त्वाचिक प्रभाव: Difference between revisions
(Created page with "{{Short description|Phenomenon of electrical conduction}} {{Redirect|Skin depth|the depth (layers) of biological/organic skin|skin}} File:Skin depth.svg|thumb|क्रॉ...") |
No edit summary |
||
Line 1: | Line 1: | ||
{{Short description|Phenomenon of electrical conduction}} | {{Short description|Phenomenon of electrical conduction}} | ||
{{Redirect|Skin depth|the depth (layers) of biological/organic skin|skin}} | {{Redirect|Skin depth|the depth (layers) of biological/organic skin|skin}} | ||
[[File:Skin depth.svg|thumb|क्रॉस सेक्शन में दिखाए गए बेलनाकार कंडक्टर में वर्तमान प्रवाह का वितरण। [[ प्रत्यावर्ती धारा ]] के लिए, वर्तमान घनत्व सतह से अंदर की ओर तेजी से घटता है। त्वचा की गहराई, δ, को उस गहराई के रूप में परिभाषित किया जाता है जहां वर्तमान घनत्व सतह पर मान का सिर्फ 1/e (लगभग 37%) है; यह | [[File:Skin depth.svg|thumb|क्रॉस सेक्शन में दिखाए गए बेलनाकार कंडक्टर में वर्तमान प्रवाह का वितरण। [[ प्रत्यावर्ती धारा |प्रत्यावर्ती धारा]] के लिए, वर्तमान घनत्व सतह से अंदर की ओर तेजी से घटता है। त्वचा की गहराई, δ, को उस गहराई के रूप में परिभाषित किया जाता है जहां वर्तमान घनत्व सतह पर मान का सिर्फ 1/e (लगभग 37%) है; यह धारा की आवृत्ति और कंडक्टर के विद्युत और चुंबकीय गुणों पर निर्भर करता है।]] | ||
[[File:Induktionskochfeld Spule.jpg|thumb|200px| [[ अनुगम कुकर ]] त्वचा के प्रभाव के कारण कॉइल के ताप को कम करने के लिए फंसे हुए कॉइल ([[ लिट्ज तार ]]) का उपयोग करते हैं। इंडक्शन कुकर में उपयोग की जाने वाली एसी फ्रीक्वेंसी मानक मेन फ्रीक्वेंसी से बहुत अधिक होती है - | [[File:Induktionskochfeld Spule.jpg|thumb|200px| [[ अनुगम कुकर | अनुगम कुकर]] त्वचा के प्रभाव के कारण कॉइल के ताप को कम करने के लिए फंसे हुए कॉइल ([[ लिट्ज तार ]]) का उपयोग करते हैं। इंडक्शन कुकर में उपयोग की जाने वाली एसी फ्रीक्वेंसी मानक मेन फ्रीक्वेंसी से बहुत अधिक होती है - सामान्यतः पर लगभग 25-50 किलोहर्ट्ज़।]]त्वचा प्रभाव प्रत्यावर्ती धारा (AC) की [[ कंडक्टर (सामग्री) |कंडक्टर (सामग्री)]] के भीतर वितरित होने की प्रवृत्ति है, जैसे कि [[ वर्तमान घनत्व |वर्तमान घनत्व]] कंडक्टर की सतह के पास सबसे बड़ा है और कंडक्टर में अधिक गहराई के साथ तेजी से घटता है। विद्युत धारा मुख्य रूप से कंडक्टर की त्वचा पर, बाहरी सतह और त्वचा की गहराई नामक स्तर के बीच बहती है। त्वचा की गहराई प्रत्यावर्ती धारा की [[ आवृत्ति |आवृत्ति]] पर निर्भर करती है; जैसे-जैसे आवृत्ति बढ़ती है, धारा का प्रवाह सतह की ओर बढ़ता है, जिसके परिणामस्वरूप त्वचा की गहराई कम होती है। त्वचा का प्रभाव कंडक्टर के प्रभावी अनुप्रस्थ काट को कम करता है और इस प्रकार इसके प्रभावी विद्युत प्रतिरोध को बढ़ाता है। प्रत्यावर्ती धारा के परिणामस्वरूप बदलते [[ चुंबकीय |चुंबकीय]] क्षेत्र से प्रेरित एड़ी धाराओं का विरोध करने के कारण त्वचा का प्रभाव होता है। तांबे में 60 [[ हेटर्स |हेटर्स]] ़ पर, त्वचा की गहराई लगभग 8.5 मिमी होती है। उच्च आवृत्तियों पर त्वचा की गहराई बहुत कम हो जाती है। | ||
विशेष रूप से बुने हुए लिट्ज़ तार का उपयोग करके त्वचा के प्रभाव के कारण बढ़े हुए एसी प्रतिरोध को कम किया जा सकता है। क्योंकि | विशेष रूप से बुने हुए लिट्ज़ तार का उपयोग करके त्वचा के प्रभाव के कारण बढ़े हुए एसी प्रतिरोध को कम किया जा सकता है। क्योंकि बड़े कंडक्टर के इंटीरियर में इतना कम धारा होता है, वजन और लागत बचाने के लिए पाइप जैसे ट्यूबलर कंडक्टर का इस्तेमाल किया जा सकता है। [[ रेडियो |रेडियो]] -आवृत्ति और [[ माइक्रोवेव |माइक्रोवेव परिपथ]], संचरण लाइन (या वेवगाइड), और एंटेना के विश्लेषण और डिजाइन में त्वचा के प्रभाव का व्यावहारिक परिणाम होता है। यह एसी [[ विद्युत शक्ति संचरण |विद्युत शक्ति संचरण]] प्रणाली में मुख्य आवृत्तियों (50–60 Hz) पर भी महत्वपूर्ण है। यह लंबी दूरी के विद्युत संचरण के लिए उच्च-वोल्टेज प्रत्यक्ष धारा को प्राथमिकता देने के कारणों में से है। | ||
गोलाकार कंडक्टर के मामले में प्रभाव को पहली बार 1883 में [[ होरेस लैम्ब ]] द्वारा | गोलाकार कंडक्टर के मामले में प्रभाव को पहली बार 1883 में [[ होरेस लैम्ब |होरेस लैम्ब]] द्वारा पेपर में वर्णित किया गया था,<ref>{{Cite journal|last=Lamb|first=Horace|date=1883-01-01|title=XIII. On electrical motions in a spherical conductor|journal=Philosophical Transactions of the Royal Society of London|volume=174|pages=519–549|doi=10.1098/rstl.1883.0013|s2cid=111283238}}</ref> और 1885 में [[ ओलिवर हीविसाइड |ओलिवर हीविसाइड]] द्वारा किसी भी आकार के कंडक्टरों के लिए सामान्यीकृत किया गया था। | ||
== कारण == | == कारण == | ||
[[File:Skineffect reason.svg|thumb|right|त्वचा प्रभाव का कारण। | [[File:Skineffect reason.svg|thumb|right|त्वचा प्रभाव का कारण। कंडक्टर के माध्यम से प्रवाहित धारा I चुंबकीय क्षेत्र H को प्रेरित करती है। यदि वर्तमान बढ़ता है, जैसा कि इस आंकड़े में है, तो H में परिणामी वृद्धि परिसंचारी एड़ी धाराओं को प्रेरित करती है I<sub>W</sub> जो केंद्र में वर्तमान प्रवाह को आंशिक रूप से रद्द करते हैं और इसे त्वचा के पास ठोस करते हैं।]]कंडक्टर, सामान्यतः पर तारों के रूप में, उस कंडक्टर के माध्यम से प्रवाहित वैकल्पिक धारा का उपयोग करके विद्युत ऊर्जा या संकेतों को प्रसारित करने के लिए उपयोग किया जा सकता है। विद्युत ऊर्जा के स्रोत के कारण वर्तमान, सामान्यतः पर [[ इलेक्ट्रॉन |इलेक्ट्रॉन]] को बनाने वाले आवेश वाहक विद्युत क्षेत्र द्वारा संचालित होते हैं। धारा कंडक्टर में और उसके आसपास चुंबकीय क्षेत्र उत्पन्न करता है। जब किसी चालक में धारा की तीव्रता बदलती है तो चुंबकीय क्षेत्र भी बदलता है। चुंबकीय क्षेत्र में परिवर्तन, बदले में, विद्युत क्षेत्र बनाता है जो वर्तमान तीव्रता में परिवर्तन का विरोध करता है। इस विरोधी विद्युत क्षेत्र को "[[ काउंटर-इलेक्ट्रोमोटिव बल ]]" (बैक ईएमएफ) कहा जाता है। पिछला EMF कंडक्टर के केंद्र में सबसे ठोस होता है, और चालक इलेक्ट्रॉनों को कंडक्टर के बाहर की ओर उत्तेजित करना है, जैसा कि दाईं ओर आरेख में दिखाया गया है।<ref name="Standard Handbook for Electrical Engineers (14th ed)) p. 2-50">"These emf's are greater at the center than at the circumference, so the potential difference tends to establish currents that oppose the current at the center and assist it at the circumference" {{cite book| last1=Fink |first1= Donald G. | last2= Beaty | first2= H. Wayne|year= 2000 |title=Standard Handbook for Electrical Engineers |edition=14th |publisher= McGraw-Hill |isbn= 978-0-07-022005-8 | pages=2–50}}</ref><ref name="Black Magic">"To understand skin effect, you must first understand how eddy currents operate..." {{cite book| last1=Johnson |first1= Howard | last2= Graham | first2= Martin|year= 2003 |title=High-Speed Signal propagation Advanced Black Magic |edition=3rd |publisher= Prentice Hall |isbn= 978-0-13-084408-8 | pages=58–78}}</ref> | ||
चालन बल के बावजूद, कंडक्टर की सतह पर वर्तमान घनत्व सबसे बड़ा पाया जाता है, कंडक्टर में कम परिमाण के साथ। वर्तमान घनत्व में गिरावट को त्वचा प्रभाव के रूप में जाना जाता है और त्वचा की गहराई उस गहराई का | चालन बल के बावजूद, कंडक्टर की सतह पर वर्तमान घनत्व सबसे बड़ा पाया जाता है, कंडक्टर में कम परिमाण के साथ। वर्तमान घनत्व में गिरावट को त्वचा प्रभाव के रूप में जाना जाता है और त्वचा की गहराई उस गहराई का माप है जिस पर वर्तमान घनत्व E (गणितीय स्थिरांक) पर गिरता है। सतह के पास इसके मूल्य का 1/e। | ||
98% से अधिक धारा सतह से त्वचा की गहराई से 4 गुना परत के भीतर प्रवाहित होगी। यह व्यवहार दिष्टधारा से भिन्न है जो | 98% से अधिक धारा सतह से त्वचा की गहराई से 4 गुना परत के भीतर प्रवाहित होगी। यह व्यवहार दिष्टधारा से भिन्न है जो सामान्यतः पर तार के अनुप्रस्थ काट पर समान रूप से वितरित किया जाएगा। | ||
विद्युत चुम्बकीय प्रेरण के नियम के अनुसार | विद्युत चुम्बकीय प्रेरण के नियम के अनुसार वैकल्पिक चुंबकीय क्षेत्र के कारण कंडक्टर में प्रत्यावर्ती धारा भी प्रेरित हो सकती है। कंडक्टर पर [[ विद्युत चुम्बकीय तरंग |विद्युत चुम्बकीय तरंग]] इसलिए सामान्यतः इस तरह के वर्तमान का उत्पादन करती है; यह धातुओं से विद्युत चुम्बकीय तरंगों के प्रतिबिंब की व्याख्या करता है। यद्यपि शब्द त्वचा प्रभाव अधिकांशतः विद्युत धाराओं के संचरण से जुड़े अनुप्रयोगों से जुड़ा होता है, त्वचा की गहराई भी बिजली और चुंबकीय क्षेत्रों के घातीय क्षय के साथ-साथ प्रेरित धाराओं की घनत्व का वर्णन करती है, जब विमान लहर टकराती है सामान्य घटना पर उस पर। | ||
== सूत्र == | == सूत्र == | ||
एसी वर्तमान घनत्व {{mvar|J}} सतह पर इसके मूल्य से | एसी वर्तमान घनत्व {{mvar|J}} सतह पर इसके मूल्य से कंडक्टर [[ घातीय क्षय |घातीय क्षय]] में {{mvar|J}}{{sub|S}} | ||
गहराई के अनुसार {{mvar|d}} सतह से, इस प्रकार:<ref name="Hayt_5">{{Citation |last= Hayt |first= William H. |year= 1989 |title= Engineering Electromagnetics |edition= 5th |publisher= McGraw-Hill |isbn= 978-0070274068 |url= https://archive.org/details/engineeringelect5thhayt }}</रेफरी>{{rp|362}} | गहराई के अनुसार {{mvar|d}} सतह से, इस प्रकार:<ref name="Hayt_5">{{Citation |last= Hayt |first= William H. |year= 1989 |title= Engineering Electromagnetics |edition= 5th |publisher= McGraw-Hill |isbn= 978-0070274068 |url= https://archive.org/details/engineeringelect5thhayt }}</रेफरी>{{rp|362}} | ||
