सममित फलन वलय: Difference between revisions
No edit summary |
No edit summary |
||
(8 intermediate revisions by 5 users not shown) | |||
Line 1: | Line 1: | ||
[[बीजगणित]] में और विशेष रूप से [[बीजगणितीय कॉम्बिनेटरिक्स|बीजगणितीय साहचर्य]] में, सममित फलन की | [[बीजगणित]] में और विशेष रूप से [[बीजगणितीय कॉम्बिनेटरिक्स|बीजगणितीय साहचर्य]] में, '''सममित फलन की वलय''' 'n' निर्धारक में [[सममित बहुपद]] की वलय (गणित) की विशिष्ट सीमा है, क्योंकि 'n' अनंत तक जाती है। यह वलय सार्वभौमिक संरचना के रूप में फलन करता है जिसमें सममित बहुपदों के बीच संबंधों को निर्धारकों की संख्या ''n'' से स्वतंत्र विधियों से व्यक्त किया जा सकता है (किन्तु इसके तत्व न तो बहुपद हैं और न ही फलन)। अन्य बातों के अतिरिक्त, यह वलय सममित समूह के प्रतिनिधित्व सिद्धांत में महत्वपूर्ण भूमिका निभाता है। | ||
सममित फलन की | सममित फलन की वलय को सह-उत्पाद और [[द्विरेखीय रूप]] दिया जा सकता है जो इसे सकारात्मक स्वसम्मिलित श्रेणीबद्ध बीजगणित हॉपफ बीजगणित में बनाता है जो क्रमविनिमेय और सहसम्बन्धी दोनों है। | ||
== सममित बहुपद == | == सममित बहुपद == | ||
Line 7: | Line 7: | ||
{{main |सममित बहुपद}} | {{main |सममित बहुपद}} | ||
सममित फलन का अध्ययन सममित बहुपदों पर आधारित है। अनिश्चितकों के कुछ परिमित समुच्चय में बहुपद वलय में, बहुपद को सममित कहा जाता है यदि यह वही रहता है जब भी किसी भी प्रकार से निर्धारक को अनुमति दी जाती है। अधिक औपचारिक रूप से,n निर्धारक में बहुपद की | सममित फलन का अध्ययन सममित बहुपदों पर आधारित है। अनिश्चितकों के कुछ परिमित समुच्चय में बहुपद वलय में, बहुपद को सममित कहा जाता है यदि यह वही रहता है जब भी किसी भी प्रकार से निर्धारक को अनुमति दी जाती है। अधिक औपचारिक रूप से,n निर्धारक में बहुपद की वलय पर [[सममित समूह]] S<sub>n</sub> के [[अंगूठी (गणित)|वलय ऑटोमोर्फिज्म]] द्वारा [[समूह क्रिया]] होती है , जहां क्रमचय उपयोग किए गए क्रम[[परिवर्तन]] के अनुसार प्रत्येक निर्धारक को साथ प्रतिस्थापित करके बहुपद पर फलन करता है। अपरिवर्तनीय (गणित) इस क्रिया के लिए समूह क्रिया के अंतर्गत अपरिवर्तित सममित बहुपदों का उपसमूह बनाता है, यदि निर्धारक ''X''<sub>1</sub>, ..., ''X<sub>n</sub>'' हैं, तो ऐसे सममित बहुपदों के उदाहरण हैं। | ||
: <math>X_1+X_2+\cdots+X_n, \, </math> | : <math>X_1+X_2+\cdots+X_n, \, </math> | ||
Line 14: | Line 14: | ||
:<math>X_1X_2\cdots X_n. \, </math> | :<math>X_1X_2\cdots X_n. \, </math> | ||
कुछ और जटिल उदाहरण है ''X''<sub>1</sub><sup>3</sup>''X''<sub>2</sub>''X''<sub>3</sub> + ''X''<sub>1</sub>''X''<sub>2</sub><sup>3</sup>''X''<sub>3</sub> + ''X''<sub>1</sub>''X''<sub>2</sub>''X''<sub>3</sub><sup>3</sup> + ''X''<sub>1</sub><sup>3</sup>''X''<sub>2</sub>''X''<sub>4</sub> + ''X''<sub>1</sub>''X''<sub>2</sub><sup>3</sup>''X''<sub>4</sub> + ''X''<sub>1</sub>''X''<sub>2</sub>''X''<sub>4</sub><sup>3</sup> + ... जहां योग कुछ चर और दो अन्य चर की तीसरी शक्ति के सभी उत्पादों को सम्मलित करने के लिए आगे बढ़ता है। कई विशिष्ट प्रकार के सममित बहुपद हैं, जैसे | कुछ और जटिल उदाहरण है ''X''<sub>1</sub><sup>3</sup>''X''<sub>2</sub>''X''<sub>3</sub> + ''X''<sub>1</sub>''X''<sub>2</sub><sup>3</sup>''X''<sub>3</sub> + ''X''<sub>1</sub>''X''<sub>2</sub>''X''<sub>3</sub><sup>3</sup> + ''X''<sub>1</sub><sup>3</sup>''X''<sub>2</sub>''X''<sub>4</sub> + ''X''<sub>1</sub>''X''<sub>2</sub><sup>3</sup>''X''<sub>4</sub> + ''X''<sub>1</sub>''X''<sub>2</sub>''X''<sub>4</sub><sup>3</sup> + ... जहां योग कुछ चर और दो अन्य चर की तीसरी शक्ति के सभी उत्पादों को सम्मलित करने के लिए आगे बढ़ता है। कई विशिष्ट प्रकार के सममित बहुपद हैं, जैसे प्राथमिक सममित बहुपद, शक्ति योग सममित बहुपद, एकपद सममित बहुपद, पूर्ण सजातीय सममित बहुपद, और [[शूर बहुपद]] हैं। | ||
== सममित फलन की | == सममित फलन की वलय == | ||
सममित बहुपदों के बीच अधिकांश संबंध अनिर्धारकों की संख्या n पर निर्भर नहीं करते हैं, अतिरिक्त इसके कि संबंध में कुछ बहुपदों को n को परिभाषित करने के लिए अधिक बड़ा होना आवश्यक हो सकता है। उदाहरण के लिए | सममित बहुपदों के बीच अधिकांश संबंध अनिर्धारकों की संख्या n पर निर्भर नहीं करते हैं, अतिरिक्त इसके कि संबंध में कुछ बहुपदों को n को परिभाषित करने के लिए अधिक बड़ा होना आवश्यक हो सकता है। उदाहरण के लिए तीसरी शक्ति योग बहुपद p<sub>3</sub> के लिए न्यूटन की पहचान ओर जाता है | ||
:<math>p_3(X_1,\ldots,X_n)=e_1(X_1,\ldots,X_n)^3-3e_2(X_1,\ldots,X_n)e_1(X_1,\ldots,X_n)+3e_3(X_1,\ldots,X_n),</math> | :<math>p_3(X_1,\ldots,X_n)=e_1(X_1,\ldots,X_n)^3-3e_2(X_1,\ldots,X_n)e_1(X_1,\ldots,X_n)+3e_3(X_1,\ldots,X_n),</math> | ||
जहां <math>e_i</math> प्रारंभिक सममित बहुपदों को निरूपित करें; यह सूत्र सभी [[प्राकृतिक संख्या]]ओं n के लिए मान्य है और इस पर एकमात्र उल्लेखनीय निर्भरता यह है कि ''e<sub>k</sub>''(''X''<sub>1</sub>,...,''X<sub>n</sub>'') = 0 जब भी n < k हो। | जहां <math>e_i</math> प्रारंभिक सममित बहुपदों को निरूपित करें; यह सूत्र सभी [[प्राकृतिक संख्या]]ओं n के लिए मान्य है और इस पर एकमात्र उल्लेखनीय निर्भरता यह है कि ''e<sub>k</sub>''(''X''<sub>1</sub>,...,''X<sub>n</sub>'') = 0 जब भी n < k हो। कोई इसे पहचान के रूप में लिखना चाहेगा | ||
:<math>p_3=e_1^3-3e_2 e_1 + 3e_3</math> | :<math>p_3=e_1^3-3e_2 e_1 + 3e_3</math> | ||
यह n पर बिल्कुल भी निर्भर नहीं करता है और यह सममित फलन के वलय में किया जा सकता है। उस वलय में सभी [[पूर्णांक]] k ≥ 1 के लिए अशून्य तत्व ''e<sub>k</sub>'' होते हैं | यह n पर बिल्कुल भी निर्भर नहीं करता है और यह सममित फलन के वलय में किया जा सकता है। उस वलय में सभी [[पूर्णांक]] k ≥ 1 के लिए अशून्य तत्व ''e<sub>k</sub>'' होते हैं और वलय के किसी भी अवयव को e<sub>''k''</sub> अवयवों में बहुपद व्यंजक द्वारा दिया जा सकता है। | ||
=== परिभाषाएँ === | === परिभाषाएँ === | ||
सममित फलन की | सममित फलन की वलय को किसी भी [[ क्रमविनिमेय अंगूठी |क्रमविनिमेय वलय]] R पर परिभाषित किया जा सकता है और इसे Λ<sub>''R''</sub> के रूप में दर्शाया जाएगा; मूल स्थिति R = 'Z' के लिए है। वलय Λ<sub>''R''</sub> वास्तव में वलय के ऊपर वर्गीकृत वलय R-बीजगणित है। इसके लिए दो मुख्य निर्माण हैं; नीचे दिया गया पहला (स्टेनली, 1999) में पाया जा सकता है और दूसरा अनिवार्य रूप से (मैकडोनाल्ड, 1979) में दिया गया है। | ||
==== औपचारिक शक्ति श्रृंखला की | ==== औपचारिक शक्ति श्रृंखला की वलय के रूप में ==== | ||
