ब्यूटेनॉल ईंधन: Difference between revisions
No edit summary |
No edit summary |
||
Line 21: | Line 21: | ||
*आनुवंशिक संशोधन का उपयोग लिग्नोसेल्यूलोज के क्षेत्र को व्यापक बनाने के लिए किया गया है। जिसका उपयोग ई. कोलाई द्वारा किया जा सकता है। इसने ई. कोली को उपयोगी और विविध आइसोबुटानॉल जैव-संश्लेषक बना दिया है।<ref name="A new carbon catabolite repression mutation of ''Escherichia coli'', mlc*, and its use for producing isobutanol" /> | *आनुवंशिक संशोधन का उपयोग लिग्नोसेल्यूलोज के क्षेत्र को व्यापक बनाने के लिए किया गया है। जिसका उपयोग ई. कोलाई द्वारा किया जा सकता है। इसने ई. कोली को उपयोगी और विविध आइसोबुटानॉल जैव-संश्लेषक बना दिया है।<ref name="A new carbon catabolite repression mutation of ''Escherichia coli'', mlc*, and its use for producing isobutanol" /> | ||
ई. कोलाई का प्राथमिक दोष यह है कि बड़े होने पर यह [[ अक्तेरिओफगेस |अक्तेरिओफगेस]] के प्रति | ई. कोलाई का प्राथमिक दोष यह है कि बड़े होने पर यह [[ अक्तेरिओफगेस |अक्तेरिओफगेस]] के प्रति संवहदनशील होता है। यह संवहदनशीलता संभावित रूप से सम्पूर्ण बायोरिएक्टर को संवृत कर सकती है।<ref name="Nature Review" /> इसके अतिरिक्त, ई. कोली में आइसोबुटानॉल के लिए मूल प्रतिक्रिया मार्ग कोशिका में आइसोबुटानॉल की सीमित सांद्रता पर अच्छी प्रकार से कार्य करता है। उच्च सांद्रता में ई. कोलाई की संवहदनशीलता को कम करने के लिए, संश्लेषण में सम्मिलित [[एंजाइम|एंजाइमो]] के उत्परिवर्तकों को यादृच्छिक उत्परिवर्तन द्वारा उत्पन्न किया जा सकता है। संयोग से कुछ उत्परिवर्ती आइसोबुटानॉल के प्रति अधिक प्रभावी सिद्ध हो सकते हैं, जो संश्लेषण की समग्र उपज को बढ़ाएगा।<ref>{{Cite journal|last1=Chong|first1=Huiqing|last2=Geng|first2=Hefang|last3=Zhang|first3=Hongfang|last4=Song|first4=Hao|last5=Huang|first5=Lei|last6=Jiang|first6=Rongrong|date=2013-11-06|title=''ई'' को बढ़ाना। कोलाई'' आइसोबुटानॉल सहिष्णुता इंजीनियरिंग के माध्यम से इसके वैश्विक प्रतिलेखन कारक सीएमपी रिसेप्टर प्रोटीन (सीआरपी)|journal=Biotechnology and Bioengineering|language=en|volume=111|issue=4|pages=700–708|doi=10.1002/bit.25134|pmid=24203355|s2cid=28120139|issn=0006-3592}}</ref> | ||
Line 31: | Line 31: | ||
क्लोस्ट्रीडियम सेलुलोलिटिकम का स्ट्रेन, प्राचीन सेल्युलोज-डिग्रेडिंग सूक्ष्म जीव, सेल्युलोज से सीधे आइसोबुटानॉल प्रदान करता है।<ref>{{Cite journal|title = सेल्युलोज से आइसोबुटानॉल के उत्पादन के लिए ''क्लोस्ट्रीडियम सेलुलोलिटिकम'' की मेटाबोलिक इंजीनियरिंग|journal = Applied and Environmental Microbiology|date = 2011-04-15|issn = 0099-2240|pmc = 3126361|pmid = 21378054|pages = 2727–2733|volume = 77|issue = 8|doi = 10.1128/AEM.02454-10|first1 = Wendy|last1 = Higashide|first2 = Yongchao|last2 = Li|first3 = Yunfeng|last3 = Yang|first4 = James C.|last4 = Liao| bibcode=2011ApEnM..77.2727H }}</ref> | क्लोस्ट्रीडियम सेलुलोलिटिकम का स्ट्रेन, प्राचीन सेल्युलोज-डिग्रेडिंग सूक्ष्म जीव, सेल्युलोज से सीधे आइसोबुटानॉल प्रदान करता है।<ref>{{Cite journal|title = सेल्युलोज से आइसोबुटानॉल के उत्पादन के लिए ''क्लोस्ट्रीडियम सेलुलोलिटिकम'' की मेटाबोलिक इंजीनियरिंग|journal = Applied and Environmental Microbiology|date = 2011-04-15|issn = 0099-2240|pmc = 3126361|pmid = 21378054|pages = 2727–2733|volume = 77|issue = 8|doi = 10.1128/AEM.02454-10|first1 = Wendy|last1 = Higashide|first2 = Yongchao|last2 = Li|first3 = Yunfeng|last3 = Yang|first4 = James C.|last4 = Liao| bibcode=2011ApEnM..77.2727H }}</ref> | ||