: <math>J=J_\mathrm{S} \,e^{-{(1+j)d/\delta }}</math> | :<math>J=J_\mathrm{S} \,e^{-{(1+j)d/\delta }}</math> | ||
कहाँ पे <math>\delta</math> त्वचा की गहराई कहा जाता है। इस प्रकार त्वचा की गहराई को कंडक्टर की सतह के नीचे की गहराई के रूप में परिभाषित किया जाता है जिस पर वर्तमान घनत्व 1/e (गणितीय स्थिरांक) (लगभग 0.37) तक गिर गया है। {{mvar|J}}<sub>S</sub>. प्रतिपादक का काल्पनिक भाग इंगित करता है कि वर्तमान घनत्व का चरण प्रवेश की प्रत्येक त्वचा की गहराई के लिए [[ चरण विलंब ]] 1 रेडियन है। कंडक्टर में एक पूर्ण [[ तरंग दैर्ध्य ]] की आवश्यकता होती है 2{{mvar|π}} त्वचा की गहराई, जिस बिंदु पर वर्तमान घनत्व ई के लिए क्षीण हो जाता है<sup>−2{{mvar|π}}</sup> (1.87×{{10^|−3}}, या -54.6 dB) इसके सतही मान का। कंडक्टर में तरंग दैर्ध्य निर्वात में तरंग दैर्ध्य की तुलना में बहुत कम है, या समतुल्य, कंडक्टर में तरंग # चरण वेग और समूह वेग निर्वात में प्रकाश की गति से बहुत धीमा है। उदाहरण के लिए, 1 मेगाहर्ट्ज रेडियो तरंग का निर्वात में तरंगदैर्घ्य होता है {{mvar|λ}}{{sub|o}} लगभग 300 मीटर, जबकि तांबे में, तरंग दैर्ध्य केवल लगभग 500 मीटर/सेकेंड के चरण वेग के साथ लगभग 0.5 मिमी तक कम हो जाता है। स्नेल के नियम और कंडक्टर में इस बहुत छोटे चरण के वेग के परिणामस्वरूप, कंडक्टर में प्रवेश करने वाली कोई भी लहर, चराई की घटना पर भी, कंडक्टर की सतह के लंबवत दिशा में अनिवार्य रूप से अपवर्तित होती है। | कहाँ पे <math>\delta</math> त्वचा की गहराई कहा जाता है। इस प्रकार त्वचा की गहराई को कंडक्टर की सतह के नीचे की गहराई के रूप में परिभाषित किया जाता है जिस पर वर्तमान घनत्व 1/e (गणितीय स्थिरांक) (लगभग 0.37) तक गिर गया है। {{mvar|J}}<sub>S</sub>. प्रतिपादक का काल्पनिक भाग इंगित करता है कि वर्तमान घनत्व का चरण प्रवेश की प्रत्येक त्वचा की गहराई के लिए [[ चरण विलंब ]] 1 रेडियन है। कंडक्टर में एक पूर्ण [[ तरंग दैर्ध्य ]] की आवश्यकता होती है 2{{mvar|π}} त्वचा की गहराई, जिस बिंदु पर वर्तमान घनत्व ई के लिए क्षीण हो जाता है<sup>−2{{mvar|π}}</sup> (1.87×{{10^|−3}}, या -54.6 dB) इसके सतही मान का। कंडक्टर में तरंग दैर्ध्य निर्वात में तरंग दैर्ध्य की तुलना में बहुत कम है, या समतुल्य, कंडक्टर में तरंग # चरण वेग और समूह वेग निर्वात में प्रकाश की गति से बहुत धीमा है। उदाहरण के लिए, 1 मेगाहर्ट्ज रेडियो तरंग का निर्वात में तरंगदैर्घ्य होता है {{mvar|λ}}{{sub|o}} लगभग 300 मीटर, जबकि तांबे में, तरंग दैर्ध्य केवल लगभग 500 मीटर/सेकेंड के चरण वेग के साथ लगभग 0.5 मिमी तक कम हो जाता है। स्नेल के नियम और कंडक्टर में इस बहुत छोटे चरण के वेग के परिणामस्वरूप, कंडक्टर में प्रवेश करने वाली कोई भी लहर, चराई की घटना पर भी, कंडक्टर की सतह के लंबवत दिशा में अनिवार्य रूप से अपवर्तित होती है। | ||
ढांकता हुआ या चुंबकीय नुकसान नहीं होने पर त्वचा की गहराई के लिए सामान्य सूत्र है:<ref name="VanderVorst41">{{Harvtxt|Vander Vorst|Rosen|Kotsuka|2006|pg=41}}</ref><ref name="Jordan">The formula as shown is algebraically equivalent to the formula found on page 130 {{Harvtxt|Jordan|1968|p=130}}</ref> | ढांकता हुआ या चुंबकीय नुकसान नहीं होने पर त्वचा की गहराई के लिए सामान्य सूत्र है:<nowiki><ref name="VanderVorst41"></nowiki>{{Harvtxt|Vander Vorst|Rosen|Kotsuka|2006|pg=41}}</ref><ref name="Jordan">The formula as shown is algebraically equivalent to the formula found on page 130 {{Harvtxt|Jordan|1968|p=130}}</ref> | ||
: <math>\delta= \sqrt{ \frac{\, 2\rho \,}{\omega\mu } \;} | : <math>\delta= \sqrt{ \frac{\, 2\rho \,}{\omega\mu } \;} | ||
\; \sqrt{\, \sqrt{1 + \left({\rho\omega\varepsilon}\right)^2 \;} | \; \sqrt{\, \sqrt{1 + \left({\rho\omega\varepsilon}\right)^2 \;} | ||
+ \rho\omega\varepsilon \;} ~</math> | + \rho\omega\varepsilon \;} ~</math> | ||
कहाँ पे | कहाँ पे | ||
: <math> \rho </math> = चालक की [[ प्रतिरोधकता ]] | : <math> \rho </math> = चालक की [[ प्रतिरोधकता |प्रतिरोधकता]] | ||
: <math> \omega </math> = वर्तमान की [[ कोणीय आवृत्ति ]] = <math>2\pi f ~,</math> कहाँ पे <math>f</math> आवृत्ति है। | : <math> \omega </math> = वर्तमान की [[ कोणीय आवृत्ति |कोणीय आवृत्ति]] = <math>2\pi f ~,</math> कहाँ पे <math>f</math> आवृत्ति है। | ||
: <math> \mu </math> = कंडक्टर की [[ पारगम्यता (विद्युत चुंबकत्व) ]], <math> \mu_r \, \mu_0 </math> | : <math> \mu </math> = कंडक्टर की [[ पारगम्यता (विद्युत चुंबकत्व) |पारगम्यता (विद्युत चुंबकत्व)]] , <math> \mu_r \, \mu_0 </math> | ||
: <math> \mu_r </math> = कंडक्टर की सापेक्ष चुंबकीय पारगम्यता | : <math> \mu_r </math> = कंडक्टर की सापेक्ष चुंबकीय पारगम्यता | ||
: <math> \mu_0 </math> = [[ मुक्त स्थान की पारगम्यता ]] | : <math> \mu_0 </math> = [[ मुक्त स्थान की पारगम्यता |मुक्त स्थान की पारगम्यता]] | ||
: <math> \varepsilon </math> = कंडक्टर की पारगम्यता, <math> \varepsilon_r \, \varepsilon_0 </math> | : <math> \varepsilon </math> = कंडक्टर की पारगम्यता, <math> \varepsilon_r \, \varepsilon_0 </math> | ||
: <math> \varepsilon_r </math> = कंडक्टर की सापेक्ष पारगम्यता | : <math> \varepsilon_r </math> = कंडक्टर की सापेक्ष पारगम्यता | ||
: <math> \varepsilon_0 </math> = मुक्त स्थान की पारगम्यता | : <math> \varepsilon_0 </math> = मुक्त स्थान की पारगम्यता | ||
बहुत कम आवृत्तियों पर <math>1/(\rho \epsilon)</math> बड़े रेडिकल के अंदर की मात्रा एकता के करीब है और सूत्र | बहुत कम आवृत्तियों पर <math>1/(\rho \epsilon)</math> बड़े रेडिकल के अंदर की मात्रा एकता के करीब है और सूत्र सामान्यतः पर इस प्रकार दिया जाता है: | ||
: <math>\delta=\sqrt{\frac{\, 2\rho \,}{\omega\mu} \,} ~.</math> | : <math>\delta=\sqrt{\frac{\, 2\rho \,}{\omega\mu} \,} ~.</math> | ||
यह सूत्र | यह सूत्र ठोस परमाणु या आणविक अनुनादों (जहां <math>\epsilon</math> बड़ा काल्पनिक भाग होगा) और आवृत्तियों पर जो सामग्री की [[ प्लाज्मा आवृत्ति |प्लाज्मा आवृत्ति]] (सामग्री में मुक्त इलेक्ट्रॉनों के घनत्व पर निर्भर) और चालन इलेक्ट्रॉनों को शामिल करने वाले टकरावों के बीच औसत समय के पारस्परिक दोनों से बहुत नीचे हैं। धातुओं जैसे अच्छे कंडक्टरों में उन सभी स्थितियों को कम से कम माइक्रोवेव आवृत्तियों तक सुनिश्चित किया जाता है, जो इस सूत्र की वैधता को सही ठहराते हैं।<ref group=note>Note that the above equation for the current density inside the conductor as a function of depth applies to cases where the usual approximation for the skin depth holds. In the extreme cases where it doesn't, the exponential decrease with respect to the skin depth still applies to the ''magnitude'' of the induced currents, however the imaginary part of the exponent in that equation, and thus the phase velocity inside the material, are altered with respect to that equation.</ref> जैसेहरण के लिए, तांबे के मामले में, यह बहुत कम आवृत्तियों के लिए सही होगा {{10^|18}}हर्ट्ज। | ||
चूँकि, बहुत खराब कंडक्टरों में, पर्याप्त उच्च आवृत्तियों पर,बड़े रेडिकल के अनुसार कारक बढ़ जाता है। की तुलना में बहुत अधिक आवृत्तियों पर <math>1/(\rho \epsilon)</math> यह दिखाया जा सकता है कि त्वचा की गहराई, घटने के बजाय, वास्तविक मूल्य तक पहुँचती है: | |||
बड़े रेडिकल के | |||
: <math>\delta \approx {2 \rho} \sqrt{\frac{\, \varepsilon \,}{ \mu }\,} ~.</math> | : <math>\delta \approx {2 \rho} \sqrt{\frac{\, \varepsilon \,}{ \mu }\,} ~.</math> | ||
सामान्य सूत्र से यह विचलन | सामान्य सूत्र से यह विचलन मात्र कम चालकता की सामग्री के लिए और आवृत्तियों पर लागू होता है जहां वैक्यूम तरंग दैर्ध्य त्वचा की गहराई से बहुत बड़ा नहीं होता है। जैसेहरण के लिए, बल्क सिलिकॉन (अनडोप्ड) खराब कंडक्टर है और इसकी त्वचा की गहराई 100 kHz पर लगभग 40 मीटर है ({{mvar|λ}} = 3 किमी)। चूँकि, मेगाहर्ट्ज़ रेंज में आवृत्ति अच्छी तरह से बढ़ जाती है, इसकी त्वचा की गहराई कभी भी 11 मीटर के वास्तविक मान से कम नहीं होती है। निष्कर्ष यह है कि खराब ठोस चालकों में, जैसे अनडोप्ड सिलिकॉन में, अधिकांश व्यावहारिक स्थितियों में त्वचा के प्रभाव को ध्यान में रखने की आवश्यकता नहीं होती है: किसी भी धारा को सामग्री के अनुप्रस्थ काट में समान रूप से वितरित किया जाता है, चाहे इसकी आवृत्ति कुछ भी हो। | ||
'''गोल कंडक्टर में वर्तमान घनत्व''' | |||
जब तार की त्रिज्या के संबंध में त्वचा की गहराई कम नहीं होती है, तो बेसेल कार्यों के संदर्भ में वर्तमान घनत्व का वर्णन किया जा सकता है। अक्ष से दूरी के कार्य के रूप में अन्य क्षेत्रों के प्रभाव से दूर गोल तार के अंदर वर्तमान घनत्व द्वारा दिया गया है:<ref name="Walter_Weeks">{{Citation |last=Weeks |first= Walter L. |year= 1981 |title= Transmission and Distribution of Electrical Energy |publisher= Harper & Row |isbn= 978-0060469825 }}</रेफरी>{{rp|38}} | जब तार की त्रिज्या के संबंध में त्वचा की गहराई कम नहीं होती है, तो बेसेल कार्यों के संदर्भ में वर्तमान घनत्व का वर्णन किया जा सकता है। अक्ष से दूरी के कार्य के रूप में अन्य क्षेत्रों के प्रभाव से दूर गोल तार के अंदर वर्तमान घनत्व द्वारा दिया गया है:<ref name="Walter_Weeks">{{Citation |last=Weeks |first= Walter L. |year= 1981 |title= Transmission and Distribution of Electrical Energy |publisher= Harper & Row |isbn= 978-0060469825 }}</रेफरी>{{rp|38}} | ||