सबसे सरल (चूंकि कुछ सीमा तक भारी) निर्माण कई चर में औपचारिक शक्ति श्रृंखला शक्ति श्रृंखला की | सबसे सरल (चूंकि कुछ सीमा तक भारी) निर्माण कई चर में औपचारिक शक्ति श्रृंखला शक्ति श्रृंखला की वलय से प्रारंभ होता है <math>R[[X_1,X_2,...]]</math> R पर असीम रूप से (गणना करने योग्य अनंत) कई अनिश्चित; इस शक्ति श्रृंखला वलय के तत्व शर्तों के औपचारिक अनंत योग हैं, जिनमें से प्रत्येक में R से गुणांक [[ एकपद |एकपद]] द्वारा गुणा किया जाता है, जहां प्रत्येक एकपद निर्धारक रूप से कई परिमित शक्तियों का उत्पाद होता है। Λ<sub>''R''</sub> को परिभाषित करता है इसके उप-वलय के रूप में उन शक्ति श्रृंखला S से मिलकर बनता है जो संतुष्ट करती हैं | ||
#S निर्धारक के किसी भी क्रमपरिवर्तन के अनुसार अपरिवर्तनीय है, और | #S निर्धारक के किसी भी क्रमपरिवर्तन के अनुसार अपरिवर्तनीय है, और | ||
#S में होने वाले एकपदों के बहुपद की कोटि परिबद्ध है। | #S में होने वाले एकपदों के बहुपद की कोटि परिबद्ध है। | ||
ध्यान दें कि दूसरी स्थिति के कारण, घात श्रृंखला का उपयोग यहां केवल निश्चित डिग्री के असीम रूप से कई पदों को अनुमति देने के लिए किया जाता है, अतिरिक्त सभी संभावित डिग्री के पदों के योग के लिए। इसकी अनुमति देना आवश्यक | ध्यान दें कि दूसरी स्थिति के कारण, घात श्रृंखला का उपयोग यहां केवल निश्चित डिग्री के असीम रूप से कई पदों को अनुमति देने के लिए किया जाता है, अतिरिक्त सभी संभावित डिग्री के पदों के योग के लिए। इसकी अनुमति देना आवश्यक है क्योंकि तत्व जिसमें उदाहरण के लिए X<sub>1</sub> शब्द होता है सममित होने के लिए प्रत्येक i > 1 के लिए X<sub>''i''</sub> शब्द भी होना चाहिए। पूरी शक्ति श्रृंखला वलय के विपरीत, सबवलय Λ<sub>''R''</sub> एकपदीयों की कुल डिग्री द्वारा वर्गीकृत किया जाता है: स्थिति 2 के कारण, Λ<sub>''R''</sub> का प्रत्येक तत्व Λ<sub>''R''</sub> के [[सजातीय बहुपद]] तत्वों का परिमित योग है (जो स्वयं समान कोटि के पदों के अनंत योग हैं)। प्रत्येक k ≥ 0 के लिए, तत्व e<sub>''k''</sub>∈ Λ<sub>''R''</sub> को k विशिष्ट निर्धारक के सभी उत्पादों के औपचारिक योग के रूप में परिभाषित किया गया है, जो डिग्री k का स्पष्ट रूप से सजातीय है। | ||
==== बीजगणितीय सीमा के रूप में ==== | ==== बीजगणितीय सीमा के रूप में ==== | ||
Λ<sub>''R''</sub> का एक और निर्माण वर्णन करने में कुछ अधिक समय लगता है, किन्तु n निर्धारक | Λ<sub>''R''</sub> का एक और निर्माण वर्णन करने में कुछ अधिक समय लगता है, किन्तु n निर्धारक में सममित बहुपदों के वलय ''R''[''X''<sub>1</sub>,...,''X<sub>n</sub>'']<sup>'''S'''<sub>''n''</sub></sup> के साथ संबंध को श्रेष्ठतर विधि से इंगित करता है। निर्धारक में सममित बहुपदों का प्रत्येक n के लिए समरूप वलय ''R''[''X''<sub>1</sub>,...,''X<sub>n</sub>''<sub>+1</sub>]<sup>'''S'''<sub>''n''+1</sub></sup> पर [[विशेषण]] वलय समरूपता ρ<sub>''n''</sub> है, जिसमें ''R''[''X''<sub>1</sub>,...,''X<sub>n</sub>'']<sup>'''S'''<sub>''n''</sub></sup> पर एक और निर्धारक है, जिसे सेट करके परिभाषित किया गया है। अंतिम निर्धारक को सेट करके ''X<sub>n</sub>''<sub>+1</sub>से 0 । चूंकि ρ<sub>''n''</sub> गैर-तुच्छ कर्नेल (बीजगणित) है, उस कर्नेल के गैर-शून्य तत्वों में कम से कम डिग्री <math>n+1</math> है ।(वे X के गुणक हैं ''X''<sub>1</sub>''X''<sub>2</sub>...''X<sub>n</sub>''<sub>+1</sub>) इसका मतलब यह है कि ρ<sub>''n''</sub> का प्रतिबंध अधिक से अधिक डिग्री के तत्वों के लिए विशेषण [[रैखिक नक्शा]] है, और ''ρ<sub>n</sub>''(''e<sub>k</sub>''(''X''<sub>1</sub>,...,''X<sub>n</sub>''<sub>+1</sub>)) = ''e<sub>k</sub>''(''X''<sub>1</sub>,...,''X<sub>n</sub>'') सभी के लिए ''k'' ≤ ''n'' है। इस प्रतिबंध के व्युत्क्रम को विशिष्ट रूप से ''R''[''X''<sub>1</sub>,...,''X<sub>n</sub>'']<sup>'''S'''<sub>''n''</sub></sup> से ''R''[''X''<sub>1</sub>,...,''X<sub>n</sub>''<sub>+1</sub>]<sup>'''S'''<sub>''n''+1</sub></sup>, तक वलय समरूपता φ<sub>''n''</sub> तक बढ़ाया जा सकता है । जैसा कि उदाहरण के लिए सममित बहुपदों के मूलभूत प्रमेय से लिया गया है। चूंकि ''k'' = 1,...,''n'' के लिए ''φ<sub>n</sub>''(''e<sub>k</sub>''(''X''<sub>1</sub>,...,''X<sub>n</sub>'')) = ''e<sub>k</sub>''(''X''<sub>1</sub>,...,''X<sub>n</sub>''<sub>+1</sub>) , बिंब अभी भी R पर बीजगणितीय रूप से स्वतंत्र हैं, समाकारिता φ<sub>''n''</sub> पर [[इंजेक्शन|अन्तःक्षेपण]] बीजगणितीय रूप से स्वतंत्र हैं और इसे वलय के समावेश (कुछ असामान्य) के रूप में देखा जा सकता है; φ<sub>''n''</sub> लागू करना से पहले उपस्तिथ एकपद से समरूपता द्वारा प्राप्त नए निर्धारक वाले सभी एकपद को जोड़ने के लिए बहुपद राशि। वलय Λ<sub>''R''</sub> तब इन समावेशन के अधीन इन सभी अंगूठियो का संघ ([[प्रत्यक्ष सीमा]]) है। चूंकि सभी φ<sub>''n''</sub> सम्मलित वलय की कुल डिग्री द्वारा ग्रेडिंग के साथ संगत हैं, Λ<sub>''R''</sub> वर्गीकृत वलय की संरचना प्राप्त करता है। | ||
यह निर्माण (मैकडोनाल्ड, 1979) में से थोड़ा अलग है। वह निर्माण केवल विशेषण आकारिकी ρ<sub>''n''</sub> का उपयोग करता है अन्तःक्षेपण रूपवाद φ<sub>''n''</sub> का उल्लेख किए बिना। यह Λ<sub>''R''</sub> के सजातीय घटकों का निर्माण करता है अलग से, एक और ρ<sub>''n''</sub> का उपयोग करके उनके [[प्रत्यक्ष योग]] को | यह निर्माण (मैकडोनाल्ड, 1979) में से थोड़ा अलग है। वह निर्माण केवल विशेषण आकारिकी ρ<sub>''n''</sub> का उपयोग करता है अन्तःक्षेपण रूपवाद φ<sub>''n''</sub> का उल्लेख किए बिना। यह Λ<sub>''R''</sub> के सजातीय घटकों का निर्माण करता है अलग से, एक और ρ<sub>''n''</sub> का उपयोग करके उनके [[प्रत्यक्ष योग]] को वलय संरचना से तैयार करता है। यह भी देखा गया है कि परिणाम को वर्गीकृत अंगूठियो की [[श्रेणी (गणित)]] में व्युत्क्रम सीमा के रूप में वर्णित किया जा सकता है। चूंकि यह विवरण कुछ सीमा तक इंजेक्शन आकारिता की सीधी सीमा के लिए विशिष्ट महत्वपूर्ण संपत्ति को अस्पष्ट करता है, अर्थात् प्रत्येक व्यक्तिगत तत्व (सममित फलन) पहले से ही सीमा निर्माण में उपयोग की जाने वाली किसी वस्तु में eमानदारी से प्रतिनिधित्व किया जाता है, यहां वलय ''R''[''X''<sub>1</sub>,...,''X<sub>d</sub>'']<sup>'''S'''<sub>''d''</sub></sup> यह d के लिए सममित फलन की डिग्री लेने के लिए पर्याप्त है, क्योंकि उस वलय के डिग्री d में भाग को समरूप रूप से मैप किया जाता है, जो कि φn द्वारा अधिक निर्धारक होता है। सभी के लिए n≥ d। इसका तात्पर्य है कि अलग-अलग तत्वों के बीच संबंधों का अध्ययन करने के लिए सममित बहुपदों और सममित फलन के बीच कोई मूलभूत अंतर नहीं है। | ||
=== व्यक्तिगत सममित फलन को परिभाषित करना === | === व्यक्तिगत सममित फलन को परिभाषित करना === | ||
