चेन (बीजगणितीय टोपोलॉजी): Difference between revisions
No edit summary |
|||
Line 14: | Line 14: | ||
गुणांक (जो सामान्यतः पूर्णांक होते हैं) के साथ श्रृंखला में सरलताओं पर इंटीग्रल के रैखिक संयोजन को ले कर एकीकरण को श्रृंखला पर परिभाषित किया जाता है। | गुणांक (जो सामान्यतः पूर्णांक होते हैं) के साथ श्रृंखला में सरलताओं पर इंटीग्रल के रैखिक संयोजन को ले कर एकीकरण को श्रृंखला पर परिभाषित किया जाता है। | ||
सभी के-श्रृंखलाका सेट समूह बनाता है और इन समूहों के अनुक्रम को [[चेन कॉम्प्लेक्स| | सभी के-श्रृंखलाका सेट समूह बनाता है और इन समूहों के अनुक्रम को [[चेन कॉम्प्लेक्स|श्रृंखला कॉम्प्लेक्स]] कहा जाता है। | ||
== श्रृंखला पर सीमा संचालक == | == श्रृंखला पर सीमा संचालक == | ||
Line 20: | Line 20: | ||
[[File:Closed polygonal line.svg|thumb|बंद बहुभुज वक्र, सुसंगत अभिविन्यास मानते हुए, शून्य सीमा है।]]श्रृंखला की सीमा श्रृंखला में सरलताओं की सीमाओं का रैखिक संयोजन है। K-श्रृंखला की सीमा (K-1)-श्रृंखला है। ध्यान दें कि सिम्प्लेक्स की सीमा सिम्प्लेक्स नहीं है, लेकिन 1 या -1 के गुणांक वाली श्रृंखला है - इस प्रकार श्रृंखलासीमा ऑपरेटर के अंतर्गत सरलताओं का बंद होना है। | [[File:Closed polygonal line.svg|thumb|बंद बहुभुज वक्र, सुसंगत अभिविन्यास मानते हुए, शून्य सीमा है।]]श्रृंखला की सीमा श्रृंखला में सरलताओं की सीमाओं का रैखिक संयोजन है। K-श्रृंखला की सीमा (K-1)-श्रृंखला है। ध्यान दें कि सिम्प्लेक्स की सीमा सिम्प्लेक्स नहीं है, लेकिन 1 या -1 के गुणांक वाली श्रृंखला है - इस प्रकार श्रृंखलासीमा ऑपरेटर के अंतर्गत सरलताओं का बंद होना है। | ||
'उदाहरण 1:' पथ की सीमा (टोपोलॉजी) इसके अंतबिंदुओं का औपचारिक अंतर है: यह [[दूरबीन राशि]] है। वर्णन करने के लिए, यदि 1-श्रृंखला <math>c = t_1 + t_2 + t_3\,</math> बिंदु से पथ है <math>v_1\,</math> इंगित करने के लिए <math>v_4\,</math>, जहाँ | 'उदाहरण 1:' पथ की सीमा (टोपोलॉजी) इसके अंतबिंदुओं का औपचारिक अंतर है: यह [[दूरबीन राशि]] है। वर्णन करने के लिए, यदि 1-श्रृंखला <math>c = t_1 + t_2 + t_3\,</math> बिंदु से पथ है <math>v_1\,</math>इंगित करने के लिए <math>v_4\,</math>, जहाँ | ||
<math>t_1=[v_1, v_2]\,</math>, | <math>t_1=[v_1, v_2]\,</math>, | ||
<math>t_2=[v_2, v_3]\,</math> और | <math>t_2=[v_2, v_3]\,</math> और |
Revision as of 20:27, 16 May 2023