Line 53: | Line 52: | ||
कहाँ पे | कहाँ पे | ||
: <math>\quad \omega </math> = धारा की कोणीय आवृत्ति = 2π × आवृत्ति | :<math>\quad \omega </math> = धारा की कोणीय आवृत्ति = 2π × आवृत्ति | ||
: <math>\quad r = </math> तार की धुरी से दूरी | :<math>\quad r = </math> तार की धुरी से दूरी | ||
: <math>\quad R = </math> तार की त्रिज्या | :<math>\quad R = </math> तार की त्रिज्या | ||
: <math>\quad \mathbf{J}_r = </math> तार की धुरी से दूरी, आर पर वर्तमान घनत्व फेजर | :<math>\quad \mathbf{J}_r = </math> तार की धुरी से दूरी, आर पर वर्तमान घनत्व फेजर | ||
: <math>\quad \mathbf{J}_R = </math> तार की सतह पर वर्तमान घनत्व चरण | :<math>\quad \mathbf{J}_R = </math> तार की सतह पर वर्तमान घनत्व चरण | ||
: <math>\quad \mathbf{I} = </math> कुल वर्तमान चरण | :<math>\quad \mathbf{I} = </math> कुल वर्तमान चरण | ||
: <math>\quad J_0 = </math> प्रथम प्रकार का बेसेल फलन, कोटि 0 | :<math>\quad J_0 = </math> प्रथम प्रकार का बेसेल फलन, कोटि 0 | ||
: <math>\quad J_1 = </math> प्रथम प्रकार का बेसेल फलन, क्रम 1 | :<math>\quad J_1 = </math> प्रथम प्रकार का बेसेल फलन, क्रम 1 | ||
: <math>\quad k = \sqrt{ \frac { -j \omega \mu } { \rho } } = \frac { 1-j } { \delta } </math> कंडक्टर में [[ तरंग संख्या ]] | :<math>\quad k = \sqrt{ \frac { -j \omega \mu } { \rho } } = \frac { 1-j } { \delta } </math> कंडक्टर में [[ तरंग संख्या ]] | ||
: <math>\quad \delta = \sqrt{ \frac { 2 \rho } { \omega \mu } } </math> त्वचा की गहराई भी कहा जाता है। | :<math>\quad \delta = \sqrt{ \frac { 2 \rho } { \omega \mu } } </math> त्वचा की गहराई भी कहा जाता है। | ||
: <math>\quad \rho </math> = चालक की प्रतिरोधकता | :<math>\quad \rho </math> = चालक की प्रतिरोधकता | ||
: <math>\quad \mu_r </math> = कंडक्टर की सापेक्ष चुंबकीय पारगम्यता | :<math>\quad \mu_r </math> = कंडक्टर की सापेक्ष चुंबकीय पारगम्यता | ||
: <math>\quad \mu_0 </math> = मुक्त स्थान की पारगम्यता = 4π x 10<sup>−7</sup> एच/एम | :<math>\quad \mu_0 </math> = मुक्त स्थान की पारगम्यता = 4π x 10<sup>−7</sup> एच/एम | ||
: <math>\quad \mu </math> = <math> \mu_r </math><math> \mu_0 </math> | :<math>\quad \mu </math> = <math> \mu_r </math><math> \mu_0 </math> | ||
तब से <math> k </math> जटिल है, बेसेल कार्य भी जटिल हैं। वर्तमान घनत्व का आयाम और चरण गहराई के साथ बदलता रहता है। | तब से <math> k </math> जटिल है, बेसेल कार्य भी जटिल हैं। वर्तमान घनत्व का आयाम और चरण गहराई के साथ बदलता रहता है। | ||
== गोल तार का प्रतिबाधा == | ==गोल तार का प्रतिबाधा== | ||
गोल तार के एक खंड की प्रति यूनिट लंबाई आंतरिक [[ विद्युत प्रतिबाधा ]] द्वारा दी गई है: | गोल तार के एक खंड की प्रति यूनिट लंबाई आंतरिक [[ विद्युत प्रतिबाधा ]] द्वारा दी गई है:{{rp|40}} | ||
: <math> \mathbf{Z}_{int} = \frac { k \rho } { 2 \pi R } \frac { J_0(k R) } { J_1(k R) }</math>. | :<math> \mathbf{Z}_{int} = \frac { k \rho } { 2 \pi R } \frac { J_0(k R) } { J_1(k R) }</math>. | ||
यह प्रतिबाधा एक [[ जटिल संख्या ]] मात्रा है जो तार के आंतरिक स्व-[[ अधिष्ठापन ]], प्रति इकाई लंबाई के कारण [[ विद्युत प्रतिक्रिया ]] (काल्पनिक) के साथ श्रृंखला में एक प्रतिरोध (वास्तविक) के अनुरूप है। | यह प्रतिबाधा एक [[ जटिल संख्या ]] मात्रा है जो तार के आंतरिक स्व-[[ अधिष्ठापन ]], प्रति इकाई लंबाई के कारण [[ विद्युत प्रतिक्रिया ]] (काल्पनिक) के साथ श्रृंखला में एक प्रतिरोध (वास्तविक) के अनुरूप है। | ||
=== अधिष्ठापन === | ===अधिष्ठापन=== | ||
एक तार के अधिष्ठापन के एक हिस्से को तार के भीतर ही चुंबकीय क्षेत्र के लिए जिम्मेदार ठहराया जा सकता है जिसे आंतरिक अधिष्ठापन कहा जाता है; यह उपरोक्त सूत्र द्वारा दिए गए आगमनात्मक प्रतिघात (प्रतिबाधा का काल्पनिक भाग) के लिए खाता है। ज्यादातर मामलों में यह एक तार के अधिष्ठापन का एक छोटा सा हिस्सा होता है जिसमें तार में करंट द्वारा उत्पादित तार के बाहर चुंबकीय क्षेत्र से विद्युत चुम्बकीय प्रेरण का प्रभाव शामिल होता है। उस बाहरी अधिष्ठापन के विपरीत, आंतरिक अधिष्ठापन त्वचा के प्रभाव से कम हो जाता है, यानी आवृत्तियों पर जहां कंडक्टर के आकार की तुलना में त्वचा की गहराई अब बड़ी नहीं होती है।<ref name="Hayt303">{{Harvtxt|Hayt|1981|pp=303}}</ref> | एक तार के अधिष्ठापन के एक हिस्से को तार के भीतर ही चुंबकीय क्षेत्र के लिए जिम्मेदार ठहराया जा सकता है जिसे आंतरिक अधिष्ठापन कहा जाता है; यह उपरोक्त सूत्र द्वारा दिए गए आगमनात्मक प्रतिघात (प्रतिबाधा का काल्पनिक भाग) के लिए खाता है। ज्यादातर मामलों में यह एक तार के अधिष्ठापन का एक छोटा सा हिस्सा होता है जिसमें तार में करंट द्वारा उत्पादित तार के बाहर चुंबकीय क्षेत्र से विद्युत चुम्बकीय प्रेरण का प्रभाव शामिल होता है। उस बाहरी अधिष्ठापन के विपरीत, आंतरिक अधिष्ठापन त्वचा के प्रभाव से कम हो जाता है, यानी आवृत्तियों पर जहां कंडक्टर के आकार की तुलना में त्वचा की गहराई अब बड़ी नहीं होती है।<nowiki><ref name="Hayt303"></nowiki>{{Harvtxt|Hayt|1981|pp=303}}</ref> अनुगम का यह छोटा घटक के मूल्य तक पहुंचता है <math> \frac { \mu } { 8 \pi } </math> (50 nH/m गैर-चुंबकीय तार के लिए) कम आवृत्तियों पर, चाहे तार की त्रिज्या कुछ भी हो। बढ़ती आवृत्ति के साथ इसकी कमी, जैसा कि तार की त्रिज्या के लिए त्वचा की गहराई का अनुपात लगभग 1 से नीचे आता है, साथ के ग्राफ में प्लॉट किया जाता है, और टेलीफोन केबल की विशेषताओं में बढ़ती आवृत्ति के साथ टेलीफोन केबल अनुगम में कमी के लिए जिम्मेदार है। | ||
[[File:Wire Internal Inductance.png|thumb|300px|left|एक गोल तार के | [[File:Wire Internal Inductance.png|thumb|300px|left|एक गोल तार के अनुगम का आंतरिक घटक बनाम त्वचा की गहराई से त्रिज्या का अनुपात। सेल्फ इंडक्शन का वह घटक μ / 8π से कम हो जाता है क्योंकि त्वचा की गहराई छोटी हो जाती है (जैसे-जैसे आवृत्ति बढ़ती है)।]] | ||
[[File:Wire AC Resistance vs skin depth.png|thumb|300px|एक गोल तार के डीसी प्रतिरोध के अनुपात एसी प्रतिरोध बनाम त्वचा की गहराई के तार के त्रिज्या के अनुपात की तुलना में। चूंकि त्वचा की गहराई त्रिज्या के सापेक्ष छोटी हो जाती है, एसी से डीसी प्रतिरोध का अनुपात त्वचा की गहराई के त्रिज्या के अनुपात के आधे हिस्से तक पहुंच जाता है।]] {{clear}} | [[File:Wire AC Resistance vs skin depth.png|thumb|300px|एक गोल तार के डीसी प्रतिरोध के अनुपात एसी प्रतिरोध बनाम त्वचा की गहराई के तार के त्रिज्या के अनुपात की तुलना में। चूंकि त्वचा की गहराई त्रिज्या के सापेक्ष छोटी हो जाती है, एसी से डीसी प्रतिरोध का अनुपात त्वचा की गहराई के त्रिज्या के अनुपात के आधे हिस्से तक पहुंच जाता है।]] {{clear}} | ||
=== प्रतिरोध === | === प्रतिरोध === | ||
एकल तार की प्रतिबाधा पर त्वचा के प्रभाव का सबसे महत्वपूर्ण प्रभाव, | एकल तार की प्रतिबाधा पर त्वचा के प्रभाव का सबसे महत्वपूर्ण प्रभाव, चूँकि, तार के प्रतिरोध में वृद्धि और परिणामस्वरूप तांबे की हानि है। बड़े कंडक्टर की सतह के पास सीमित वर्तमान के कारण प्रभावी प्रतिरोध को हल किया जा सकता है जैसे कि धारा मोटाई की परत के माध्यम से समान रूप से प्रवाहित होती है {{mvar|δ}} उस सामग्री की डीसी प्रतिरोधकता के आधार पर प्रभावी अनुप्रस्थ काटल क्षेत्र लगभग बराबर है {{mvar|δ}} कंडक्टर की परिधि का गुना। इस प्रकार लंबा बेलनाकार कंडक्टर जैसे तार, जिसका व्यास होता है {{mvar|D}} की तुलना में बड़ा {{mvar|δ}}, दीवार की मोटाई के साथ लगभग खोखले ट्यूब का प्रतिरोध होता है {{mvar|δ}} डायरेक्ट धारा ले जाना। लंबाई के तार का एसी प्रतिरोध {{mvar|ℓ}} और प्रतिरोधकता <math>\rho</math> है: | ||
इस प्रकार | |||
: <math>R\approx | : <math>R\approx | ||
Line 94: | Line 92: | ||
उपरोक्त अंतिम सन्निकटन मानता है <math>D \gg \delta</math>. | उपरोक्त अंतिम सन्निकटन मानता है <math>D \gg \delta</math>. | ||
व्यास के लिए | व्यास के लिए सुविधाजनक सूत्र (फ्रेडरिक टरमन|एफ.ई. टरमन को जिम्मेदार ठहराया गया)। {{mvar|D}}{{sub|W}} वृत्ताकार अनुप्रस्थ काट के तार का जिसका प्रतिरोध आवृत्ति पर 10% बढ़ जाएगा {{mvar|f}} है:<ref>{{harvnb|Terman|1943|p=??}}</ref> | ||
: <math>D_\mathrm{W} = {\frac{200~\mathrm{mm}}{\sqrt{f/\mathrm{Hz}}}}</math> | : <math>D_\mathrm{W} = {\frac{200~\mathrm{mm}}{\sqrt{f/\mathrm{Hz}}}}</math> | ||
एसी प्रतिरोध में वृद्धि के लिए यह सूत्र | एसी प्रतिरोध में वृद्धि के लिए यह सूत्र मात्र पृथक तार के लिए ठीक है। आस-पास के तारों के लिए, जैसे विद्युत केबल या कॉइल में, एसी प्रतिरोध [[ निकटता प्रभाव (विद्युत चुंबकत्व) |निकटता प्रभाव (विद्युत चुंबकत्व)]] से भी प्रभावित होता है, जिससे एसी प्रतिरोध में अतिरिक्त वृद्धि हो सकती है। | ||
== त्वचा की गहराई पर भौतिक प्रभाव == | == त्वचा की गहराई पर भौतिक प्रभाव == | ||