Λ<sub>''R''</sub> के तत्वों के लिए नाम सममित | Λ<sub>''R''</sub> के तत्वों के लिए नाम सममित फलन [[मिथ्या नाम]] है: न तो निर्माण में तत्व फलन (गणित) हैं और वास्तव में, सममित बहुपदों के विपरीत, ऐसे तत्वों से स्वतंत्र चर का कोई फलन नहीं जोड़ा जा सकता है (उदाहरण के लिए e<sub>1</sub> सभी असीम रूप से कई चरों का योग होगा, जो तब तक परिभाषित नहीं होता है जब तक कि चर पर प्रतिबंध नहीं लगाया जाता है)। चूँकि नाम पारंपरिक और अच्छी प्रकार से स्थापित है; यह (मैकडॉनल्ड, 1979) दोनों में पाया जा सकता है, जो कहता है (पृष्ठ 12 पर फुटनोट) | ||
<blockquote>Λ के तत्व (Λ<sub>''n''</sub> के तत्वों के विपरीत) अब बहुपद नहीं हैं: वे एकपदी के औपचारिक अनंत योग हैं। इसलिए हम सममित फलन की पुरानी शब्दावली पर वापस आ गए हैं।</blockquote> | <blockquote>Λ के तत्व (Λ<sub>''n''</sub> के तत्वों के विपरीत) अब बहुपद नहीं हैं: वे एकपदी के औपचारिक अनंत योग हैं। इसलिए हम सममित फलन की पुरानी शब्दावली पर वापस आ गए हैं।</blockquote> | ||
(यहाँ Λ<sub>''n''</sub> एन निर्धारक में सममित बहुपदों की | (यहाँ Λ<sub>''n''</sub> एन निर्धारक में सममित बहुपदों की वलय को दर्शाता है), और (स्टेनली, 1999) में भी। | ||
सममित फलन को परिभाषित करने के लिए या तो पहले निर्माण के रूप में सीधे शक्ति श्रृंखला का संकेत देना चाहिए, या दूसरे निर्माण के साथ संगत विधियों से प्रत्येक प्राकृतिक संख्या n के लिए n निर्धारक में सममित बहुपद देना चाहिए। उदाहरण के लिए, निर्धारक संख्या में अभिव्यक्ति दोनों कर सकती है | सममित फलन को परिभाषित करने के लिए या तो पहले निर्माण के रूप में सीधे शक्ति श्रृंखला का संकेत देना चाहिए, या दूसरे निर्माण के साथ संगत विधियों से प्रत्येक प्राकृतिक संख्या n के लिए n निर्धारक में सममित बहुपद देना चाहिए। उदाहरण के लिए, निर्धारक संख्या में अभिव्यक्ति दोनों कर सकती है | ||
Line 51: | Line 51: | ||
निम्नलिखित सममित फलन के मूलभूत उदाहरण हैं। | निम्नलिखित सममित फलन के मूलभूत उदाहरण हैं। | ||
* ''''एकपद सममित फलन''' ' m<sub>α</sub>. मान लीजिए α = (α<sub>1</sub>,α<sub>2</sub>,...) गैर-ऋणात्मक पूर्णांकों का क्रम है, जिनमें से केवल बहुत से गैर-शून्य हैं। तब हम α द्वारा परिभाषित एकपद पर विचार कर सकते हैं: ''X''<sup>α</sup> = ''X''<sub>1</sub><sup>α<sub>1</sub></sup>''X''<sub>2</sub><sup>α<sub>2</sub></sup>''X''<sub>3</sub><sup>α<sub>3</sub></sup>.... फिर m<sub>α</sub> X<sup>α</sup> द्वारा निर्धारित सममित | * ''''एकपद सममित फलन''' ' m<sub>α</sub>. मान लीजिए α = (α<sub>1</sub>,α<sub>2</sub>,...) गैर-ऋणात्मक पूर्णांकों का क्रम है, जिनमें से केवल बहुत से गैर-शून्य हैं। तब हम α द्वारा परिभाषित एकपद पर विचार कर सकते हैं: ''X''<sup>α</sup> = ''X''<sub>1</sub><sup>α<sub>1</sub></sup>''X''<sub>2</sub><sup>α<sub>2</sub></sup>''X''<sub>3</sub><sup>α<sub>3</sub></sup>.... फिर m<sub>α</sub> X<sup>α</sup> द्वारा निर्धारित सममित फलन है, अर्थात X<sup>α</sup> से प्राप्त सभी एकपदीयों का योग। समरूपता द्वारा औपचारिक परिभाषा के लिए, β ~ α को परिभाषित करें जिसका अर्थ है कि अनुक्रम β अनुक्रम α और सेट का क्रमपरिवर्तन है | ||
::<math>m_\alpha=\sum\nolimits_{\beta\sim\alpha}X^\beta.</math> | ::<math>m_\alpha=\sum\nolimits_{\beta\sim\alpha}X^\beta.</math> | ||
:यह सममित | :यह सममित फलन एकपद सममित बहुपद ''m''<sub>α</sub>(''X''<sub>1</sub>,...,''X<sub>n</sub>'') से मेल खाता है किसी भी बड़े n के लिए एकपदी X<sup>α</sup> रखने के लिए पर्याप्त है। अलग-अलग एकपद सममित फलन को [[पूर्णांक विभाजन]] द्वारा पैरामीटर किया जाता है (प्रत्येक m<sub>α</sub> अद्वितीय प्रतिनिधि एकपदी X<sup>λ</sup> है भागों के साथ λ<sub>''i''</sub> कमजोर घटते क्रम में)। चूंकि किसी भी सममित फलन में कुछ m<sub>α</sub> के एकपद सम्मलित हैं एक ही गुणांक के साथ उन सभी को सम्मलित करना चाहिए, प्रत्येक सममित फलन को एकपद सममित फलन के आर-रैखिक संयोजन के रूप में लिखा जा सकता है, और विशिष्ट एकपद सममित फलन इसलिए Λ<sub>''R''</sub> का आधार बनाते हैं आर-[[मॉड्यूल (गणित)]] के रूप में। | ||
* 'प्राथमिक सममित | * ''''प्राथमिक सममित फलन'''<nowiki/>' e<sub>''k''</sub>, किसी प्राकृत संख्या k के लिए; के पास ''e<sub>k</sub>'' = ''m''<sub>α</sub> जहां <math>\textstyle | ||
X^\alpha=\prod_{i=1}^kX_i</math> है। शक्ति श्रृंखला के रूप में, यह k विशिष्ट निर्धारक के सभी विशिष्ट उत्पादों का योग है। यह सममित | X^\alpha=\prod_{i=1}^kX_i</math> है। शक्ति श्रृंखला के रूप में, यह k विशिष्ट निर्धारक के सभी विशिष्ट उत्पादों का योग है। यह सममित फलन प्राथमिक सममित बहुपद किसी भी n ≥ k के लिए ''e<sub>k</sub>''(''X''<sub>1</sub>,...,''X<sub>n</sub>'') से मेल खाता है । | ||
* 'शक्ति योग सममित | * ''''शक्ति योग सममित फलन'''<nowiki/>' p<sub>''k''</sub>, किसी भी धनात्मक पूर्णांक k के लिए; ''p<sub>k</sub>'' = ''m''<sub>(''k'')</sub> है, एकपदी ''X''<sub>1</sub><sup>''k''</sup> के लिए एकपदी सममित फलन यह सममित फलन। यह सममित फ़ंक्शन किसी भी n ≥ 1 के लिए शक्ति योग सममित बहुपद ''p<sub>k</sub>''(''X''<sub>1</sub>,...,''X<sub>n</sub>'') = ''X''<sub>1</sub><sup>''k''</sup> + ... + ''X<sub>n</sub><sup>k</sup>'' से मेल खाता है । | ||
* 'पूर्ण सजातीय सममित | * ''''पूर्ण सजातीय सममित फलन'''<nowiki/>' h<sub>''k''</sub>, किसी प्राकृत संख्या k के लिए; h<sub>''k''</sub> सभी एकपदी सममितीय फलन m<sub>α</sub> का योग है जहां α k का पूर्णांक विभाजन है। शक्ति श्रृंखला के रूप में, यह डिग्री k के सभी एकपदीयों का योग है, जो इसके नाम को प्रेरित करता है। यह सममित फलन पूर्ण सजातीय सममित बहुपद ''h<sub>k</sub>''(''X''<sub>1</sub>,...,''X<sub>n</sub>'') से मेल खाता है किसी भी n ≥ k के लिए। | ||
* 'शूर फलन ' S<sub>λ</sub> किसी भी विभाजन λ के लिए, जो शूर बहुपद ''s''<sub>λ</sub>(''X''<sub>1</sub>,...,''X<sub>n</sub>'') के संगत है किसी भी बड़े n के लिए एकपदी ''X''<sup>λ</sup> रखने के लिए पर्याप्त है। | * ''''शूर फलन''' ' S<sub>λ</sub> किसी भी विभाजन λ के लिए, जो शूर बहुपद ''s''<sub>λ</sub>(''X''<sub>1</sub>,...,''X<sub>n</sub>'') के संगत है किसी भी बड़े n के लिए एकपदी ''X''<sup>λ</sup> रखने के लिए पर्याप्त है। | ||
कोई घात योग सममित फलन p<sub>0</sub> नहीं है: चूंकि परिभाषित करना संभव है (और कुछ संदर्भों में प्राकृतिक)। <math>\textstyle p_0(X_1,\ldots,X_n)=\sum_{i=1}^nX_i^0=n</math> n चरों में सममित बहुपद के रूप में, ये मान आकारिकी ρ<sub>''n''</sub> के साथ संगत नहीं हैं। भेद करनेवाला <math>\textstyle(\prod_{i<j}(X_i-X_j))^2</math> सभी n के लिए सममित बहुपद देने वाली अभिव्यक्ति का और उदाहरण है, किन्तु किसी भी सममित | कोई घात योग सममित फलन p<sub>0</sub> नहीं है: चूंकि परिभाषित करना संभव है (और कुछ संदर्भों में प्राकृतिक)। <math>\textstyle p_0(X_1,\ldots,X_n)=\sum_{i=1}^nX_i^0=n</math> n चरों में सममित बहुपद के रूप में, ये मान आकारिकी ρ<sub>''n''</sub> के साथ संगत नहीं हैं। भेद करनेवाला <math>\textstyle(\prod_{i<j}(X_i-X_j))^2</math> सभी n के लिए सममित बहुपद देने वाली अभिव्यक्ति का और उदाहरण है, किन्तु किसी भी सममित फलन को परिभाषित नहीं करता है। प्रत्यावर्ती बहुपदों के भागफल के रूप में शूर बहुपदों को परिभाषित करने वाले भाव कुछ सीमा तक विवेचक के समान हैं, किन्तु बहुपद ''s''<sub>λ</sub>(''X''<sub>1</sub>,...,''X<sub>n</sub>'') अलग-अलग n के लिए संगत हो जाते हैं और इसलिए सममित फलन को परिभाषित करते हैं। | ||