बीजगणितीय टोपोलॉजी में, k-श्रृंखला सेल परिसर में K-कोशिकाओं का औपचारिक रैखिक संयोजन है। साधारण परिसरों में (क्रमशः, घनीय परिसर), k-श्रृंखला का संयोजन है। k-सरलताएं (क्रमशः, k-क्यूब्स) के संयोजन होते हैं,[1][2][3] लेकिन आवश्यक नहीं कि जुड़ा हो। समरूपता में श्रृंखला का उपयोग किया जाता है; समरूपता समूह के तत्व श्रृंखला के समतुल्य वर्ग हैं।
परिभाषा
साधारण परिसर के लिए , समूह का -की श्रृंखला द्वारा दिया गया है:
जहाँ एकवचन समरूपता हैं | एकवचन -सरल . ध्यान दें कि कोई भी तत्व कनेक्टेड सिंपल कॉम्प्लेक्स होना आवश्यक नहीं है।
श्रृंखला पर एकीकरण
गुणांक (जो सामान्यतः पूर्णांक होते हैं) के साथ श्रृंखला में सरलताओं पर इंटीग्रल के रैखिक संयोजन को ले कर एकीकरण को श्रृंखला पर परिभाषित किया जाता है।
सभी के-श्रृंखलाका सेट समूह बनाता है और इन समूहों के अनुक्रम को श्रृंखला कॉम्प्लेक्स कहा जाता है।
श्रृंखला पर सीमा संचालक
श्रृंखला की सीमा श्रृंखला में सरलताओं की सीमाओं का रैखिक संयोजन है। K-श्रृंखला की सीमा (K-1)-श्रृंखला है। ध्यान दें कि सिम्प्लेक्स की सीमा सिम्प्लेक्स नहीं है, लेकिन 1 या -1 के गुणांक वाली श्रृंखला है - इस प्रकार श्रृंखलासीमा ऑपरेटर के अंतर्गत सरलताओं का बंद होना है।
'उदाहरण 1:' पथ की सीमा (टोपोलॉजी) इसके अंतबिंदुओं का औपचारिक अंतर है: यह दूरबीन राशि है। वर्णन करने के लिए, यदि 1-श्रृंखला बिंदु से पथ है इंगित करने के लिए , जहाँ
,
और इसके घटक 1-सिम्प्लेक्स हैं, फिर
उदाहरण 2: त्रिभुज की सीमा इसके किनारों का औपचारिक योग है जिसमें चिन्हों को व्यवस्थित किया गया है ताकि सीमा को घड़ी की विपरीत दिशा में पार किया जा सके।
श्रृंखला को चक्र कहा जाता है जब इसकी सीमा शून्य होती है। श्रृंखला जो किसी अन्य श्रृंखला की सीमा होती है, सीमा कहलाती है। सीमाएं चक्र हैं,
इसलिए शृंखलाएं शृंखला संकुल बनाती हैं, जिनके समरूपता समूह (साइकिल मोडुलो सीमाएं) सरल समरूपता (गणित) समूह कहलाते हैं।
उदाहरण 3: मूल बिंदु पर पंक्चर किए गए विमान में गैर-तुच्छ 1-समरूपता समूह है क्योंकि यूनिट सर्कल चक्र है, लेकिन सीमा नहीं है।
अंतर ज्यामिति में, श्रृंखलापर बाउंड्री ऑपरेटर और बाहरी व्युत्पन्न के बीच द्वैत को सामान्य स्टोक्स प्रमेय द्वारा व्यक्त किया जाता है।
संदर्भ
- ↑ Hatcher, Allen (2002). बीजगणितीय टोपोलॉजी. Cambridge University Press. ISBN 0-521-79540-0.
- ↑ Lee, John M. (2011). टोपोलॉजिकल मैनिफोल्ड का परिचय (2nd ed.). New York: Springer. ISBN 978-1441979391. OCLC 697506452.
- ↑ Kaczynski, Tomasz; Mischaikow, Konstantin; Mrozek, Marian (2004). कम्प्यूटेशनल समरूपता. Applied Mathematical Sciences. Vol. 157. New York: Springer-Verlag. doi:10.1007/b97315. ISBN 0-387-40853-3. MR 2028588.