एक अच्छे कंडक्टर में, त्वचा की गहराई प्रतिरोधकता के वर्गमूल के समानुपाती होती है। इसका मतलब यह है कि | एक अच्छे कंडक्टर में, त्वचा की गहराई प्रतिरोधकता के वर्गमूल के समानुपाती होती है। इसका मतलब यह है कि उच्चतम संवाहकों की त्वचा की गहराई कम होती है। कम त्वचा की गहराई के साथ भी उच्चतम कंडक्टर का समग्र प्रतिरोध कम रहता है। चूँकि, उच्च प्रतिरोधकता वाले कंडक्टर की तुलना में उच्चतम कंडक्टर अपने एसी और डीसी प्रतिरोध के बीच उच्च अनुपात दिखाएगा। जैसे उदाहरण के लिए, 60 हर्ट्ज पर, [[ अमेरिकी वायर गेज़ |अमेरिकी वायर गेज़]] (1000 वर्ग मिलीमीटर) तांबे के कंडक्टर में डीसी की तुलना में 23% अधिक प्रतिरोध होता है। एल्युमीनियम में समान आकार के कंडक्टर का 60 हर्ट्ज एसी के साथ डीसी की तुलना में मात्र 10% अधिक प्रतिरोध होता है।<ref>{{citation |editor-first=Donald G. |editor-last=Fink |editor-first2=H. Wayne |editor-last2=Beatty |title=Standard Handbook for Electrical Engineers |edition=11th |publisher=McGraw Hill |year=1978 |page=Table 18–21 }}</ref>कंडक्टर की पारगम्यता (विद्युत चुंबकत्व) के व्युत्क्रम वर्गमूल के रूप में त्वचा की गहराई भी भिन्न होती है। लोहे के मामले में इसकी चालकता तांबे की तुलना में लगभग 1/7 है। चूँकि [[ लौह-चुंबकीय |लौह-चुंबकीय]] होने के कारण इसकी पारगम्यता लगभग 10,000 गुना अधिक है। यह लोहे के लिए त्वचा की गहराई को तांबे के लगभग 1/38, 60 Hz पर लगभग 220 [[ माइक्रोमीटर |माइक्रोमीटर]] तक कम कर देता है। लोहे के तार इस प्रकार एसी पावर लाइनों के लिए बेकार हैं (एल्यूमीनियम जैसे [[ गैर चुंबकीय |गैर चुंबकीय]] कंडक्टर के लिए कोर के रूप में कार्य करके यांत्रिक शक्ति को जोड़ने के अलावा)। त्वचा के प्रभाव से बिजली ट्रांसफार्मर में [[ फाड़ना |फाड़ना]] की प्रभावी मोटाई भी कम हो जाती है, जिससे उनका हानि बढ़ जाता है। | ||
कंडक्टर की पारगम्यता (विद्युत चुंबकत्व) के व्युत्क्रम वर्गमूल के रूप में त्वचा की गहराई भी भिन्न होती है। लोहे के मामले में इसकी चालकता तांबे की तुलना में लगभग 1/7 है। | |||
लोहे की छड़ें | लोहे की छड़ें डायरेक्ट-धारा (डीसी) [[ वेल्डिंग |वेल्डिंग]] के लिए अच्छी तरह से काम करती हैं लेकिन 60 हर्ट्ज से बहुत अधिक आवृत्तियों पर उनका उपयोग करना असंभव है। कुछ किलोहर्ट्ज़ पर, वेल्डिंग रॉड लाल गर्म चमकेगी क्योंकि [[ चाप वेल्डिंग |चाप वेल्डिंग]] के लिए अपेक्षाकृत कम शक्ति शेष होने के साथ ही त्वचा के प्रभाव से उत्पन्न बहुत अधिक एसी प्रतिरोध के माध्यम से धारा प्रवाहित होता है। उच्च-आवृत्ति वेल्डिंग के लिए मात्र गैर-चुंबकीय छड़ का उपयोग किया जा सकता है। | ||
1 मेगाहर्ट्ज़ पर गीली मिट्टी में त्वचा के प्रभाव की गहराई लगभग 5.0 मीटर होती है; समुद्री जल में यह लगभग 0.25 मीटर है।<ref>{{harvnb|Popovic|Popovic|1999|p=385}}</ref> | 1 मेगाहर्ट्ज़ पर गीली मिट्टी में त्वचा के प्रभाव की गहराई लगभग 5.0 मीटर होती है; समुद्री जल में यह लगभग 0.25 मीटर है।<ref>{{harvnb|Popovic|Popovic|1999|p=385}}</ref> | ||
== शमन == | == शमन == | ||
एक प्रकार की केबल जिसे लिट्ज़ वायर कहा जाता है ([[ जर्मन भाषा ]] लिट्जेंड्रहट, ब्रेडेड वायर से) कुछ किलोहर्ट्ज़ से लगभग | एक प्रकार की केबल जिसे लिट्ज़ वायर कहा जाता है ([[ जर्मन भाषा | जर्मन भाषा]] लिट्जेंड्रहट, ब्रेडेड वायर से) कुछ किलोहर्ट्ज़ से लगभग मेगाहर्ट्ज़ की आवृत्तियों के लिए त्वचा के प्रभाव को कम करने के लिए उपयोग किया जाता है। इसमें सावधानी से डिज़ाइन किए गए पैटर्न में साथ बुने हुए कई इंसुलेटेड तार होते हैं, ताकि समग्र चुंबकीय क्षेत्र सभी तारों पर समान रूप से कार्य करे और कुल धारा को उनके बीच समान रूप से वितरित करने का कारण बने। त्वचा के प्रभाव से प्रत्येक पतली किस्में पर थोड़ा प्रभाव पड़ता है, बंडल को एसी प्रतिरोध में समान वृद्धि का सामना नहीं करना पड़ता है, जो कि समान क्रॉस-आंशिक क्षेत्र के ठोस कंडक्टर त्वचा के प्रभाव के कारण होता है।<ref>{{harvnb|Xi Nan|Sullivan|2005}}</ref> | ||
त्वचा के प्रभाव और निकटता प्रभाव (विद्युत चुंबकत्व) दोनों को कम करके उनकी दक्षता बढ़ाने के लिए Litz तार का उपयोग | त्वचा के प्रभाव और निकटता प्रभाव (विद्युत चुंबकत्व) दोनों को कम करके उनकी दक्षता बढ़ाने के लिए Litz तार का उपयोग अधिकांशतः उच्च-आवृत्ति वाले [[ ट्रांसफार्मर |ट्रांसफार्मर]] की वाइंडिंग में किया जाता है। | ||
बड़े बिजली ट्रांसफार्मर लिट्ज़ तार के समान निर्माण के फंसे हुए कंडक्टरों के साथ घाव कर रहे हैं, लेकिन मुख्य आवृत्तियों पर बड़ी त्वचा की गहराई के अनुरूप बड़े | बड़े बिजली ट्रांसफार्मर लिट्ज़ तार के समान निर्माण के फंसे हुए कंडक्टरों के साथ घाव कर रहे हैं, लेकिन मुख्य आवृत्तियों पर बड़ी त्वचा की गहराई के अनुरूप बड़े अनुप्रस्थ काट को नियोजित करते हैं।<ref name="cegb_1982">{{cite book | ||
| author = Central Electricity Generating Board | | author = Central Electricity Generating Board | ||
| title = आधुनिक पावर स्टेशन अभ्यास| year = 1982 | | title = आधुनिक पावर स्टेशन अभ्यास| year = 1982 | ||
Line 131: | Line 128: | ||
== | == जैसेहरण == | ||
[[File:Skin depth by Zureks-en.svg|thumb|350px|कमरे के तापमान पर कुछ सामग्रियों के लिए त्वचा की गहराई बनाम आवृत्ति, लाल खड़ी रेखा 50 हर्ट्ज आवृत्ति दर्शाती है:{{ubl | [[File:Skin depth by Zureks-en.svg|thumb|350px|कमरे के तापमान पर कुछ सामग्रियों के लिए त्वचा की गहराई बनाम आवृत्ति, लाल खड़ी रेखा 50 हर्ट्ज आवृत्ति दर्शाती है:{{ubl | ||
Line 141: | Line 138: | ||
|Fe-Ni – high-permeability [[permalloy]] (80%Ni-20%Fe) | |Fe-Ni – high-permeability [[permalloy]] (80%Ni-20%Fe) | ||
}} | }} | ||
]]हम निम्नानुसार त्वचा की गहराई के लिए | ]]हम निम्नानुसार त्वचा की गहराई के लिए व्यावहारिक सूत्र प्राप्त कर सकते हैं: | ||
: <math>\delta=\frac{1}{\alpha} = \sqrt{{2\rho }\over{(2 \pi f) (\mu_0 \mu_r)}} =</math> | : <math>\delta=\frac{1}{\alpha} = \sqrt{{2\rho }\over{(2 \pi f) (\mu_0 \mu_r)}} =</math> | ||
Line 157: | Line 154: | ||
: <math>f = </math> हर्ट्ज में वर्तमान की आवृत्ति | : <math>f = </math> हर्ट्ज में वर्तमान की आवृत्ति | ||
[[ सोना ]] प्रतिरोधकता के साथ | [[ सोना | सोना]] प्रतिरोधकता के साथ अच्छा कंडक्टर है {{val|2.44|e=-8|u=Ω·m}} और अनिवार्य रूप से गैर चुंबकीय है: <math>\mu_r = </math> 1, इसलिए इसकी त्वचा की गहराई 50 हर्ट्ज की आवृत्ति पर दी गई है | ||
: <math>\delta = 503 \,\sqrt{\frac{2.44 \cdot 10^{-8}}{1 \cdot 50}}= 11.1\,\mathrm{mm} </math> | : <math>\delta = 503 \,\sqrt{\frac{2.44 \cdot 10^{-8}}{1 \cdot 50}}= 11.1\,\mathrm{mm} </math> | ||
इसके विपरीत, सीसा, प्रतिरोधकता के साथ | इसके विपरीत, सीसा, प्रतिरोधकता के साथ अपेक्षाकृत खराब कंडक्टर (धातुओं के बीच) है {{val|2.2|e=-7|u=Ω·m}}, सोने से लगभग 9 गुना। 50 हर्ट्ज पर इसकी त्वचा की गहराई भी लगभग 33 मिमी या पाई जाती है | ||
<math>\sqrt{9} = 3 </math> सोने से गुना। | <math>\sqrt{9} = 3 </math> सोने से गुना। | ||
अत्यधिक चुंबकीय सामग्री में उनकी बड़ी पारगम्यता के कारण त्वचा की गहराई कम होती है <math>\mu_r</math> जैसा कि लोहे के मामले में ऊपर बताया गया था, इसकी खराब चालकता के बावजूद। इंडक्शन कुकर के उपयोगकर्ताओं द्वारा | अत्यधिक चुंबकीय सामग्री में उनकी बड़ी पारगम्यता के कारण त्वचा की गहराई कम होती है <math>\mu_r</math> जैसा कि लोहे के मामले में ऊपर बताया गया था, इसकी खराब चालकता के बावजूद। इंडक्शन कुकर के उपयोगकर्ताओं द्वारा व्यावहारिक परिणाम देखा जाता है, जहां कुछ प्रकार के [[ स्टेनलेस स्टील |स्टेनलेस स्टील]] कुकवेयर अनुपयोगी होते हैं क्योंकि वे फेरोमैग्नेटिक नहीं होते हैं। | ||
बहुत उच्च आवृत्तियों पर अच्छे संवाहकों के लिए त्वचा की गहराई छोटी हो जाती है। | बहुत उच्च आवृत्तियों पर अच्छे संवाहकों के लिए त्वचा की गहराई छोटी हो जाती है। जैसेहरण के लिए, 10 GHz (माइक्रोवेव क्षेत्र) की आवृत्ति पर कुछ सामान्य धातुओं की त्वचा की गहराई माइक्रोमीटर से कम होती है: | ||
{| class="wikitable" | {| class="wikitable" | ||
Line 180: | Line 177: | ||
| Silver || style="text-align:center;"| 0.634 | | Silver || style="text-align:center;"| 0.634 | ||
|} | |} | ||
इस प्रकार माइक्रोवेव आवृत्तियों पर, अधिकांश धारा सतह के निकट | इस प्रकार माइक्रोवेव आवृत्तियों पर, अधिकांश धारा सतह के निकट अत्यंत पतले क्षेत्र में प्रवाहित होती है। इसलिए माइक्रोवेव आवृत्तियों पर वेवगाइड्स का ओमिक हानि मात्र सामग्री की सतह कोटिंग पर निर्भर करता है। कांच के टुकड़े पर 3μm मोटी वाष्पित चांदी की परत इस प्रकार ऐसी आवृत्तियों पर उत्कृष्ट चालक होती है। | ||
तांबे में, त्वचा की गहराई को आवृत्ति के वर्गमूल के अनुसार गिरते हुए देखा जा सकता है: | तांबे में, त्वचा की गहराई को आवृत्ति के वर्गमूल के अनुसार गिरते हुए देखा जा सकता है: | ||
Line 205: | Line 202: | ||
| 1 GHz || 2.06 | | 1 GHz || 2.06 | ||
|} | |} | ||
इंजीनियरिंग इलेक्ट्रोमैग्नेटिक्स में, हेट बताते हैं{{page needed|date=October 2016}} कि | इंजीनियरिंग इलेक्ट्रोमैग्नेटिक्स में, हेट बताते हैं{{page needed|date=October 2016}} कि पावर स्टेशन में 60 Hz पर प्रत्यावर्ती धारा के लिए इंच (8 मिमी) के तिहाई से बड़े त्रिज्या के साथ बसबार तांबे की बर्बादी है, और व्यवहार में भारी एसी धारा के लिए बस बार शायद ही कभी आधे इंच से अधिक होते हैं (12 मिमी) यांत्रिक कारणों को छोड़कर मोटा। | ||
== एक कंडक्टर के आंतरिक | == एक कंडक्टर के आंतरिक अनुगम की त्वचा प्रभाव में कमी == | ||
एक समाक्षीय केबल के आंतरिक और बाहरी कंडक्टरों को दिखाते हुए नीचे दिए गए आरेख का संदर्भ लें। चूंकि त्वचा प्रभाव मुख्य रूप से | एक समाक्षीय केबल के आंतरिक और बाहरी कंडक्टरों को दिखाते हुए नीचे दिए गए आरेख का संदर्भ लें। चूंकि त्वचा प्रभाव मुख्य रूप से कंडक्टर की सतह पर प्रवाहित होने वाली उच्च आवृत्तियों पर धारा का कारण बनता है, यह देखा जा सकता है कि यह तार के अंदर चुंबकीय क्षेत्र को कम कर देगा, यानी उस गहराई के नीचे जिस पर धारा प्रवाहित होती है। यह दिखाया जा सकता है कि तार के स्वयं- अनुगम पर इसका मामूली प्रभाव पड़ेगा; स्किलिंग देखें<ref name="Skilling157_159">{{Harvtxt|Skilling|1951|pp=157–159}}</रेफरी> या हेट<ref name="Hayt434_439">{{Harvtxt|Hayt|1981|pp=434–439}}</ref> इस घटना के गणितीय उपचार के लिए। | ||