=== सममित बहुपदों और सममित फलन से संबंधित सिद्धांत === | === सममित बहुपदों और सममित फलन से संबंधित सिद्धांत === | ||
Line 66: | Line 66: | ||
किसी भी सममित फलन P के लिए, n में संबंधित सममित बहुपद किसी भी प्राकृत संख्या n के लिए निर्धारक होते हैं, जिन्हें ''P''(''X''<sub>1</sub>,...,''X<sub>n</sub>'') द्वारा निर्दिष्ट किया जा सकता है। सममित फलन के वलय की दूसरी परिभाषा का तात्पर्य निम्नलिखित मूलभूत सिद्धांत से है। | किसी भी सममित फलन P के लिए, n में संबंधित सममित बहुपद किसी भी प्राकृत संख्या n के लिए निर्धारक होते हैं, जिन्हें ''P''(''X''<sub>1</sub>,...,''X<sub>n</sub>'') द्वारा निर्दिष्ट किया जा सकता है। सममित फलन के वलय की दूसरी परिभाषा का तात्पर्य निम्नलिखित मूलभूत सिद्धांत से है। | ||
: यदि P और Q डिग्री d के सममित | : यदि P और Q डिग्री d के सममित फलन हैं, तो की पहचान है <math>P=Q</math> सममित फलन की [[अगर और केवल अगर|यदि और केवल]] यदि किसी की पहचान है ''P''(''X''<sub>1</sub>,...,''X<sub>d</sub>'') = ''Q''(''X''<sub>1</sub>,...,''X<sub>d</sub>'') निर्धारक में सममित बहुपदों की। इस मामले में वास्तव में ''P''(''X''<sub>1</sub>,...,''X<sub>n</sub>'') = ''Q''(''X''<sub>1</sub>,...,''X<sub>n</sub>'') किसी भी संख्या n के लिए निर्धारक हैं। | ||
ऐसा इसलिए है क्योंकि कुछ चरों के लिए शून्य को प्रतिस्थापित करके चरों की संख्या को सदैव कम किया जा सकता है और समाकारिता φ<sub>''n''</sub> को लागू करके चरों की संख्या में वृद्धि की जा सकती है। उन समरूपताओं की परिभाषा आश्वस्त करती है कि ''φ<sub>n</sub>''(''P''(''X''<sub>1</sub>,...,''X<sub>n</sub>'')) = ''P''(''X''<sub>1</sub>,...,''X<sub>n</sub>''<sub>+1</sub>) (और इसी प्रकार Q के लिए) जब भी n ≥ d. इस सिद्धांत के प्रभावी अनुप्रयोग के लिए न्यूटन की पहचान की व्युत्पत्ति न्यूटन की पहचान का प्रमाण देखें। | ऐसा इसलिए है क्योंकि कुछ चरों के लिए शून्य को प्रतिस्थापित करके चरों की संख्या को सदैव कम किया जा सकता है और समाकारिता φ<sub>''n''</sub> को लागू करके चरों की संख्या में वृद्धि की जा सकती है। उन समरूपताओं की परिभाषा आश्वस्त करती है कि ''φ<sub>n</sub>''(''P''(''X''<sub>1</sub>,...,''X<sub>n</sub>'')) = ''P''(''X''<sub>1</sub>,...,''X<sub>n</sub>''<sub>+1</sub>) (और इसी प्रकार Q के लिए) जब भी n ≥ d. इस सिद्धांत के प्रभावी अनुप्रयोग के लिए न्यूटन की पहचान की व्युत्पत्ति न्यूटन की पहचान का प्रमाण देखें। | ||
== सममित फलन की | == सममित फलन की वलय के गुण == | ||
=== पहचान === | === पहचान === | ||
Line 85: | Line 85: | ||
# विभाजनों द्वारा पैरामीट्रिज्ड एकपद सममित फलन का सेट Λ<sub>''R''</sub> का आधार बनता है श्रेणीबद्ध आर-मॉड्यूल (गणित) के रूप में, d के विभाजन द्वारा पैरामीट्रिज्ड डिग्री डी के सजातीय होने के कारण; शूर फलन के सेट के लिए भी यही सच है (विभाजन द्वारा पैरामीट्रिज्ड)। | # विभाजनों द्वारा पैरामीट्रिज्ड एकपद सममित फलन का सेट Λ<sub>''R''</sub> का आधार बनता है श्रेणीबद्ध आर-मॉड्यूल (गणित) के रूप में, d के विभाजन द्वारा पैरामीट्रिज्ड डिग्री डी के सजातीय होने के कारण; शूर फलन के सेट के लिए भी यही सच है (विभाजन द्वारा पैरामीट्रिज्ड)। | ||
# Λ<sub>''R''</sub> बहुपद वलय ''R''[''Y''<sub>1</sub>,''Y''<sub>2</sub>, ...] के लिए श्रेणीबद्ध R-बीजगणित के रूप में [[समरूपी]] है, अपरिमित रूप से अनेक चरों में, जहाँ Y<sub>''i''</sub> सभी i > 0 के लिए डिग्री i दी गई है, समरूपता वह है जो Y<sub>''i''</sub> भेजता है तब <sub>''i''</sub>∈ Λ<sub>''R''</sub> प्रत्येक i के लिए। | # Λ<sub>''R''</sub> बहुपद वलय ''R''[''Y''<sub>1</sub>,''Y''<sub>2</sub>, ...] के लिए श्रेणीबद्ध R-बीजगणित के रूप में [[समरूपी]] है, अपरिमित रूप से अनेक चरों में, जहाँ Y<sub>''i''</sub> सभी i > 0 के लिए डिग्री i दी गई है, समरूपता वह है जो Y<sub>''i''</sub> भेजता है तब <sub>''i''</sub>∈ Λ<sub>''R''</sub> प्रत्येक i के लिए। | ||
# Λ<sub>''R''</sub> का इनवॉल्यूशन (गणित) [[ automorphism | | # Λ<sub>''R''</sub> का इनवॉल्यूशन (गणित) [[ automorphism |ऑटोमोर्फिज्म]] ω है जो प्रारंभिक सममित फलन e<sub>''i''</sub> को बदल देता है और पूर्ण सजातीय सममित फलन h<sub>''i''</sub> सभी के लिए यह प्रत्येक शक्ति योग सममित फलन p<sub>''i''</sub> भी भेजता है ''p<sub>i</sub>'' से (−1)<sup>''i''−1</sup>''p<sub>i</sub>'', और यह S<sub>λ</sub> को बदलाव करते हुए दूसरे के बीच शूर फलन की अनुमति देता है और S<sub>λ<sup>t</sup></sub> जहां Λ<sup>t</sup> λ का स्थानान्तरण विभाजन है। | ||
संपत्ति 2 सममित बहुपदों के मौलिक प्रमेय का सार है। इसका तात्पर्य तुरंत कुछ अन्य गुणों से है: | संपत्ति 2 सममित बहुपदों के मौलिक प्रमेय का सार है। इसका तात्पर्य तुरंत कुछ अन्य गुणों से है: | ||
* Λ<sub>''R''</sub> का | * Λ<sub>''R''</sub> का सबवलय n चर में R पर सममित बहुपदों की वलय के लिए अधिकतम n में डिग्री के अपने तत्वों द्वारा उत्पन्न समरूप है; | ||
* Λ<sub>''R''</sub> की हिल्बर्ट-पॉइनकेयर श्रृंखला है <math>\textstyle\prod_{i=1}^\infty\frac1{1-t^i}</math>, विभाजन (संख्या सिद्धांत) पूर्णांक विभाजन का | * Λ<sub>''R''</sub> की हिल्बर्ट-पॉइनकेयर श्रृंखला है <math>\textstyle\prod_{i=1}^\infty\frac1{1-t^i}</math>, विभाजन (संख्या सिद्धांत) पूर्णांक विभाजन का फलन उत्पन्न करना (यह संपत्ति 1 से भी अनुसरण करता है); | ||
* प्रत्येक n > 0 के लिए, Λ<sub>''R''</sub> के सजातीय भाग द्वारा गठित R-मॉड्यूल डिग्री n की, डिग्री के अपने तत्वों द्वारा उत्पन्न | * प्रत्येक n > 0 के लिए, Λ<sub>''R''</sub> के सजातीय भाग द्वारा गठित R-मॉड्यूल डिग्री n की, डिग्री के अपने तत्वों द्वारा उत्पन्न सबवलय के साथ मॉड्यूलो एन से सख्ती से कम है, रैंक 1 का [[मुफ्त मॉड्यूल]] है, और (की छवि) e<sub>''n''</sub> इस R-मॉड्यूल का उत्पादक है; | ||
