford University Press]] |date=1978 |page=36}}
{{polynomials}}


[[Category:Collapse templates]]
[[Category:Collapse templates]]
Line 91: Line 77:
[[Category:Sidebars with styles needing conversion]]
[[Category:Sidebars with styles needing conversion]]
[[Category:Template documentation pages|Documentation/doc]]
[[Category:Template documentation pages|Documentation/doc]]
[[Category:Templates Translated in Hindi]]
[[Category:Templates Vigyan Ready]]
[[Category:Templates Vigyan Ready]]
[[Category:Templates generating microformats]]
[[Category:Templates generating microformats]]

Latest revision as of 12:18, 18 September 2023

बीजगणित में, द्विपद फलन एक बहुपद है जो दो शब्दों का योग है, जिनमें से प्रत्येक एकपदी है।[1] यह एकपदी के पश्चात विरल बहुपद का सबसे सरल प्रकार है।

परिभाषा

द्विपद फलन एक बहुपद है जो दो एकपदी का योग है। एकल अनिश्चित (वेरिएबल) में द्विपद (जिसे अविभाज्य द्विपद के रूप में भी जाना जाता है) के रूप में लिखा जा सकता है

जहाँ a और b संख्याएँ हैं, और m और n विशिष्ट गैर-ऋणात्मक पूर्णांक हैं और x प्रतीक है जिसे अनिश्चित (वेरिएबल) या, ऐतिहासिक कारणों से, वेरिएबल (गणित) कहा जाता है। लॉरेंट बहुपदों के संदर्भ में, लॉरेंट द्विपद, जिसे अधिकांश द्विपद कहा जाता है, समान रूप से परिभाषित किया जाता है, लेकिन प्रतिपादक m और n ऋणात्मक हो सकता है।

अधिक सामान्यतः, द्विपद लिखा जा सकता है[2] जैसे:


उदाहरण


सरल द्विपदों पर संक्रियाएं

  • द्विपद x2y2 को दो अन्य द्विपदों के गुणनफल के रूप में गुणनखंडित किया जा सकता है:
यह अधिक सामान्य सूत्र की विशेष स्थिति है:
सम्मिश्र संख्याओं पर कार्य करते समय, इसे निम्न तक भी बढ़ाया जा सकता है:
  • रैखिक द्विपदों (ax + b) और (cx + d ) की जोड़ी का गुणनफल त्रिपद है:

द्विपद को nth घातांक, के रूप में प्रतिनिधित्व किया (x + y)n पास्कल के त्रिकोण का उपयोग करके, द्विपद प्रमेय के माध्यम से या समकक्ष रूप से विस्तारित किया जा सकता है। उदाहरण के लिए, वर्ग (बीजगणित) (x + y)2 द्विपद का (x + y) दो शब्दों के वर्गों के योग के बराबर है और शब्दों के उत्पाद का दोगुना है, जो है:

इस विस्तार में पदों के लिए गुणक के रूप में दिखाई देने वाली संख्याएं (1, 2, 1) द्विपद गुणांक हैं जो पास्कल के त्रिकोण के ऊपर से दो पंक्तियां नीचे हैं। nv घात का विस्तार त्रिकोण के शीर्ष से नीचे की ओर n पंक्तियों की संख्या का उपयोग करता है।
  • द्विपद के वर्ग के लिए उपरोक्त सूत्र का अनुप्रयोग है, (m, n)-पायथागॉरियन त्रिक उत्पन्न करने के लिए सूत्र:
m < n के लिए, मान लीजिए a = n2m2, b = 2mn, और c = n2 + m2; तब a2 + b2 = c2.
  • द्विपद जो योग या घन (बीजगणित) के अंतर हैं, उन्हें बहुपद बहुपदों की छोटी-छोटी डिग्री में विभाजित किया जा सकता है:

यह भी देखें

टिप्पणियाँ

  1. Weisstein, Eric. "Binomial". Wolfram MathWorld. Retrieved 29 March 2011.
  2. Sturmfels, Bernd (2002). Solving Systems of Polynomial Equations. p. 62. ISBN 9780821889411. {{cite book}}: |journal= ignored (help)


संदर्भ