इस संदर्भ में माना जाने वाला इंडक्शन | इस संदर्भ में माना जाने वाला इंडक्शन नंगे कंडक्टर को संदर्भित करता है, न कि सर्किट तत्व के रूप में उपयोग किए जाने वाले कॉइल का इंडक्शन। कॉइल के घुमावों के बीच पारस्परिक अनुगम द्वारा कॉइल का अनुगम हावी होता है जो घुमावों की संख्या के वर्ग के अनुसार इसकी अनुगम बढ़ाता है। हालाँकि, जब मात्र तार शामिल होता है, तो तार के बाहर चुंबकीय क्षेत्र से जुड़े बाहरी अनुगम के अलावा (तार में कुल धारा के कारण) जैसा कि नीचे की आकृति के सफेद क्षेत्र में देखा जाता है, वहाँ भी बहुत कुछ है तार के अंदर चुंबकीय क्षेत्र के हिस्से के कारण आंतरिक अनुगम का छोटा घटक, आकृति बी में हरा क्षेत्र। प्रेरकत्व का वह छोटा घटक कम हो जाता है जब वर्तमान कंडक्टर की त्वचा की ओर केंद्रित होता है, अर्थात, जब त्वचा की गहराई तार की त्रिज्या से बहुत बड़ी नहीं है, जैसा कि उच्च आवृत्तियों पर होगा। | ||
एक तार के लिए, यह कमी घटती महत्व की हो जाती है क्योंकि तार अपने व्यास की तुलना में लंबा हो जाता है, और | एक तार के लिए, यह कमी घटती महत्व की हो जाती है क्योंकि तार अपने व्यास की तुलना में लंबा हो जाता है, और सामान्यतः पर उपेक्षित होता है। चूँकि संचरण लाइन के मामले में दूसरे कंडक्टर की उपस्थिति तार की लंबाई की परवाह किए बिना बाहरी चुंबकीय क्षेत्र (और कुल स्व- अनुगम) की सीमा को कम कर देती है, जिससे कि त्वचा के प्रभाव के कारण अनुगम में कमी अभी भी हो सकती है महत्वपूर्ण। जैसेहरण के लिए, टेलीफोन मुड़ जोड़ी के मामले में, कंडक्टरों का अनुगम उच्च आवृत्तियों पर काफी कम हो जाता है जहां त्वचा का प्रभाव महत्वपूर्ण हो जाता है। दूसरी ओर, जब कॉइल की ज्यामिति (घुमावों के बीच पारस्परिक अनुगम के कारण) के कारण इंडक्शन के बाहरी घटक को बढ़ाया जाता है, तो आंतरिक इंडक्शन घटक का महत्व और भी बौना हो जाता है और इसे नजरअंदाज कर दिया जाता है। | ||
=== एक समाक्षीय केबल में प्रति लंबाई | === एक समाक्षीय केबल में प्रति लंबाई अनुगम === | ||
आयाम ए, बी, और सी को आंतरिक कंडक्टर त्रिज्या, त्रिज्या के अंदर ढाल (बाहरी कंडक्टर) और क्रमशः ढाल बाहरी त्रिज्या होने दें, जैसा कि नीचे आकृति ए के क्रॉससेक्शन में देखा गया है। | आयाम ए, बी, और सी को आंतरिक कंडक्टर त्रिज्या, त्रिज्या के अंदर ढाल (बाहरी कंडक्टर) और क्रमशः ढाल बाहरी त्रिज्या होने दें, जैसा कि नीचे आकृति ए के क्रॉससेक्शन में देखा गया है। | ||
[[File:Coax and Skin Depth.svg|center|thumb|800px| | [[File:Coax and Skin Depth.svg|center|thumb|800px|अनुगम पर प्रभाव दिखाते हुए कॉक्स में त्वचा के प्रभाव के चार चरण। चित्र समाक्षीय केबल का अनुप्रस्थ काट दिखाते हैं। रंग कोड: काला = समग्र इन्सुलेट म्यान, तन = कंडक्टर, सफेद = ढांकता हुआ, हरा = आरेख में वर्तमान, नीला = आरेख से बाहर आने वाला, तीर के साथ धराशायी काली रेखाएं = चुंबकीय प्रवाह (बी)। धराशायी काली रेखाओं की चौड़ाई का उद्देश्य उस त्रिज्या पर परिधि पर एकीकृत चुंबकीय क्षेत्र की सापेक्ष शक्ति को दर्शाना है। चार चरण, ए, बी, सी और डी हैं: क्रमशः गैर-ऊर्जावान, कम आवृत्ति, मध्य आवृत्ति और उच्च आवृत्ति। ऐसे तीन क्षेत्र हैं जिनमें प्रेरित चुंबकीय क्षेत्र हो सकते हैं: केंद्र कंडक्टर, ढांकता हुआ और बाहरी कंडक्टर। चरण बी में, धारा कंडक्टरों को समान रूप से कवर करता है और तीनों क्षेत्रों में महत्वपूर्ण चुंबकीय क्षेत्र होता है। जैसे-जैसे आवृत्ति बढ़ती है और त्वचा का प्रभाव पकड़ में आता है (सी और डी) ढांकता हुआ क्षेत्र में चुंबकीय क्षेत्र अपरिवर्तित होता है क्योंकि यह केंद्र कंडक्टर में प्रवाहित कुल धारा के समानुपाती होता है। सी में, चूँकि, आंतरिक कंडक्टर के गहरे हिस्सों और ढाल (बाहरी कंडक्टर) के बाहरी हिस्सों में कम चुंबकीय क्षेत्र होता है। इस प्रकार चुंबकीय क्षेत्र में कम ऊर्जा संग्रहित होती है, जो समान कुल धारा को दी जाती है, जो घटे हुए अनुगम के अनुरूप होती है। भी उच्च आवृत्ति पर, डी, त्वचा की गहराई छोटी है: सभी वर्तमान कंडक्टर की सतह तक ही सीमित हैं। कंडक्टरों के बीच के क्षेत्रों में एकमात्र चुंबकीय क्षेत्र है; मात्र बाहरी अनुगम रहता है।]]किसी दिए गए धारा के लिए, चुंबकीय क्षेत्र में संग्रहीत कुल ऊर्जा वैसी ही होनी चाहिए, जैसी गणना की गई विद्युत ऊर्जा कोक्स के अनुगम के माध्यम से बहने वाली धारा के लिए जिम्मेदार होती है; वह ऊर्जा केबल के मापे गए अनुगम के समानुपाती होती है। | ||
एक समाक्षीय केबल के अंदर चुंबकीय क्षेत्र को तीन क्षेत्रों में विभाजित किया जा सकता है, इसलिए प्रत्येक केबल की लंबाई द्वारा देखे जाने वाले विद्युत | एक समाक्षीय केबल के अंदर चुंबकीय क्षेत्र को तीन क्षेत्रों में विभाजित किया जा सकता है, इसलिए प्रत्येक केबल की लंबाई द्वारा देखे जाने वाले विद्युत अनुगम में योगदान देगा।<ref name="Hayt434">{{Harvtxt|Hayt|1981|p=434}}</ref> | ||
अनुगम <math> L_\text{cen} \, </math> त्रिज्या वाले क्षेत्र में चुंबकीय क्षेत्र से जुड़ा है <math> r < a \, </math>केंद्र कंडक्टर के अंदर का क्षेत्र। | |||
अनुगम <math> L_\text{ext} \, </math> क्षेत्र में चुंबकीय क्षेत्र से जुड़ा हुआ है <math> a < r < b \, </math>, दो कंडक्टरों के बीच का क्षेत्र (एक ढांकता हुआ, संभवतः वायु युक्त)। | |||
अनुगम <math> L_\text{shd} \, </math> क्षेत्र में चुंबकीय क्षेत्र से जुड़ा हुआ है <math> b < r < c \, </math>शील्ड कंडक्टर के अंदर का क्षेत्र। | |||
शुद्ध विद्युत | शुद्ध विद्युत अनुगम तीनों योगदानों के कारण होता है: | ||
:<math> L_\text{total} = L_\text{cen} + L_\text{shd} + L_\text{ext}\, </math> | :<math> L_\text{total} = L_\text{cen} + L_\text{shd} + L_\text{ext}\, </math> | ||
<math> L_\text{ext} \, </math> त्वचा के प्रभाव से नहीं बदला जाता है और | <math> L_\text{ext} \, </math> त्वचा के प्रभाव से नहीं बदला जाता है और समाक्षीय केबल की लंबाई डी प्रति अनुगम एल के लिए अधिकांशतः उद्धृत सूत्र द्वारा दिया जाता है: | ||
:<math> L/D = \frac{\mu_0}{2 \pi} \ln \left( \frac {b}{a} \right) \, </math> | :<math> L/D = \frac{\mu_0}{2 \pi} \ln \left( \frac {b}{a} \right) \, </math> | ||
कम आवृत्तियों पर, तीनों | कम आवृत्तियों पर, तीनों अनुगम पूरी तरह से मौजूद होते हैं ताकि <math> L_\text{DC} = L_\text{cen} + L_\text{shd} + L_\text{ext}\, </math>. | ||
उच्च आवृत्तियों पर, | उच्च आवृत्तियों पर, मात्र ढांकता हुआ क्षेत्र में चुंबकीय प्रवाह होता है, ताकि <math> L_\infty = L_\text{ext}\, </math>. | ||
समाक्षीय संचरण लाइनों की अधिकांश चर्चाएँ मानती हैं कि उनका उपयोग रेडियो फ्रीक्वेंसी के लिए किया जाएगा, इसलिए समीकरणों को | समाक्षीय संचरण लाइनों की अधिकांश चर्चाएँ मानती हैं कि उनका उपयोग रेडियो फ्रीक्वेंसी के लिए किया जाएगा, इसलिए समीकरणों को मात्र बाद के मामले में ही आपूर्ति की जाती है। | ||
जैसे ही त्वचा का प्रभाव बढ़ता है, धाराएं आंतरिक कंडक्टर के बाहर (आर = ए) और ढाल के अंदर (आर = बी) के पास केंद्रित होती हैं। चूंकि आंतरिक कंडक्टर में अनिवार्य रूप से कोई गहराई नहीं है, आंतरिक कंडक्टर की सतह के नीचे कोई चुंबकीय क्षेत्र नहीं है। चूंकि आंतरिक कंडक्टर में | जैसे ही त्वचा का प्रभाव बढ़ता है, धाराएं आंतरिक कंडक्टर के बाहर (आर = ए) और ढाल के अंदर (आर = बी) के पास केंद्रित होती हैं। चूंकि आंतरिक कंडक्टर में अनिवार्य रूप से कोई गहराई नहीं है, आंतरिक कंडक्टर की सतह के नीचे कोई चुंबकीय क्षेत्र नहीं है। चूंकि आंतरिक कंडक्टर में धारा बाहरी कंडक्टर के अंदर बहने वाली विपरीत धारा से संतुलित होता है, इसलिए बाहरी कंडक्टर में कोई भी चुंबकीय क्षेत्र शेष नहीं होता है जहां <math> b < r < c \, </math>. मात्र <math> L_\text{ext} </math> इन उच्च आवृत्तियों पर विद्युत अनुगम में योगदान देता है। | ||
चूँकि ज्यामिति अलग है, टेलीफोन लाइनों में उपयोग की जाने वाली मुड़ जोड़ी समान रूप से प्रभावित होती है: उच्च आवृत्तियों पर अनुगम 20% से अधिक कम हो जाता है जैसा कि निम्न तालिका में देखा जा सकता है। | |||
=== आवृत्ति के | === आवृत्ति के समारोह के रूप में टेलीफोन केबल के लक्षण === | ||
24 गेज पीआईसी टेलीफोन केबल के लिए प्रतिनिधि पैरामीटर डेटा {{convert|21|C|F}}. | 24 गेज पीआईसी टेलीफोन केबल के लिए प्रतिनिधि पैरामीटर डेटा {{convert|21|C|F}}. | ||
Line 267: | Line 264: | ||
|} | |} | ||
रीव में अन्य गेज, तापमान और प्रकार के लिए अधिक व्यापक टेबल और टेबल उपलब्ध हैं।<ref name="Reeve558">{{Harvtxt|Reeve|1995|p=558}}</ref> | रीव में अन्य गेज, तापमान और प्रकार के लिए अधिक व्यापक टेबल और टेबल उपलब्ध हैं।<ref name="Reeve558">{{Harvtxt|Reeve|1995|p=558}}</ref> | ||
चेन<ref name="Chen26">{{Harvtxt|Chen|2004|p=26}}</ref> उसी डेटा को | चेन<ref name="Chen26">{{Harvtxt|Chen|2004|p=26}}</ref> उसी डेटा को पैरामिट्रीकृत रूप में देता है जिसके बारे में वह कहता है कि 50 मेगाहर्ट्ज तक प्रयोग करने योग्य है। | ||
चेन<ref name="Chen26" />टेलीफोन मुड़ जोड़ी के लिए इस रूप का | चेन<ref name="Chen26" />टेलीफोन मुड़ जोड़ी के लिए इस रूप का समीकरण देता है: | ||
: <math> L(f) = \frac {l_0 + l_{\infty}\left(\frac{f}{f_m}\right)^b }{1 + \left(\frac{f}{f_m}\right)^b} \, </math> | : <math> L(f) = \frac {l_0 + l_{\infty}\left(\frac{f}{f_m}\right)^b }{1 + \left(\frac{f}{f_m}\right)^b} \, </math> | ||
== विषम त्वचा प्रभाव == | == विषम त्वचा प्रभाव == | ||