* सममित फलन के प्रत्येक परिवार के लिए (F<sub>''i''</sub>)<sub>''i''>0</sub> जिसमें F<sub>''i''</sub> डिग्री i का सजातीय है और पिछले बिंदु (सभी i के लिए) के मुक्त आर-मॉड्यूल का उत्पादक देता है, ''R''[''Y''<sub>1</sub>,''Y''<sub>2</sub>, ...] से श्रेणीबद्ध आर-अलजेब्रस का वैकल्पिक समरूपता है ऊपर के रूप में Λ<sub>''R''</sub> Y<sub>''i''</sub> भेजता है F<sub>''i''</sub> के लिए; दूसरे शब्दों में, परिवार (f<sub>''i''</sub>)<sub>''i''>0</sub> Λ<sub>''R''</sub> के मुक्त बहुपद उत्पादक का सेट बनाता है। | * सममित फलन के प्रत्येक परिवार के लिए (F<sub>''i''</sub>)<sub>''i''>0</sub> जिसमें F<sub>''i''</sub> डिग्री i का सजातीय है और पिछले बिंदु (सभी i के लिए) के मुक्त आर-मॉड्यूल का उत्पादक देता है, ''R''[''Y''<sub>1</sub>,''Y''<sub>2</sub>, ...] से श्रेणीबद्ध आर-अलजेब्रस का वैकल्पिक समरूपता है ऊपर के रूप में Λ<sub>''R''</sub> Y<sub>''i''</sub> भेजता है F<sub>''i''</sub> के लिए; दूसरे शब्दों में, परिवार (f<sub>''i''</sub>)<sub>''i''>0</sub> Λ<sub>''R''</sub> के मुक्त बहुपद उत्पादक का सेट बनाता है। | ||
यह अंतिम बिंदु विशेष रूप से परिवार पर लागू होता है पूर्ण सजातीय सममित फलन की (h<sub>''i''</sub>)<sub>''i''>0</sub> ।यदि R में क्षेत्र है (गणित)<math>\mathbb Q</math> परिमेय संख्याओं के संबंध में, यह परिवार पर भी लागू होता है (''p<sub>i</sub>'')<sub>''i''>0</sub> शक्ति योग सममित फलन की। यह बताता है कि इन परिवारों में से प्रत्येक के पहले n तत्व सममित बहुपदों के सेट को n चर में परिभाषित करते हैं जो सममित बहुपदों की उस | यह अंतिम बिंदु विशेष रूप से परिवार पर लागू होता है पूर्ण सजातीय सममित फलन की (h<sub>''i''</sub>)<sub>''i''>0</sub> ।यदि R में क्षेत्र है (गणित)<math>\mathbb Q</math> परिमेय संख्याओं के संबंध में, यह परिवार पर भी लागू होता है (''p<sub>i</sub>'')<sub>''i''>0</sub> शक्ति योग सममित फलन की। यह बताता है कि इन परिवारों में से प्रत्येक के पहले n तत्व सममित बहुपदों के सेट को n चर में परिभाषित करते हैं जो सममित बहुपदों की उस वलय के मुक्त बहुपद उत्पादक हैं। | ||
तथ्य यह है कि पूर्ण सजातीय सममित | तथ्य यह है कि पूर्ण सजातीय सममित फलन Λ<sub>''R''</sub> के मुक्त बहुपद उत्पादक का सेट बनाते हैं पहले से ही ऑटोमोर्फिज्म के अस्तित्व को दर्शाता है ω प्राथमिक सममित फलन को पूर्ण सजातीय फलन में भेज रहा है, जैसा कि संपत्ति 3 में उल्लिखित है। तथ्य यह है कि ω Λ<sub>''R''</sub> का अंतर्वलन है ऊपर दिए गए संबंधों के पहले सेट द्वारा व्यक्त प्राथमिक और पूर्ण सजातीय सममित फलन के बीच समरूपता से अनुसरण करता है। | ||
सममित फलन की | सममित फलन की वलय Λ<sub>'''Z'''</sub> पूर्णांक Z का ऍक्स्प वलय है। यह प्राकृतिक अंदाज में लैम्ब्डा-वलय भी है; वास्तव में यह एक उत्पादक में सार्वभौमिक लैम्ब्डा-वलय है। | ||
=== निर्माण | === निर्माण फलन === | ||
Λ<sub>''R''</sub> की पहली परिभाषा के | Λ<sub>''R''</sub> की पहली परिभाषा के सबवलय के रूप में <math>R[[X_1, X_2, ...]]</math> सममित फलन के कई अनुक्रमों के उत्पन्न फलन को सुरुचिपूर्ण विधि से व्यक्त करने की अनुमति देता है। पहले बताए गए संबंधों के विपरीत, जो Λ<sub>''R''</sub> के लिए आंतरिक हैं, इन भावों में ''R''[[''X''<sub>1</sub>,''X''<sub>2</sub>,...;''t'']] में संक्रियाएँ सम्मलित हैं किन्तु इसके उपसमूह Λ<sub>''R''</sub>[[''t'']] के बाहर, इसलिए वे केवल तभी अर्थपूर्ण हैं जब सममित फलन को निर्धारक X<sub>''i''</sub> में औपचारिक शक्ति श्रृंखला के रूप में देखा जाता है। हम इस व्याख्या पर जोर देने के लिए सममित फलन के बाद (X) लिखेंगे। | ||
प्रारंभिक सममित फलन के लिए उत्पादक फलन है | प्रारंभिक सममित फलन के लिए उत्पादक फलन है | ||
:<math>E(t) = \sum_{k \geq 0} e_k(X)t^k = \prod_{i=1}^\infty (1+X_it).</math> | :<math>E(t) = \sum_{k \geq 0} e_k(X)t^k = \prod_{i=1}^\infty (1+X_it).</math> | ||
इसी प्रकार किसी के पास पूर्ण सजातीय सममित | इसी प्रकार किसी के पास पूर्ण सजातीय सममित फलन हैं | ||
:<math>H(t) = \sum_{k \geq 0} h_k(X)t^k = \prod_{i=1}^\infty \left(\sum_{k \geq 0} (X_it)^k\right) = \prod_{i=1}^\infty \frac1{1-X_it}.</math> | :<math>H(t) = \sum_{k \geq 0} h_k(X)t^k = \prod_{i=1}^\infty \left(\sum_{k \geq 0} (X_it)^k\right) = \prod_{i=1}^\infty \frac1{1-X_it}.</math> | ||
स्पष्ट तथ्य यह है कि <math>E(-t)H(t) = 1 = E(t)H(-t)</math> प्रारंभिक और पूर्ण सजातीय सममित फलन के बीच समरूपता की व्याख्या करता है। शक्ति योग सममित फलन के लिए उत्पादक फलन के रूप में व्यक्त किया जा सकता है | स्पष्ट तथ्य यह है कि <math>E(-t)H(t) = 1 = E(t)H(-t)</math> प्रारंभिक और पूर्ण सजातीय सममित फलन के बीच समरूपता की व्याख्या करता है। शक्ति योग सममित फलन के लिए उत्पादक फलन के रूप में व्यक्त किया जा सकता है | ||
Line 114: | Line 114: | ||
== विशेषज्ञता == | == विशेषज्ञता == | ||
होने देना <math>\Lambda</math> सममित फलन की | होने देना <math>\Lambda</math> सममित फलन की वलय बनें और <math>R</math> इकाई तत्व के साथ क्रमविनिमेय बीजगणित है। बीजगणित समरूपता <math>\varphi:\Lambda\to R,\quad f\mapsto f(\varphi)</math> विशेषज्ञता कहा जाता है।<ref name="StanleyFomin">{{cite book|last1=Stanley|first1=Richard P.|last2=Fomin|first2=Sergey P.|title= गणनात्मक कॉम्बिनेटरिक्स|volume=2|publisher=Cambridge University Press}}</ref> उदाहरण: | ||
* कुछ वास्तविक संख्याएँ दी गई हैं <math>a_1,\dots,a_k</math> और <math>f(x_1,x_2,\dots,)\in \Lambda</math>, फिर प्रतिस्थापन <math>x_1=a_1,\dots,x_k=a_k</math> और <math>x_j=0,\forall j>k</math> विशेषज्ञता है। | * कुछ वास्तविक संख्याएँ दी गई हैं <math>a_1,\dots,a_k</math> और <math>f(x_1,x_2,\dots,)\in \Lambda</math>, फिर प्रतिस्थापन <math>x_1=a_1,\dots,x_k=a_k</math> और <math>x_j=0,\forall j>k</math> विशेषज्ञता है। | ||
* होने देना <math>f\in \Lambda</math>, तब <math>\operatorname{ps}(f):=f(1,q,q^2,q^3,\dots)</math> प्रमुख विशेषज्ञता कहा जाता है। | * होने देना <math>f\in \Lambda</math>, तब <math>\operatorname{ps}(f):=f(1,q,q^2,q^3,\dots)</math> प्रमुख विशेषज्ञता कहा जाता है। | ||
Line 120: | Line 120: | ||
== यह भी देखें == | == यह भी देखें == | ||
* न्यूटन की पहचान | * न्यूटन की पहचान | ||
* | * क्वैसममित फ़ंक्शन | ||
==संदर्भ== | ==संदर्भ== | ||
Line 128: | Line 128: | ||
* Macdonald, I. G. ''Symmetric functions and Hall polynomials.'' Second edition. Oxford Mathematical Monographs. Oxford Science Publications. The Clarendon Press, Oxford University Press, New York, 1995. x+475 pp. {{isbn|0-19-853489-2}} {{MathSciNet|id=1354144}} | * Macdonald, I. G. ''Symmetric functions and Hall polynomials.'' Second edition. Oxford Mathematical Monographs. Oxford Science Publications. The Clarendon Press, Oxford University Press, New York, 1995. x+475 pp. {{isbn|0-19-853489-2}} {{MathSciNet|id=1354144}} | ||