उच्च आवृत्तियों और कम तापमान के लिए त्वचा की गहराई के लिए सामान्य सूत्र टूट जाते हैं। इस प्रभाव को पहली बार 1940 में [[ हेंज लंदन ]] द्वारा देखा गया था, जिन्होंने सही ढंग से सुझाव दिया था कि यह शास्त्रीय त्वचा की गहराई की सीमा तक पहुँचने वाले इलेक्ट्रॉनों की औसत मुक्त पथ लंबाई के कारण है।<ref>R. G. Chambers, ''The Anomalous Skin Effect'', Proceedings of the Royal Society of London. Series A, Mathematical and Physical Sciences, Vol. 215, No. 1123 (Dec. 22, 1952), pp. 481-497 (17 pages) https://www.jstor.org/stable/99095</ref> धातुओं और [[ अतिचालकता ]] के इस विशिष्ट मामले के लिए मैटिस-बारडीन सिद्धांत विकसित किया गया था। | उच्च आवृत्तियों और कम तापमान के लिए त्वचा की गहराई के लिए सामान्य सूत्र टूट जाते हैं। इस प्रभाव को पहली बार 1940 में [[ हेंज लंदन |हेंज लंदन]] द्वारा देखा गया था, जिन्होंने सही ढंग से सुझाव दिया था कि यह शास्त्रीय त्वचा की गहराई की सीमा तक पहुँचने वाले इलेक्ट्रॉनों की औसत मुक्त पथ लंबाई के कारण है।<ref>R. G. Chambers, ''The Anomalous Skin Effect'', Proceedings of the Royal Society of London. Series A, Mathematical and Physical Sciences, Vol. 215, No. 1123 (Dec. 22, 1952), pp. 481-497 (17 pages) https://www.jstor.org/stable/99095</ref> धातुओं और [[ अतिचालकता |अतिचालकता]] के इस विशिष्ट मामले के लिए मैटिस-बारडीन सिद्धांत विकसित किया गया था। | ||
== यह भी देखें == | == यह भी देखें == | ||
Line 285: | Line 282: | ||
* [[ प्रेरण ऊष्मन ]] | * [[ प्रेरण ऊष्मन ]] | ||
* [[ चुंबकीय रेनॉल्ड्स संख्या ]] | * [[ चुंबकीय रेनॉल्ड्स संख्या ]] | ||
* [[ व्हीलर इंक्रीमेंटल इंडक्शन नियम ]], त्वचा प्रभाव प्रतिरोध का अनुमान लगाने की | * [[ व्हीलर इंक्रीमेंटल इंडक्शन नियम ]], त्वचा प्रभाव प्रतिरोध का अनुमान लगाने की विधि | ||
==टिप्पणियाँ== | ==टिप्पणियाँ== |
Revision as of 13:46, 25 January 2023
त्वचा प्रभाव प्रत्यावर्ती धारा (AC) की कंडक्टर (सामग्री) के भीतर वितरित होने की प्रवृत्ति है, जैसे कि वर्तमान घनत्व कंडक्टर की सतह के पास सबसे बड़ा है और कंडक्टर में अधिक गहराई के साथ तेजी से घटता है। विद्युत धारा मुख्य रूप से कंडक्टर की त्वचा पर, बाहरी सतह और त्वचा की गहराई नामक स्तर के बीच बहती है। त्वचा की गहराई प्रत्यावर्ती धारा की आवृत्ति पर निर्भर करती है; जैसे-जैसे आवृत्ति बढ़ती है, धारा का प्रवाह सतह की ओर बढ़ता है, जिसके परिणामस्वरूप त्वचा की गहराई कम होती है। त्वचा का प्रभाव कंडक्टर के प्रभावी अनुप्रस्थ काट को कम करता है और इस प्रकार इसके प्रभावी विद्युत प्रतिरोध को बढ़ाता है। प्रत्यावर्ती धारा के परिणामस्वरूप बदलते चुंबकीय क्षेत्र से प्रेरित एड़ी धाराओं का विरोध करने के कारण त्वचा का प्रभाव होता है। तांबे में 60 हेटर्स ़ पर, त्वचा की गहराई लगभग 8.5 मिमी होती है। उच्च आवृत्तियों पर त्वचा की गहराई बहुत कम हो जाती है।
विशेष रूप से बुने हुए लिट्ज़ तार का उपयोग करके त्वचा के प्रभाव के कारण बढ़े हुए एसी प्रतिरोध को कम किया जा सकता है। क्योंकि बड़े कंडक्टर के इंटीरियर में इतना कम धारा होता है, वजन और लागत बचाने के लिए पाइप जैसे ट्यूबलर कंडक्टर का इस्तेमाल किया जा सकता है। रेडियो -आवृत्ति और माइक्रोवेव परिपथ, संचरण लाइन (या वेवगाइड), और एंटेना के विश्लेषण और डिजाइन में त्वचा के प्रभाव का व्यावहारिक परिणाम होता है। यह एसी विद्युत शक्ति संचरण प्रणाली में मुख्य आवृत्तियों (50–60 Hz) पर भी महत्वपूर्ण है। यह लंबी दूरी के विद्युत संचरण के लिए उच्च-वोल्टेज प्रत्यक्ष धारा को प्राथमिकता देने के कारणों में से है।
गोलाकार कंडक्टर के मामले में प्रभाव को पहली बार 1883 में होरेस लैम्ब द्वारा पेपर में वर्णित किया गया था,[1] और 1885 में ओलिवर हीविसाइड द्वारा किसी भी आकार के कंडक्टरों के लिए सामान्यीकृत किया गया था।
कारण
कंडक्टर, सामान्यतः पर तारों के रूप में, उस कंडक्टर के माध्यम से प्रवाहित वैकल्पिक धारा का उपयोग करके विद्युत ऊर्जा या संकेतों को प्रसारित करने के लिए उपयोग किया जा सकता है। विद्युत ऊर्जा के स्रोत के कारण वर्तमान, सामान्यतः पर इलेक्ट्रॉन को बनाने वाले आवेश वाहक विद्युत क्षेत्र द्वारा संचालित होते हैं। धारा कंडक्टर में और उसके आसपास चुंबकीय क्षेत्र उत्पन्न करता है। जब किसी चालक में धारा की तीव्रता बदलती है तो चुंबकीय क्षेत्र भी बदलता है। चुंबकीय क्षेत्र में परिवर्तन, बदले में, विद्युत क्षेत्र बनाता है जो वर्तमान तीव्रता में परिवर्तन का विरोध करता है। इस विरोधी विद्युत क्षेत्र को "काउंटर-इलेक्ट्रोमोटिव बल " (बैक ईएमएफ) कहा जाता है। पिछला EMF कंडक्टर के केंद्र में सबसे ठोस होता है, और चालक इलेक्ट्रॉनों को कंडक्टर के बाहर की ओर उत्तेजित करना है, जैसा कि दाईं ओर आरेख में दिखाया गया है।[2][3]
चालन बल के बावजूद, कंडक्टर की सतह पर वर्तमान घनत्व सबसे बड़ा पाया जाता है, कंडक्टर में कम परिमाण के साथ। वर्तमान घनत्व में गिरावट को त्वचा प्रभाव के रूप में जाना जाता है और त्वचा की गहराई उस गहराई का माप है जिस पर वर्तमान घनत्व E (गणितीय स्थिरांक) पर गिरता है। सतह के पास इसके मूल्य का 1/e। 98% से अधिक धारा सतह से त्वचा की गहराई से 4 गुना परत के भीतर प्रवाहित होगी। यह व्यवहार दिष्टधारा से भिन्न है जो सामान्यतः पर तार के अनुप्रस्थ काट पर समान रूप से वितरित किया जाएगा।
विद्युत चुम्बकीय प्रेरण के नियम के अनुसार वैकल्पिक चुंबकीय क्षेत्र के कारण कंडक्टर में प्रत्यावर्ती धारा भी प्रेरित हो सकती है। कंडक्टर पर विद्युत चुम्बकीय तरंग इसलिए सामान्यतः इस तरह के वर्तमान का उत्पादन करती है; यह धातुओं से विद्युत चुम्बकीय तरंगों के प्रतिबिंब की व्याख्या करता है। यद्यपि शब्द त्वचा प्रभाव अधिकांशतः विद्युत धाराओं के संचरण से जुड़े अनुप्रयोगों से जुड़ा होता है, त्वचा की गहराई भी बिजली और चुंबकीय क्षेत्रों के घातीय क्षय के साथ-साथ प्रेरित धाराओं की घनत्व का वर्णन करती है, जब विमान लहर टकराती है सामान्य घटना पर उस पर।
सूत्र
एसी वर्तमान घनत्व J सतह पर इसके मूल्य से कंडक्टर घातीय क्षय में JS गहराई के अनुसार d सतह से, इस प्रकार:[4][5]
कहाँ पे
- = चालक की प्रतिरोधकता
- = वर्तमान की कोणीय आवृत्ति = कहाँ पे आवृत्ति है।
- = कंडक्टर की पारगम्यता (विद्युत चुंबकत्व) ,
- = कंडक्टर की सापेक्ष चुंबकीय पारगम्यता
- = मुक्त स्थान की पारगम्यता
- = कंडक्टर की पारगम्यता,
- = कंडक्टर की सापेक्ष पारगम्यता
- = मुक्त स्थान की पारगम्यता
बहुत कम आवृत्तियों पर बड़े रेडिकल के अंदर की मात्रा एकता के करीब है और सूत्र सामान्यतः पर इस प्रकार दिया जाता है:
यह सूत्र ठोस परमाणु या आणविक अनुनादों (जहां बड़ा काल्पनिक भाग होगा) और आवृत्तियों पर जो सामग्री की प्लाज्मा आवृत्ति (सामग्री में मुक्त इलेक्ट्रॉनों के घनत्व पर निर्भर) और चालन इलेक्ट्रॉनों को शामिल करने वाले टकरावों के बीच औसत समय के पारस्परिक दोनों से बहुत नीचे हैं। धातुओं जैसे अच्छे कंडक्टरों में उन सभी स्थितियों को कम से कम माइक्रोवेव आवृत्तियों तक सुनिश्चित किया जाता है, जो इस सूत्र की वैधता को सही ठहराते हैं।[note 1] जैसेहरण के लिए, तांबे के मामले में, यह बहुत कम आवृत्तियों के लिए सही होगा 1018हर्ट्ज।
चूँकि, बहुत खराब कंडक्टरों में, पर्याप्त उच्च आवृत्तियों पर,बड़े रेडिकल के अनुसार कारक बढ़ जाता है। की तुलना में बहुत अधिक आवृत्तियों पर यह दिखाया जा सकता है कि त्वचा की गहराई, घटने के बजाय, वास्तविक मूल्य तक पहुँचती है:
सामान्य सूत्र से यह विचलन मात्र कम चालकता की सामग्री के लिए और आवृत्तियों पर लागू होता है जहां वैक्यूम तरंग दैर्ध्य त्वचा की गहराई से बहुत बड़ा नहीं होता है। जैसेहरण के लिए, बल्क सिलिकॉन (अनडोप्ड) खराब कंडक्टर है और इसकी त्वचा की गहराई 100 kHz पर लगभग 40 मीटर है (λ = 3 किमी)। चूँकि, मेगाहर्ट्ज़ रेंज में आवृत्ति अच्छी तरह से बढ़ जाती है, इसकी त्वचा की गहराई कभी भी 11 मीटर के वास्तविक मान से कम नहीं होती है। निष्कर्ष यह है कि खराब ठोस चालकों में, जैसे अनडोप्ड सिलिकॉन में, अधिकांश व्यावहारिक स्थितियों में त्वचा के प्रभाव को ध्यान में रखने की आवश्यकता नहीं होती है: किसी भी धारा को सामग्री के अनुप्रस्थ काट में समान रूप से वितरित किया जाता है, चाहे इसकी आवृत्ति कुछ भी हो।
गोल कंडक्टर में वर्तमान घनत्व
जब तार की त्रिज्या के संबंध में त्वचा की गहराई कम नहीं होती है, तो बेसेल कार्यों के संदर्भ में वर्तमान घनत्व का वर्णन किया जा सकता है। अक्ष से दूरी के कार्य के रूप में अन्य क्षेत्रों के प्रभाव से दूर गोल तार के अंदर वर्तमान घनत्व द्वारा दिया गया है:[6] अनुगम का यह छोटा घटक के मूल्य तक पहुंचता है (50 nH/m गैर-चुंबकीय तार के लिए) कम आवृत्तियों पर, चाहे तार की त्रिज्या कुछ भी हो। बढ़ती आवृत्ति के साथ इसकी कमी, जैसा कि तार की त्रिज्या के लिए त्वचा की गहराई का अनुपात लगभग 1 से नीचे आता है, साथ के ग्राफ में प्लॉट किया जाता है, और टेलीफोन केबल की विशेषताओं में बढ़ती आवृत्ति के साथ टेलीफोन केबल अनुगम में कमी के लिए जिम्मेदार है।
प्रतिरोध
एकल तार की प्रतिबाधा पर त्वचा के प्रभाव का सबसे महत्वपूर्ण प्रभाव, चूँकि, तार के प्रतिरोध में वृद्धि और परिणामस्वरूप तांबे की हानि है। बड़े कंडक्टर की सतह के पास सीमित वर्तमान के कारण प्रभावी प्रतिरोध को हल किया जा सकता है जैसे कि धारा मोटाई की परत के माध्यम से समान रूप से प्रवाहित होती है δ उस सामग्री की डीसी प्रतिरोधकता के आधार पर प्रभावी अनुप्रस्थ काटल क्षेत्र लगभग बराबर है δ कंडक्टर की परिधि का गुना। इस प्रकार लंबा बेलनाकार कंडक्टर जैसे तार, जिसका व्यास होता है D की तुलना में बड़ा δ, दीवार की मोटाई के साथ लगभग खोखले ट्यूब का प्रतिरोध होता है δ डायरेक्ट धारा ले जाना। लंबाई के तार का एसी प्रतिरोध ℓ और प्रतिरोधकता है:
उपरोक्त अंतिम सन्निकटन मानता है .