* [[Richard P. Stanley|Stanley, Richard P.]] ''Enumerative Combinatorics'', Vol. 2, Cambridge University Press, 1999. {{isbn|0-521-56069-1}} (hardback) {{isbn|0-521-78987-7}} (paperback). | * [[Richard P. Stanley|Stanley, Richard P.]] ''Enumerative Combinatorics'', Vol. 2, Cambridge University Press, 1999. {{isbn|0-521-56069-1}} (hardback) {{isbn|0-521-78987-7}} (paperback). | ||
[[Category:Created On 08/05/2023]] | [[Category:Created On 08/05/2023]] | ||
[[Category:Machine Translated Page]] | |||
[[Category:Pages with script errors]] | |||
[[Category:Templates Vigyan Ready]] | |||
[[Category:अपरिवर्तनीय सिद्धांत]] | |||
[[Category:कार्यों के प्रकार]] | |||
[[Category:क्रमपरिवर्तन]] | |||
[[Category:बहुपदों]] | |||
[[Category:बीजगणितीय कॉम्बिनेटरिक्स]] | |||
[[Category:सममित कार्य|*]] |
Latest revision as of 16:27, 18 September 2023
बीजगणित में और विशेष रूप से बीजगणितीय साहचर्य में, सममित फलन की वलय 'n' निर्धारक में सममित बहुपद की वलय (गणित) की विशिष्ट सीमा है, क्योंकि 'n' अनंत तक जाती है। यह वलय सार्वभौमिक संरचना के रूप में फलन करता है जिसमें सममित बहुपदों के बीच संबंधों को निर्धारकों की संख्या n से स्वतंत्र विधियों से व्यक्त किया जा सकता है (किन्तु इसके तत्व न तो बहुपद हैं और न ही फलन)। अन्य बातों के अतिरिक्त, यह वलय सममित समूह के प्रतिनिधित्व सिद्धांत में महत्वपूर्ण भूमिका निभाता है।
सममित फलन की वलय को सह-उत्पाद और द्विरेखीय रूप दिया जा सकता है जो इसे सकारात्मक स्वसम्मिलित श्रेणीबद्ध बीजगणित हॉपफ बीजगणित में बनाता है जो क्रमविनिमेय और सहसम्बन्धी दोनों है।
सममित बहुपद
सममित फलन का अध्ययन सममित बहुपदों पर आधारित है। अनिश्चितकों के कुछ परिमित समुच्चय में बहुपद वलय में, बहुपद को सममित कहा जाता है यदि यह वही रहता है जब भी किसी भी प्रकार से निर्धारक को अनुमति दी जाती है। अधिक औपचारिक रूप से,n निर्धारक में बहुपद की वलय पर सममित समूह Sn के वलय ऑटोमोर्फिज्म द्वारा समूह क्रिया होती है , जहां क्रमचय उपयोग किए गए क्रमपरिवर्तन के अनुसार प्रत्येक निर्धारक को साथ प्रतिस्थापित करके बहुपद पर फलन करता है। अपरिवर्तनीय (गणित) इस क्रिया के लिए समूह क्रिया के अंतर्गत अपरिवर्तित सममित बहुपदों का उपसमूह बनाता है, यदि निर्धारक X1, ..., Xn हैं, तो ऐसे सममित बहुपदों के उदाहरण हैं।
और
कुछ और जटिल उदाहरण है X13X2X3 + X1X23X3 + X1X2X33 + X13X2X4 + X1X23X4 + X1X2X43 + ... जहां योग कुछ चर और दो अन्य चर की तीसरी शक्ति के सभी उत्पादों को सम्मलित करने के लिए आगे बढ़ता है। कई विशिष्ट प्रकार के सममित बहुपद हैं, जैसे प्राथमिक सममित बहुपद, शक्ति योग सममित बहुपद, एकपद सममित बहुपद, पूर्ण सजातीय सममित बहुपद, और शूर बहुपद हैं।
सममित फलन की वलय
सममित बहुपदों के बीच अधिकांश संबंध अनिर्धारकों की संख्या n पर निर्भर नहीं करते हैं, अतिरिक्त इसके कि संबंध में कुछ बहुपदों को n को परिभाषित करने के लिए अधिक बड़ा होना आवश्यक हो सकता है। उदाहरण के लिए तीसरी शक्ति योग बहुपद p3 के लिए न्यूटन की पहचान ओर जाता है
जहां प्रारंभिक सममित बहुपदों को निरूपित करें; यह सूत्र सभी प्राकृतिक संख्याओं n के लिए मान्य है और इस पर एकमात्र उल्लेखनीय निर्भरता यह है कि ek(X1,...,Xn) = 0 जब भी n < k हो। कोई इसे पहचान के रूप में लिखना चाहेगा
यह n पर बिल्कुल भी निर्भर नहीं करता है और यह सममित फलन के वलय में किया जा सकता है। उस वलय में सभी पूर्णांक k ≥ 1 के लिए अशून्य तत्व ek होते हैं और वलय के किसी भी अवयव को ek अवयवों में बहुपद व्यंजक द्वारा दिया जा सकता है।
परिभाषाएँ
सममित फलन की वलय को किसी भी क्रमविनिमेय वलय R पर परिभाषित किया जा सकता है और इसे ΛR के रूप में दर्शाया जाएगा; मूल स्थिति R = 'Z' के लिए है। वलय ΛR वास्तव में वलय के ऊपर वर्गीकृत वलय R-बीजगणित है। इसके लिए दो मुख्य निर्माण हैं; नीचे दिया गया पहला (स्टेनली, 1999) में पाया जा सकता है और दूसरा अनिवार्य रूप से (मैकडोनाल्ड, 1979) में दिया गया है।
औपचारिक शक्ति श्रृंखला की वलय के रूप में
सबसे सरल (चूंकि कुछ सीमा तक भारी) निर्माण कई चर में औपचारिक शक्ति श्रृंखला शक्ति श्रृंखला की वलय से प्रारंभ होता है R पर असीम रूप से (गणना करने योग्य अनंत) कई अनिश्चित; इस शक्ति श्रृंखला वलय के तत्व शर्तों के औपचारिक अनंत योग हैं, जिनमें से प्रत्येक में R से गुणांक एकपद द्वारा गुणा किया जाता है, जहां प्रत्येक एकपद निर्धारक रूप से कई परिमित शक्तियों का उत्पाद होता है। ΛR को परिभाषित करता है इसके उप-वलय के रूप में उन शक्ति श्रृंखला S से मिलकर बनता है जो संतुष्ट करती हैं
- S निर्धारक के किसी भी क्रमपरिवर्तन के अनुसार अपरिवर्तनीय है, और
- S में होने वाले एकपदों के बहुपद की कोटि परिबद्ध है।
ध्यान दें कि दूसरी स्थिति के कारण, घात श्रृंखला का उपयोग यहां केवल निश्चित डिग्री के असीम रूप से कई पदों को अनुमति देने के लिए किया जाता है, अतिरिक्त सभी संभावित डिग्री के पदों के योग के लिए। इसकी अनुमति देना आवश्यक है क्योंकि तत्व जिसमें उदाहरण के लिए X1 शब्द होता है सममित होने के लिए प्रत्येक i > 1 के लिए Xi शब्द भी होना चाहिए। पूरी शक्ति श्रृंखला वलय के विपरीत, सबवलय ΛR एकपदीयों की कुल डिग्री द्वारा वर्गीकृत किया जाता है: स्थिति 2 के कारण, ΛR का प्रत्येक तत्व ΛR के सजातीय बहुपद तत्वों का परिमित योग है (जो स्वयं समान कोटि के पदों के अनंत योग हैं)। प्रत्येक k ≥ 0 के लिए, तत्व ek∈ ΛR को k विशिष्ट निर्धारक के सभी उत्पादों के औपचारिक योग के रूप में परिभाषित किया गया है, जो डिग्री k का स्पष्ट रूप से सजातीय है।
बीजगणितीय सीमा के रूप में
ΛR का एक और निर्माण वर्णन करने में कुछ अधिक समय लगता है, किन्तु n निर्धारक में सममित बहुपदों के वलय R[X1,...,Xn]Sn के साथ संबंध को श्रेष्ठतर विधि से इंगित करता है। निर्धारक में सममित बहुपदों का प्रत्येक n के लिए समरूप वलय R[X1,...,Xn+1]Sn+1 पर विशेषण वलय समरूपता ρn है, जिसमें R[X1,...,Xn]Sn पर एक और निर्धारक है, जिसे सेट करके परिभाषित किया गया है। अंतिम निर्धारक को सेट करके Xn+1से 0 । चूंकि ρn गैर-तुच्छ कर्नेल (बीजगणित) है, उस कर्नेल के गैर-शून्य तत्वों में कम से कम डिग्री है ।(वे X के गुणक हैं X1X2...Xn+1) इसका मतलब यह है कि ρn का प्रतिबंध अधिक से अधिक डिग्री के तत्वों के लिए विशेषण रैखिक नक्शा है, और ρn(ek(X1,...,Xn+1)) = ek(X1,...,Xn) सभी के लिए k ≤ n है। इस प्रतिबंध के व्युत्क्रम को विशिष्ट रूप से R[X1,...,Xn]Sn से R[X1,...,Xn+1]Sn+1, तक वलय समरूपता φn तक बढ़ाया जा सकता है । जैसा कि उदाहरण के लिए सममित बहुपदों के मूलभूत प्रमेय से लिया गया है। चूंकि k = 1,...,n के लिए φn(ek(X1,...,Xn)) = ek(X1,...,Xn+1) , बिंब अभी भी R पर बीजगणितीय रूप से स्वतंत्र हैं, समाकारिता φn पर अन्तःक्षेपण बीजगणितीय रूप से स्वतंत्र हैं और इसे वलय के समावेश (कुछ असामान्य) के रूप में देखा जा सकता है; φn लागू करना से पहले उपस्तिथ एकपद से समरूपता द्वारा प्राप्त नए निर्धारक वाले सभी एकपद को जोड़ने के लिए बहुपद राशि। वलय ΛR तब इन समावेशन के अधीन इन सभी अंगूठियो का संघ (प्रत्यक्ष सीमा) है। चूंकि सभी φn सम्मलित वलय की कुल डिग्री द्वारा ग्रेडिंग के साथ संगत हैं, ΛR वर्गीकृत वलय की संरचना प्राप्त करता है।
यह निर्माण (मैकडोनाल्ड, 1979) में से थोड़ा अलग है। वह निर्माण केवल विशेषण आकारिकी ρn का उपयोग करता है अन्तःक्षेपण रूपवाद φn का उल्लेख किए बिना। यह ΛR के सजातीय घटकों का निर्माण करता है अलग से, एक और ρn का उपयोग करके उनके प्रत्यक्ष योग को वलय संरचना से तैयार करता है। यह भी देखा गया है कि परिणाम को वर्गीकृत अंगूठियो की श्रेणी (गणित) में व्युत्क्रम सीमा के रूप में वर्णित किया जा सकता है। चूंकि यह विवरण कुछ सीमा तक इंजेक्शन आकारिता की सीधी सीमा के लिए विशिष्ट महत्वपूर्ण संपत्ति को अस्पष्ट करता है, अर्थात् प्रत्येक व्यक्तिगत तत्व (सममित फलन) पहले से ही सीमा निर्माण में उपयोग की जाने वाली किसी वस्तु में eमानदारी से प्रतिनिधित्व किया जाता है, यहां वलय R[X1,...,Xd]Sd यह d के लिए सममित फलन की डिग्री लेने के लिए पर्याप्त है, क्योंकि उस वलय के डिग्री d में भाग को समरूप रूप से मैप किया जाता है, जो कि φn द्वारा अधिक निर्धारक होता है। सभी के लिए n≥ d। इसका तात्पर्य है कि अलग-अलग तत्वों के बीच संबंधों का अध्ययन करने के लिए सममित बहुपदों और सममित फलन के बीच कोई मूलभूत अंतर नहीं है।
व्यक्तिगत सममित फलन को परिभाषित करना
ΛR के तत्वों के लिए नाम सममित फलन मिथ्या नाम है: न तो निर्माण में तत्व फलन (गणित) हैं और वास्तव में, सममित बहुपदों के विपरीत, ऐसे तत्वों से स्वतंत्र चर का कोई फलन नहीं जोड़ा जा सकता है (उदाहरण के लिए e1 सभी असीम रूप से कई चरों का योग होगा, जो तब तक परिभाषित नहीं होता है जब तक कि चर पर प्रतिबंध नहीं लगाया जाता है)। चूँकि नाम पारंपरिक और अच्छी प्रकार से स्थापित है; यह (मैकडॉनल्ड, 1979) दोनों में पाया जा सकता है, जो कहता है (पृष्ठ 12 पर फुटनोट)
Λ के तत्व (Λn के तत्वों के विपरीत) अब बहुपद नहीं हैं: वे एकपदी के औपचारिक अनंत योग हैं। इसलिए हम सममित फलन की पुरानी शब्दावली पर वापस आ गए हैं।
(यहाँ Λn एन निर्धारक में सममित बहुपदों की वलय को दर्शाता है), और (स्टेनली, 1999) में भी।
सममित फलन को परिभाषित करने के लिए या तो पहले निर्माण के रूप में सीधे शक्ति श्रृंखला का संकेत देना चाहिए, या दूसरे निर्माण के साथ संगत विधियों से प्रत्येक प्राकृतिक संख्या n के लिए n निर्धारक में सममित बहुपद देना चाहिए। उदाहरण के लिए, निर्धारक संख्या में अभिव्यक्ति दोनों कर सकती है
प्राथमिक सममित फलन की परिभाषा के रूप में लिया जा सकता है यदि निर्धारक की संख्या अनंत है, या किसी भी परिमित संख्या में प्राथमिक सममित बहुपद की परिभाषा के रूप में। समान सममित फलन के लिए सममित बहुपदों को समरूपता ρn के साथ संगत होना चाहिए (उनमें से कुछ को शून्य पर सेट करके अनिश्चितताओं की संख्या घटाकर प्राप्त की जाती है, जिससे शेष अनिश्चितताओं में किसी भी एकपद के गुणांक अपरिवर्तित रहें), और उनकी डिग्री बंधी रहनी चाहिए। (सममित बहुपदों के परिवार का उदाहरण जो दोनों स्थितियों में विफल रहता है ; परिवार केवल दूसरी स्थिति में विफल रहता है।) n निर्धारक में किसी भी सममित बहुपद का उपयोग सममित बहुपदों के संगत परिवार के निर्माण के लिए किया जा सकता है, समरूपता का उपयोग करके ρi i < n निर्धारक की संख्या कम करने के लिए, और φi i ≥ n के लिए अनिश्चितताओं की संख्या बढ़ाने के लिए (जो पहले से उपस्तिथ एकपदीयों से समरूपता द्वारा प्राप्त नए अनिश्चितकों में सभी एकपदीयों को जोड़ने के बराबर है)।
निम्नलिखित सममित फलन के मूलभूत उदाहरण हैं।
- 'एकपद सममित फलन ' mα. मान लीजिए α = (α1,α2,...) गैर-ऋणात्मक पूर्णांकों का क्रम है, जिनमें से केवल बहुत से गैर-शून्य हैं। तब हम α द्वारा परिभाषित एकपद पर विचार कर सकते हैं: Xα = X1α1X2α2X3α3.... फिर mα Xα द्वारा निर्धारित सममित फलन है, अर्थात Xα से प्राप्त सभी एकपदीयों का योग। समरूपता द्वारा औपचारिक परिभाषा के लिए, β ~ α को परिभाषित करें जिसका अर्थ है कि अनुक्रम β अनुक्रम α और सेट का क्रमपरिवर्तन है
- यह सममित फलन एकपद सममित बहुपद mα(X1,...,Xn) से मेल खाता है किसी भी बड़े n के लिए एकपदी Xα रखने के लिए पर्याप्त है। अलग-अलग एकपद सममित फलन को पूर्णांक विभाजन द्वारा पैरामीटर किया जाता है (प्रत्येक mα अद्वितीय प्रतिनिधि एकपदी Xλ है भागों के साथ λi कमजोर घटते क्रम में)। चूंकि किसी भी सममित फलन में कुछ mα के एकपद सम्मलित हैं एक ही गुणांक के साथ उन सभी को सम्मलित करना चाहिए, प्रत्येक सममित फलन को एकपद सममित फलन के आर-रैखिक संयोजन के रूप में लिखा जा सकता है, और विशिष्ट एकपद सममित फलन इसलिए ΛR का आधार बनाते हैं आर-मॉड्यूल (गणित) के रूप में।
- 'प्राथमिक सममित फलन' ek, किसी प्राकृत संख्या k के लिए; के पास ek = mα जहां है। शक्ति श्रृंखला के रूप में, यह k विशिष्ट निर्धारक के सभी विशिष्ट उत्पादों का योग है। यह सममित फलन प्राथमिक सममित बहुपद किसी भी n ≥ k के लिए ek(X1,...,Xn) से मेल खाता है ।
- 'शक्ति योग सममित फलन' pk, किसी भी धनात्मक पूर्णांक k के लिए; pk = m(k) है, एकपदी X1k के लिए एकपदी सममित फलन यह सममित फलन। यह सममित फ़ंक्शन किसी भी n ≥ 1 के लिए शक्ति योग सममित बहुपद pk(X1,...,Xn) = X1k + ... + Xnk से मेल खाता है ।
- 'पूर्ण सजातीय सममित फलन' hk, किसी प्राकृत संख्या k के लिए; hk सभी एकपदी सममितीय फलन mα का योग है जहां α k का पूर्णांक विभाजन है। शक्ति श्रृंखला के रूप में, यह डिग्री k के सभी एकपदीयों का योग है, जो इसके नाम को प्रेरित करता है। यह सममित फलन पूर्ण सजातीय सममित बहुपद hk(X1,...,Xn) से मेल खाता है किसी भी n ≥ k के लिए।
- 'शूर फलन ' Sλ किसी भी विभाजन λ के लिए, जो शूर बहुपद sλ(X1,...,Xn) के संगत है किसी भी बड़े n के लिए एकपदी Xλ रखने के लिए पर्याप्त है।
कोई घात योग सममित फलन p0 नहीं है: चूंकि परिभाषित करना संभव है (और कुछ संदर्भों में प्राकृतिक)। n चरों में सममित बहुपद के रूप में, ये मान आकारिकी ρn के साथ संगत नहीं हैं। भेद करनेवाला सभी n के लिए सममित बहुपद देने वाली अभिव्यक्ति का और उदाहरण है, किन्तु किसी भी सममित फलन को परिभाषित नहीं करता है। प्रत्यावर्ती बहुपदों के भागफल के रूप में शूर बहुपदों को परिभाषित करने वाले भाव कुछ सीमा तक विवेचक के समान हैं, किन्तु बहुपद sλ(X1,...,Xn) अलग-अलग n के लिए संगत हो जाते हैं और इसलिए सममित फलन को परिभाषित करते हैं।
सममित बहुपदों और सममित फलन से संबंधित सिद्धांत
किसी भी सममित फलन P के लिए, n में संबंधित सममित बहुपद किसी भी प्राकृत संख्या n के लिए निर्धारक होते हैं, जिन्हें P(X1,...,Xn) द्वारा निर्दिष्ट किया जा सकता है। सममित फलन के वलय की दूसरी परिभाषा का तात्पर्य निम्नलिखित मूलभूत सिद्धांत से है।