व्यास के लिए सुविधाजनक सूत्र (फ्रेडरिक टरमन|एफ.ई. टरमन को जिम्मेदार ठहराया गया)। DW वृत्ताकार अनुप्रस्थ काट के तार का जिसका प्रतिरोध आवृत्ति पर 10% बढ़ जाएगा f है:[7]
एसी प्रतिरोध में वृद्धि के लिए यह सूत्र मात्र पृथक तार के लिए ठीक है। आस-पास के तारों के लिए, जैसे विद्युत केबल या कॉइल में, एसी प्रतिरोध निकटता प्रभाव (विद्युत चुंबकत्व) से भी प्रभावित होता है, जिससे एसी प्रतिरोध में अतिरिक्त वृद्धि हो सकती है।
त्वचा की गहराई पर भौतिक प्रभाव
एक अच्छे कंडक्टर में, त्वचा की गहराई प्रतिरोधकता के वर्गमूल के समानुपाती होती है। इसका मतलब यह है कि उच्चतम संवाहकों की त्वचा की गहराई कम होती है। कम त्वचा की गहराई के साथ भी उच्चतम कंडक्टर का समग्र प्रतिरोध कम रहता है। चूँकि, उच्च प्रतिरोधकता वाले कंडक्टर की तुलना में उच्चतम कंडक्टर अपने एसी और डीसी प्रतिरोध के बीच उच्च अनुपात दिखाएगा। जैसे उदाहरण के लिए, 60 हर्ट्ज पर, अमेरिकी वायर गेज़ (1000 वर्ग मिलीमीटर) तांबे के कंडक्टर में डीसी की तुलना में 23% अधिक प्रतिरोध होता है। एल्युमीनियम में समान आकार के कंडक्टर का 60 हर्ट्ज एसी के साथ डीसी की तुलना में मात्र 10% अधिक प्रतिरोध होता है।[8]कंडक्टर की पारगम्यता (विद्युत चुंबकत्व) के व्युत्क्रम वर्गमूल के रूप में त्वचा की गहराई भी भिन्न होती है। लोहे के मामले में इसकी चालकता तांबे की तुलना में लगभग 1/7 है। चूँकि लौह-चुंबकीय होने के कारण इसकी पारगम्यता लगभग 10,000 गुना अधिक है। यह लोहे के लिए त्वचा की गहराई को तांबे के लगभग 1/38, 60 Hz पर लगभग 220 माइक्रोमीटर तक कम कर देता है। लोहे के तार इस प्रकार एसी पावर लाइनों के लिए बेकार हैं (एल्यूमीनियम जैसे गैर चुंबकीय कंडक्टर के लिए कोर के रूप में कार्य करके यांत्रिक शक्ति को जोड़ने के अलावा)। त्वचा के प्रभाव से बिजली ट्रांसफार्मर में फाड़ना की प्रभावी मोटाई भी कम हो जाती है, जिससे उनका हानि बढ़ जाता है।
लोहे की छड़ें डायरेक्ट-धारा (डीसी) वेल्डिंग के लिए अच्छी तरह से काम करती हैं लेकिन 60 हर्ट्ज से बहुत अधिक आवृत्तियों पर उनका उपयोग करना असंभव है। कुछ किलोहर्ट्ज़ पर, वेल्डिंग रॉड लाल गर्म चमकेगी क्योंकि चाप वेल्डिंग के लिए अपेक्षाकृत कम शक्ति शेष होने के साथ ही त्वचा के प्रभाव से उत्पन्न बहुत अधिक एसी प्रतिरोध के माध्यम से धारा प्रवाहित होता है। उच्च-आवृत्ति वेल्डिंग के लिए मात्र गैर-चुंबकीय छड़ का उपयोग किया जा सकता है।
1 मेगाहर्ट्ज़ पर गीली मिट्टी में त्वचा के प्रभाव की गहराई लगभग 5.0 मीटर होती है; समुद्री जल में यह लगभग 0.25 मीटर है।[9]
शमन
एक प्रकार की केबल जिसे लिट्ज़ वायर कहा जाता है ( जर्मन भाषा लिट्जेंड्रहट, ब्रेडेड वायर से) कुछ किलोहर्ट्ज़ से लगभग मेगाहर्ट्ज़ की आवृत्तियों के लिए त्वचा के प्रभाव को कम करने के लिए उपयोग किया जाता है। इसमें सावधानी से डिज़ाइन किए गए पैटर्न में साथ बुने हुए कई इंसुलेटेड तार होते हैं, ताकि समग्र चुंबकीय क्षेत्र सभी तारों पर समान रूप से कार्य करे और कुल धारा को उनके बीच समान रूप से वितरित करने का कारण बने। त्वचा के प्रभाव से प्रत्येक पतली किस्में पर थोड़ा प्रभाव पड़ता है, बंडल को एसी प्रतिरोध में समान वृद्धि का सामना नहीं करना पड़ता है, जो कि समान क्रॉस-आंशिक क्षेत्र के ठोस कंडक्टर त्वचा के प्रभाव के कारण होता है।[10]
त्वचा के प्रभाव और निकटता प्रभाव (विद्युत चुंबकत्व) दोनों को कम करके उनकी दक्षता बढ़ाने के लिए Litz तार का उपयोग अधिकांशतः उच्च-आवृत्ति वाले ट्रांसफार्मर की वाइंडिंग में किया जाता है।
बड़े बिजली ट्रांसफार्मर लिट्ज़ तार के समान निर्माण के फंसे हुए कंडक्टरों के साथ घाव कर रहे हैं, लेकिन मुख्य आवृत्तियों पर बड़ी त्वचा की गहराई के अनुरूप बड़े अनुप्रस्थ काट को नियोजित करते हैं।Cite error: Closing </ref>
missing for <ref>
tag
जैसेहरण
हम निम्नानुसार त्वचा की गहराई के लिए व्यावहारिक सूत्र प्राप्त कर सकते हैं:
कहाँ पे
- मीटर में त्वचा की गहराई
- में क्षीणन
- मुक्त स्थान की पारगम्यता
- माध्यम की पारगम्यता (विद्युत चुंबकत्व) (तांबे के लिए, = 1.00)
- माध्यम की पारगम्यता
- Ω·m में माध्यम की प्रतिरोधकता, इसकी चालकता के व्युत्क्रम के बराबर भी: (तांबे के लिए, ρ = 1.68×10−8 Ω·m)
- माध्यम की चालकता (तांबे के लिए, 58.5×106 S/m)
- हर्ट्ज में वर्तमान की आवृत्ति
सोना प्रतिरोधकता के साथ अच्छा कंडक्टर है 2.44×10−8 Ω·m और अनिवार्य रूप से गैर चुंबकीय है: 1, इसलिए इसकी त्वचा की गहराई 50 हर्ट्ज की आवृत्ति पर दी गई है
इसके विपरीत, सीसा, प्रतिरोधकता के साथ अपेक्षाकृत खराब कंडक्टर (धातुओं के बीच) है 2.2×10−7 Ω·m, सोने से लगभग 9 गुना। 50 हर्ट्ज पर इसकी त्वचा की गहराई भी लगभग 33 मिमी या पाई जाती है सोने से गुना।
अत्यधिक चुंबकीय सामग्री में उनकी बड़ी पारगम्यता के कारण त्वचा की गहराई कम होती है जैसा कि लोहे के मामले में ऊपर बताया गया था, इसकी खराब चालकता के बावजूद। इंडक्शन कुकर के उपयोगकर्ताओं द्वारा व्यावहारिक परिणाम देखा जाता है, जहां कुछ प्रकार के स्टेनलेस स्टील कुकवेयर अनुपयोगी होते हैं क्योंकि वे फेरोमैग्नेटिक नहीं होते हैं।
बहुत उच्च आवृत्तियों पर अच्छे संवाहकों के लिए त्वचा की गहराई छोटी हो जाती है। जैसेहरण के लिए, 10 GHz (माइक्रोवेव क्षेत्र) की आवृत्ति पर कुछ सामान्य धातुओं की त्वचा की गहराई माइक्रोमीटर से कम होती है:
Conductor | Skin depth (μm) |
---|---|
Aluminum | 0.820 |
Copper | 0.652 |
Gold | 0.753 |
Silver | 0.634 |
इस प्रकार माइक्रोवेव आवृत्तियों पर, अधिकांश धारा सतह के निकट अत्यंत पतले क्षेत्र में प्रवाहित होती है। इसलिए माइक्रोवेव आवृत्तियों पर वेवगाइड्स का ओमिक हानि मात्र सामग्री की सतह कोटिंग पर निर्भर करता है। कांच के टुकड़े पर 3μm मोटी वाष्पित चांदी की परत इस प्रकार ऐसी आवृत्तियों पर उत्कृष्ट चालक होती है।
तांबे में, त्वचा की गहराई को आवृत्ति के वर्गमूल के अनुसार गिरते हुए देखा जा सकता है:
Frequency | Skin depth (μm) |
---|---|
50 Hz | 9220 |
60 Hz | 8420 |
10 kHz | 652 |
100 kHz | 206 |
1 MHz | 65.2 |
10 MHz | 20.6 |
100 MHz | 6.52 |
1 GHz | 2.06 |
इंजीनियरिंग इलेक्ट्रोमैग्नेटिक्स में, हेट बताते हैं[page needed] कि पावर स्टेशन में 60 Hz पर प्रत्यावर्ती धारा के लिए इंच (8 मिमी) के तिहाई से बड़े त्रिज्या के साथ बसबार तांबे की बर्बादी है, और व्यवहार में भारी एसी धारा के लिए बस बार शायद ही कभी आधे इंच से अधिक होते हैं (12 मिमी) यांत्रिक कारणों को छोड़कर मोटा।
एक कंडक्टर के आंतरिक अनुगम की त्वचा प्रभाव में कमी
एक समाक्षीय केबल के आंतरिक और बाहरी कंडक्टरों को दिखाते हुए नीचे दिए गए आरेख का संदर्भ लें। चूंकि त्वचा प्रभाव मुख्य रूप से कंडक्टर की सतह पर प्रवाहित होने वाली उच्च आवृत्तियों पर धारा का कारण बनता है, यह देखा जा सकता है कि यह तार के अंदर चुंबकीय क्षेत्र को कम कर देगा, यानी उस गहराई के नीचे जिस पर धारा प्रवाहित होती है। यह दिखाया जा सकता है कि तार के स्वयं- अनुगम पर इसका मामूली प्रभाव पड़ेगा; स्किलिंग देखेंCite error: Closing </ref>
missing for <ref>
tag इस घटना के गणितीय उपचार के लिए।
इस संदर्भ में माना जाने वाला इंडक्शन नंगे कंडक्टर को संदर्भित करता है, न कि सर्किट तत्व के रूप में उपयोग किए जाने वाले कॉइल का इंडक्शन। कॉइल के घुमावों के बीच पारस्परिक अनुगम द्वारा कॉइल का अनुगम हावी होता है जो घुमावों की संख्या के वर्ग के अनुसार इसकी अनुगम बढ़ाता है। हालाँकि, जब मात्र तार शामिल होता है, तो तार के बाहर चुंबकीय क्षेत्र से जुड़े बाहरी अनुगम के अलावा (तार में कुल धारा के कारण) जैसा कि नीचे की आकृति के सफेद क्षेत्र में देखा जाता है, वहाँ भी बहुत कुछ है तार के अंदर चुंबकीय क्षेत्र के हिस्से के कारण आंतरिक अनुगम का छोटा घटक, आकृति बी में हरा क्षेत्र। प्रेरकत्व का वह छोटा घटक कम हो जाता है जब वर्तमान कंडक्टर की त्वचा की ओर केंद्रित होता है, अर्थात, जब त्वचा की गहराई तार की त्रिज्या से बहुत बड़ी नहीं है, जैसा कि उच्च आवृत्तियों पर होगा।
एक तार के लिए, यह कमी घटती महत्व की हो जाती है क्योंकि तार अपने व्यास की तुलना में लंबा हो जाता है, और सामान्यतः पर उपेक्षित होता है। चूँकि संचरण लाइन के मामले में दूसरे कंडक्टर की उपस्थिति तार की लंबाई की परवाह किए बिना बाहरी चुंबकीय क्षेत्र (और कुल स्व- अनुगम) की सीमा को कम कर देती है, जिससे कि त्वचा के प्रभाव के कारण अनुगम में कमी अभी भी हो सकती है महत्वपूर्ण। जैसेहरण के लिए, टेलीफोन मुड़ जोड़ी के मामले में, कंडक्टरों का अनुगम उच्च आवृत्तियों पर काफी कम हो जाता है जहां त्वचा का प्रभाव महत्वपूर्ण हो जाता है। दूसरी ओर, जब कॉइल की ज्यामिति (घुमावों के बीच पारस्परिक अनुगम के कारण) के कारण इंडक्शन के बाहरी घटक को बढ़ाया जाता है, तो आंतरिक इंडक्शन घटक का महत्व और भी बौना हो जाता है और इसे नजरअंदाज कर दिया जाता है।
एक समाक्षीय केबल में प्रति लंबाई अनुगम
आयाम ए, बी, और सी को आंतरिक कंडक्टर त्रिज्या, त्रिज्या के अंदर ढाल (बाहरी कंडक्टर) और क्रमशः ढाल बाहरी त्रिज्या होने दें, जैसा कि नीचे आकृति ए के क्रॉससेक्शन में देखा गया है।
किसी दिए गए धारा के लिए, चुंबकीय क्षेत्र में संग्रहीत कुल ऊर्जा वैसी ही होनी चाहिए, जैसी गणना की गई विद्युत ऊर्जा कोक्स के अनुगम के माध्यम से बहने वाली धारा के लिए जिम्मेदार होती है; वह ऊर्जा केबल के मापे गए अनुगम के समानुपाती होती है।
एक समाक्षीय केबल के अंदर चुंबकीय क्षेत्र को तीन क्षेत्रों में विभाजित किया जा सकता है, इसलिए प्रत्येक केबल की लंबाई द्वारा देखे जाने वाले विद्युत अनुगम में योगदान देगा।[11] अनुगम त्रिज्या वाले क्षेत्र में चुंबकीय क्षेत्र से जुड़ा है केंद्र कंडक्टर के अंदर का क्षेत्र।
अनुगम क्षेत्र में चुंबकीय क्षेत्र से जुड़ा हुआ है , दो कंडक्टरों के बीच का क्षेत्र (एक ढांकता हुआ, संभवतः वायु युक्त)।
अनुगम क्षेत्र में चुंबकीय क्षेत्र से जुड़ा हुआ है शील्ड कंडक्टर के अंदर का क्षेत्र।
शुद्ध विद्युत अनुगम तीनों योगदानों के कारण होता है:
त्वचा के प्रभाव से नहीं बदला जाता है और समाक्षीय केबल की लंबाई डी प्रति अनुगम एल के लिए अधिकांशतः उद्धृत सूत्र द्वारा दिया जाता है:
कम आवृत्तियों पर, तीनों अनुगम पूरी तरह से मौजूद होते हैं ताकि .