- यदि P और Q डिग्री d के सममित फलन हैं, तो की पहचान है सममित फलन की यदि और केवल यदि किसी की पहचान है P(X1,...,Xd) = Q(X1,...,Xd) निर्धारक में सममित बहुपदों की। इस मामले में वास्तव में P(X1,...,Xn) = Q(X1,...,Xn) किसी भी संख्या n के लिए निर्धारक हैं।
ऐसा इसलिए है क्योंकि कुछ चरों के लिए शून्य को प्रतिस्थापित करके चरों की संख्या को सदैव कम किया जा सकता है और समाकारिता φn को लागू करके चरों की संख्या में वृद्धि की जा सकती है। उन समरूपताओं की परिभाषा आश्वस्त करती है कि φn(P(X1,...,Xn)) = P(X1,...,Xn+1) (और इसी प्रकार Q के लिए) जब भी n ≥ d. इस सिद्धांत के प्रभावी अनुप्रयोग के लिए न्यूटन की पहचान की व्युत्पत्ति न्यूटन की पहचान का प्रमाण देखें।
सममित फलन की वलय के गुण
पहचान
सममितीय फलनों का वलय सममित बहुपदों के बीच सर्वसमिकाओं को लिखने के लिए सुविधाजनक उपकरण है, जो कि निर्धारकों की संख्या से स्वतंत्र होते हैं: ΛR में ऐसी कोई संख्या नहीं है, फिर भी उपरोक्त सिद्धांत द्वारा ΛR में कोई पहचान है स्वचालित रूप से किसी भी संख्या में अनिश्चितताओं में R पर सममित बहुपदों के छल्ले की पहचान देता है। कुछ मौलिक पहचान हैं
जो प्रारंभिक और पूर्ण सजातीय सममित फलन के बीच समरूपता दिखाता है, इन संबंधों को पूर्ण सजातीय सममित बहुपद के अनुसार समझाया गया है।
न्यूटन की पहचान, जिसमें पूर्ण सजातीय सममित फलन के लिए संस्करण भी है।
ΛR के संरचनात्मक गुण
ΛR के महत्वपूर्ण गुण निम्नलिखित को सम्मलित कीजिए।
- विभाजनों द्वारा पैरामीट्रिज्ड एकपद सममित फलन का सेट ΛR का आधार बनता है श्रेणीबद्ध आर-मॉड्यूल (गणित) के रूप में, d के विभाजन द्वारा पैरामीट्रिज्ड डिग्री डी के सजातीय होने के कारण; शूर फलन के सेट के लिए भी यही सच है (विभाजन द्वारा पैरामीट्रिज्ड)।
- ΛR बहुपद वलय R[Y1,Y2, ...] के लिए श्रेणीबद्ध R-बीजगणित के रूप में समरूपी है, अपरिमित रूप से अनेक चरों में, जहाँ Yi सभी i > 0 के लिए डिग्री i दी गई है, समरूपता वह है जो Yi भेजता है तब i∈ ΛR प्रत्येक i के लिए।
- ΛR का इनवॉल्यूशन (गणित) ऑटोमोर्फिज्म ω है जो प्रारंभिक सममित फलन ei को बदल देता है और पूर्ण सजातीय सममित फलन hi सभी के लिए यह प्रत्येक शक्ति योग सममित फलन pi भी भेजता है pi से (−1)i−1pi, और यह Sλ को बदलाव करते हुए दूसरे के बीच शूर फलन की अनुमति देता है और Sλt जहां Λt λ का स्थानान्तरण विभाजन है।
संपत्ति 2 सममित बहुपदों के मौलिक प्रमेय का सार है। इसका तात्पर्य तुरंत कुछ अन्य गुणों से है:
- ΛR का सबवलय n चर में R पर सममित बहुपदों की वलय के लिए अधिकतम n में डिग्री के अपने तत्वों द्वारा उत्पन्न समरूप है;
- ΛR की हिल्बर्ट-पॉइनकेयर श्रृंखला है , विभाजन (संख्या सिद्धांत) पूर्णांक विभाजन का फलन उत्पन्न करना (यह संपत्ति 1 से भी अनुसरण करता है);
- प्रत्येक n > 0 के लिए, ΛR के सजातीय भाग द्वारा गठित R-मॉड्यूल डिग्री n की, डिग्री के अपने तत्वों द्वारा उत्पन्न सबवलय के साथ मॉड्यूलो एन से सख्ती से कम है, रैंक 1 का मुफ्त मॉड्यूल है, और (की छवि) en इस R-मॉड्यूल का उत्पादक है;
- सममित फलन के प्रत्येक परिवार के लिए (Fi)i>0 जिसमें Fi डिग्री i का सजातीय है और पिछले बिंदु (सभी i के लिए) के मुक्त आर-मॉड्यूल का उत्पादक देता है, R[Y1,Y2, ...] से श्रेणीबद्ध आर-अलजेब्रस का वैकल्पिक समरूपता है ऊपर के रूप में ΛR Yi भेजता है Fi के लिए; दूसरे शब्दों में, परिवार (fi)i>0 ΛR के मुक्त बहुपद उत्पादक का सेट बनाता है।
यह अंतिम बिंदु विशेष रूप से परिवार पर लागू होता है पूर्ण सजातीय सममित फलन की (hi)i>0 ।यदि R में क्षेत्र है (गणित) परिमेय संख्याओं के संबंध में, यह परिवार पर भी लागू होता है (pi)i>0 शक्ति योग सममित फलन की। यह बताता है कि इन परिवारों में से प्रत्येक के पहले n तत्व सममित बहुपदों के सेट को n चर में परिभाषित करते हैं जो सममित बहुपदों की उस वलय के मुक्त बहुपद उत्पादक हैं।
तथ्य यह है कि पूर्ण सजातीय सममित फलन ΛR के मुक्त बहुपद उत्पादक का सेट बनाते हैं पहले से ही ऑटोमोर्फिज्म के अस्तित्व को दर्शाता है ω प्राथमिक सममित फलन को पूर्ण सजातीय फलन में भेज रहा है, जैसा कि संपत्ति 3 में उल्लिखित है। तथ्य यह है कि ω ΛR का अंतर्वलन है ऊपर दिए गए संबंधों के पहले सेट द्वारा व्यक्त प्राथमिक और पूर्ण सजातीय सममित फलन के बीच समरूपता से अनुसरण करता है।
सममित फलन की वलय ΛZ पूर्णांक Z का ऍक्स्प वलय है। यह प्राकृतिक अंदाज में लैम्ब्डा-वलय भी है; वास्तव में यह एक उत्पादक में सार्वभौमिक लैम्ब्डा-वलय है।
निर्माण फलन
ΛR की पहली परिभाषा के सबवलय के रूप में सममित फलन के कई अनुक्रमों के उत्पन्न फलन को सुरुचिपूर्ण विधि से व्यक्त करने की अनुमति देता है। पहले बताए गए संबंधों के विपरीत, जो ΛR के लिए आंतरिक हैं, इन भावों में R[[X1,X2,...;t]] में संक्रियाएँ सम्मलित हैं किन्तु इसके उपसमूह ΛR''t'' के बाहर, इसलिए वे केवल तभी अर्थपूर्ण हैं जब सममित फलन को निर्धारक Xi में औपचारिक शक्ति श्रृंखला के रूप में देखा जाता है। हम इस व्याख्या पर जोर देने के लिए सममित फलन के बाद (X) लिखेंगे।
प्रारंभिक सममित फलन के लिए उत्पादक फलन है
इसी प्रकार किसी के पास पूर्ण सजातीय सममित फलन हैं
स्पष्ट तथ्य यह है कि प्रारंभिक और पूर्ण सजातीय सममित फलन के बीच समरूपता की व्याख्या करता है। शक्ति योग सममित फलन के लिए उत्पादक फलन के रूप में व्यक्त किया जा सकता है
((मैकडॉनल्ड, 1979) P(T) को Σk>0 pk(X)tk−1 के रूप में परिभाषित करता है और इसके व्यंजकों में यहाँ दिए गए कारकों के संबंध में कारक t का अभाव है। दो अंतिम व्यंजक, जिनमें जनक फलन E(t) और H(t) के औपचारिक अवकलज सम्मलित हैं, न्यूटन की सर्वसमिका और पूर्ण सजातीय सममित फलन के लिए उनके रूपों को दर्शाते हैं। इन अभिव्यक्तियों को कभी-कभी लिखा जाता है।
जिसकी मात्रा समान है, किन्तु इसके लिए आवश्यक है कि R में परिमेय संख्याएँ हों, जिससे निरंतर पद 1 के साथ घात श्रृंखला का लघुगणक (द्वारा परिभाषित किया जा सके) ।
विशेषज्ञता
होने देना सममित फलन की वलय बनें और इकाई तत्व के साथ क्रमविनिमेय बीजगणित है। बीजगणित समरूपता विशेषज्ञता कहा जाता है।[1] उदाहरण:
- कुछ वास्तविक संख्याएँ दी गई हैं और , फिर प्रतिस्थापन और विशेषज्ञता है।
- होने देना , तब प्रमुख विशेषज्ञता कहा जाता है।
यह भी देखें
- न्यूटन की पहचान
- क्वैसममित फ़ंक्शन
संदर्भ
- ↑ Stanley, Richard P.; Fomin, Sergey P. गणनात्मक कॉम्बिनेटरिक्स. Vol. 2. Cambridge University Press.
- Macdonald, I. G. Symmetric functions and Hall polynomials. Oxford Mathematical Monographs. The Clarendon Press, Oxford University Press, Oxford, 1979. viii+180 pp. ISBN 0-19-853530-9 MR553598
- Macdonald, I. G. Symmetric functions and Hall polynomials. Second edition. Oxford Mathematical Monographs. Oxford Science Publications. The Clarendon Press, Oxford University Press, New York, 1995. x+475 pp. ISBN 0-19-853489-2 MR1354144
- Stanley, Richard P. Enumerative Combinatorics, Vol. 2, Cambridge University Press, 1999. ISBN 0-521-56069-1 (hardback) ISBN 0-521-78987-7 (paperback).