उच्च आवृत्तियों पर, मात्र ढांकता हुआ क्षेत्र में चुंबकीय प्रवाह होता है, ताकि .
समाक्षीय संचरण लाइनों की अधिकांश चर्चाएँ मानती हैं कि उनका उपयोग रेडियो फ्रीक्वेंसी के लिए किया जाएगा, इसलिए समीकरणों को मात्र बाद के मामले में ही आपूर्ति की जाती है।
जैसे ही त्वचा का प्रभाव बढ़ता है, धाराएं आंतरिक कंडक्टर के बाहर (आर = ए) और ढाल के अंदर (आर = बी) के पास केंद्रित होती हैं। चूंकि आंतरिक कंडक्टर में अनिवार्य रूप से कोई गहराई नहीं है, आंतरिक कंडक्टर की सतह के नीचे कोई चुंबकीय क्षेत्र नहीं है। चूंकि आंतरिक कंडक्टर में धारा बाहरी कंडक्टर के अंदर बहने वाली विपरीत धारा से संतुलित होता है, इसलिए बाहरी कंडक्टर में कोई भी चुंबकीय क्षेत्र शेष नहीं होता है जहां . मात्र इन उच्च आवृत्तियों पर विद्युत अनुगम में योगदान देता है।
चूँकि ज्यामिति अलग है, टेलीफोन लाइनों में उपयोग की जाने वाली मुड़ जोड़ी समान रूप से प्रभावित होती है: उच्च आवृत्तियों पर अनुगम 20% से अधिक कम हो जाता है जैसा कि निम्न तालिका में देखा जा सकता है।
आवृत्ति के समारोह के रूप में टेलीफोन केबल के लक्षण
24 गेज पीआईसी टेलीफोन केबल के लिए प्रतिनिधि पैरामीटर डेटा 21 °C (70 °F).
Frequency (Hz) | R (Ω/km) | L (mH/km) | G (μS/km) | C (nF/km) |
---|---|---|---|---|
1 | 172.24 | 0.6129 | 0.000 | 51.57 |
1k | 172.28 | 0.6125 | 0.072 | 51.57 |
10k | 172.70 | 0.6099 | 0.531 | 51.57 |
100k | 191.63 | 0.5807 | 3.327 | 51.57 |
1M | 463.59 | 0.5062 | 29.111 | 51.57 |
2M | 643.14 | 0.4862 | 53.205 | 51.57 |
5M | 999.41 | 0.4675 | 118.074 | 51.57 |
रीव में अन्य गेज, तापमान और प्रकार के लिए अधिक व्यापक टेबल और टेबल उपलब्ध हैं।[12] चेन[13] उसी डेटा को पैरामिट्रीकृत रूप में देता है जिसके बारे में वह कहता है कि 50 मेगाहर्ट्ज तक प्रयोग करने योग्य है।
चेन[13]टेलीफोन मुड़ जोड़ी के लिए इस रूप का समीकरण देता है:
विषम त्वचा प्रभाव
उच्च आवृत्तियों और कम तापमान के लिए त्वचा की गहराई के लिए सामान्य सूत्र टूट जाते हैं। इस प्रभाव को पहली बार 1940 में हेंज लंदन द्वारा देखा गया था, जिन्होंने सही ढंग से सुझाव दिया था कि यह शास्त्रीय त्वचा की गहराई की सीमा तक पहुँचने वाले इलेक्ट्रॉनों की औसत मुक्त पथ लंबाई के कारण है।[14] धातुओं और अतिचालकता के इस विशिष्ट मामले के लिए मैटिस-बारडीन सिद्धांत विकसित किया गया था।
यह भी देखें
- निकटता प्रभाव (विद्युत चुंबकत्व)
- प्रवेश की गहराई
- एड़ी धाराएं
- लिट्ज तार
- ट्रांसफार्मर
- इंडक्शन कुकर # हीट जनरेशन
- प्रेरण ऊष्मन
- चुंबकीय रेनॉल्ड्स संख्या
- व्हीलर इंक्रीमेंटल इंडक्शन नियम , त्वचा प्रभाव प्रतिरोध का अनुमान लगाने की विधि
टिप्पणियाँ
- ↑ Note that the above equation for the current density inside the conductor as a function of depth applies to cases where the usual approximation for the skin depth holds. In the extreme cases where it doesn't, the exponential decrease with respect to the skin depth still applies to the magnitude of the induced currents, however the imaginary part of the exponent in that equation, and thus the phase velocity inside the material, are altered with respect to that equation.
संदर्भ
- ↑ Lamb, Horace (1883-01-01). "XIII. On electrical motions in a spherical conductor". Philosophical Transactions of the Royal Society of London. 174: 519–549. doi:10.1098/rstl.1883.0013. S2CID 111283238.
- ↑ "These emf's are greater at the center than at the circumference, so the potential difference tends to establish currents that oppose the current at the center and assist it at the circumference" Fink, Donald G.; Beaty, H. Wayne (2000). Standard Handbook for Electrical Engineers (14th ed.). McGraw-Hill. pp. 2–50. ISBN 978-0-07-022005-8.
- ↑ "To understand skin effect, you must first understand how eddy currents operate..." Johnson, Howard; Graham, Martin (2003). High-Speed Signal propagation Advanced Black Magic (3rd ed.). Prentice Hall. pp. 58–78. ISBN 978-0-13-084408-8.
- ↑ Hayt, William H. (1989), Engineering Electromagnetics (5th ed.), McGraw-Hill, ISBN 978-0070274068</रेफरी>: 362
- ↑ The formula as shown is algebraically equivalent to the formula found on page 130 Jordan (1968, p. 130)
- ↑ Weeks, Walter L. (1981), Transmission and Distribution of Electrical Energy, Harper & Row, ISBN 978-0060469825</रेफरी>: 38
:
कहाँ पे
- = धारा की कोणीय आवृत्ति = 2π × आवृत्ति
- तार की धुरी से दूरी
- तार की त्रिज्या
- तार की धुरी से दूरी, आर पर वर्तमान घनत्व फेजर
- तार की सतह पर वर्तमान घनत्व चरण
- कुल वर्तमान चरण
- प्रथम प्रकार का बेसेल फलन, कोटि 0
- प्रथम प्रकार का बेसेल फलन, क्रम 1
- कंडक्टर में तरंग संख्या
- त्वचा की गहराई भी कहा जाता है।
- = चालक की प्रतिरोधकता
- = कंडक्टर की सापेक्ष चुंबकीय पारगम्यता
- = मुक्त स्थान की पारगम्यता = 4π x 10−7 एच/एम
- =
तब से जटिल है, बेसेल कार्य भी जटिल हैं। वर्तमान घनत्व का आयाम और चरण गहराई के साथ बदलता रहता है।
गोल तार का प्रतिबाधा
गोल तार के एक खंड की प्रति यूनिट लंबाई आंतरिक विद्युत प्रतिबाधा द्वारा दी गई है:: 40
- .
यह प्रतिबाधा एक जटिल संख्या मात्रा है जो तार के आंतरिक स्व-अधिष्ठापन , प्रति इकाई लंबाई के कारण विद्युत प्रतिक्रिया (काल्पनिक) के साथ श्रृंखला में एक प्रतिरोध (वास्तविक) के अनुरूप है।
अधिष्ठापन
एक तार के अधिष्ठापन के एक हिस्से को तार के भीतर ही चुंबकीय क्षेत्र के लिए जिम्मेदार ठहराया जा सकता है जिसे आंतरिक अधिष्ठापन कहा जाता है; यह उपरोक्त सूत्र द्वारा दिए गए आगमनात्मक प्रतिघात (प्रतिबाधा का काल्पनिक भाग) के लिए खाता है। ज्यादातर मामलों में यह एक तार के अधिष्ठापन का एक छोटा सा हिस्सा होता है जिसमें तार में करंट द्वारा उत्पादित तार के बाहर चुंबकीय क्षेत्र से विद्युत चुम्बकीय प्रेरण का प्रभाव शामिल होता है। उस बाहरी अधिष्ठापन के विपरीत, आंतरिक अधिष्ठापन त्वचा के प्रभाव से कम हो जाता है, यानी आवृत्तियों पर जहां कंडक्टर के आकार की तुलना में त्वचा की गहराई अब बड़ी नहीं होती है।<ref name="Hayt303">Hayt (1981, pp. 303)
- ↑ Terman 1943, p. ??
- ↑ Fink, Donald G.; Beatty, H. Wayne, eds. (1978), Standard Handbook for Electrical Engineers (11th ed.), McGraw Hill, p. Table 18–21
- ↑ Popovic & Popovic 1999, p. 385
- ↑ Xi Nan & Sullivan 2005
- ↑ Hayt (1981, p. 434)
- ↑ Reeve (1995, p. 558)
- ↑ 13.0 13.1 Chen (2004, p. 26)
- ↑ R. G. Chambers, The Anomalous Skin Effect, Proceedings of the Royal Society of London. Series A, Mathematical and Physical Sciences, Vol. 215, No. 1123 (Dec. 22, 1952), pp. 481-497 (17 pages) https://www.jstor.org/stable/99095
- Chen, Walter Y. (2004), Home Networking Basics, Prentice Hall, ISBN 978-0-13-016511-4
- Hayt, William (1981), Engineering Electromagnetics (4th ed.), McGraw-Hill, ISBN 978-0-07-027395-5
- Hayt, William Hart (2006), Engineering Electromagnetics (7th ed.), New York: McGraw Hill, ISBN 978-0-07-310463-8
- Nahin, Paul J. Oliver Heaviside: Sage in Solitude. New York: IEEE Press, 1988. ISBN 0-87942-238-6.
- Ramo, S., J. R. Whinnery, and T. Van Duzer. Fields and Waves in Communication Electronics. New York: John Wiley & Sons, Inc., 1965.
- Ramo, Whinnery, Van Duzer (1994). Fields and Waves in Communications Electronics. John Wiley and Sons.
{{cite book}}
: CS1 maint: multiple names: authors list (link) - Reeve, Whitman D. (1995), Subscriber Loop Signaling and Transmission Handbook, IEEE Press, ISBN 978-0-7803-0440-6
- Skilling, Hugh H. (1951), Electric Transmission Lines, McGraw-Hill
- Terman, F. E. (1943), Radio Engineers' Handbook, New York: McGraw-Hill
- Xi Nan; Sullivan, C. R. (2005), "An equivalent complex permeability model for litz-wire windings", Industry Applications Conference, 3: 2229–2235, doi:10.1109/IAS.2005.1518758, ISBN 978-0-7803-9208-3, ISSN 0197-2618, S2CID 114947614
- Jordan, Edward Conrad (1968), Electromagnetic Waves and Radiating Systems, Prentice Hall, ISBN 978-0-13-249995-8
- Vander Vorst, Andre; Rosen, Arye; Kotsuka, Youji (2006), RF/Microwave Interaction with Biological Tissues, John Wiley and Sons, Inc., ISBN 978-0-471-73277-8
- Popovic, Zoya; Popovic, Branko (1999), Chapter 20,The Skin Effect, Introductory Electromagnetics, Prentice-Hall, ISBN 978-0-201-32678-9