[[क्लोस्ट्रीडियम क्लुयवेरी]] में उपस्थित चयापचय मार्गों का उपयोग करके [[ब्यूटायरेट]] (ब्यूटेनॉल ईंधन का अग्रदूत) का उत्पादन करने के लिए [[सफल होना|सक्सिनेट]] और इथेनॉल के संयोजन को किण्वित किया जा सकता है। सक्सिनेट [[टीसीए चक्र]] का मध्यवर्ती है, जो ग्लूकोज का चयापचय करता है। क्लोस्ट्रीडियम एसिटोब्यूटाइलिकम और क्लोस्ट्रीडियम सैकरोब्यूटाइलिकम जैसे [[अवायवीय जीव]] बैक्टीरिया में भी ये मार्ग होते हैं। सक्सिनेट को पहले सक्रिय किया जाता है और फिर [[4-हाइड्रॉक्सीब्यूटाइरेट]] देने के लिए दो-चरणीय प्रतिक्रिया द्वारा कम किया जाता है, जिसे बाद में [[क्रोटोनील-सीओए]] चयापचय किया गया| क्रोटोनील-कोएंजाइम ए (सीओए) में चयापचय किया जाता है। फिर क्रोटोनील-सीओए को ब्यूटायरेट में बदल दिया जाता है। क्लोस्ट्रीडियम से इन ब्यूटेनॉल उत्पादन मार्गों से संबंधित जीन को ई. कोली में क्लोन किया गया था।<ref>{{cite journal |title=''क्लोस्ट्रीडियम क्लुयवेरी'' में एनारोबिक सक्सिनेट डिग्रेडेशन पाथवे का आणविक विश्लेषण|journal=Journal of Bacteriology |year=1996|volume=178|issue=3|pages=871–880 |vauthors=Sohling B, Gottschalk G |doi=10.1128/jb.178.3.871-880.1996 |pmid=8550525 |pmc=177737}}</ref> | [[क्लोस्ट्रीडियम क्लुयवेरी|क्लोस्ट्रीडियम क्लुयवहरी]] में उपस्थित चयापचय मार्गों का उपयोग करके [[ब्यूटायरेट]] (ब्यूटेनॉल ईंधन का अग्रदूत) का उत्पादन करने के लिए [[सफल होना|सक्सिनेट]] और इथेनॉल के संयोजन को किण्वित किया जा सकता है। सक्सिनेट [[टीसीए चक्र]] का मध्यवर्ती है, जो ग्लूकोज का चयापचय करता है। क्लोस्ट्रीडियम एसिटोब्यूटाइलिकम और क्लोस्ट्रीडियम सैकरोब्यूटाइलिकम जैसे [[अवायवीय जीव]] बैक्टीरिया में भी ये मार्ग होते हैं। सक्सिनेट को पहले सक्रिय किया जाता है और फिर [[4-हाइड्रॉक्सीब्यूटाइरेट]] देने के लिए दो-चरणीय प्रतिक्रिया द्वारा कम किया जाता है, जिसे बाद में [[क्रोटोनील-सीओए]] चयापचय किया गया| क्रोटोनील-कोएंजाइम ए (सीओए) में चयापचय किया जाता है। फिर क्रोटोनील-सीओए को ब्यूटायरेट में बदल दिया जाता है। क्लोस्ट्रीडियम से इन ब्यूटेनॉल उत्पादन मार्गों से संबंधित जीन को ई. कोली में क्लोन किया गया था।<ref>{{cite journal |title=''क्लोस्ट्रीडियम क्लुयवेरी'' में एनारोबिक सक्सिनेट डिग्रेडेशन पाथवे का आणविक विश्लेषण|journal=Journal of Bacteriology |year=1996|volume=178|issue=3|pages=871–880 |vauthors=Sohling B, Gottschalk G |doi=10.1128/jb.178.3.871-880.1996 |pmid=8550525 |pmc=177737}}</ref> | ||
===[[साइनोबैक्टीरीया]]=== | ===[[साइनोबैक्टीरीया]]=== | ||
सायनोबैक्टीरिया प्रकाश [[संश्लेषक]] जीवाणुओं का | सायनोबैक्टीरिया प्रकाश [[संश्लेषक]] जीवाणुओं का समूह है।<ref name="cyanobacteria wiki">[[Cyanobacteria]]</ref> जब आनुवंशिक रूप से आइसोबुटानॉल और इसके अनुरूप [[एल्डीहाइड]] का उत्पादन करने के लिए इंजीनियर किया जाता है। तब वह आइसोबुटानॉल जैवसंश्लेषण के लिए उपयुक्त होते हैं।<ref>{{Cite journal|title = कार्बन डाइऑक्साइड का आइसोब्यूटिराल्डिहाइड में प्रत्यक्ष प्रकाश संश्लेषक पुनर्चक्रण|journal = Nature Biotechnology|pages = 1177–1180|volume = 27|issue = 12|doi = 10.1038/nbt.1586|first1 = Shota|last1 = Atsumi|first2 = Wendy|last2 = Higashide|first3 = James C|last3 = Liao|pmid=19915552|date=December 2009|s2cid = 1492698}}</ref> सायनोबैक्टीरिया की आइसोबुटानॉल उत्पादक प्रजातियां जैव ईंधन सिंथेसाइज़र के रूप में अनेक लाभ प्रदान करती हैं: | ||
* सायनोबैक्टीरिया पौधों की तुलना में तेजी से बढ़ते हैं<ref name="Cyanobacteria Review">{{cite journal|vauthors=((Machado IMP)), Atsumi S |title=सायनोबैक्टीरियल जैव ईंधन उत्पादन|journal=Journal of Biotechnology|date=1 November 2012|volume=162|issue=1|pages=50–56 |pmid=22446641 |doi=10.1016/j.jbiotec.2012.03.005}}</ref> और पौधों की तुलना में सूर्य के प्रकाश को अधिक कुशलता से अवशोषित करते हैं।<ref name="The instigator">{{cite journal|vauthors=Varman AM, Xiao Y, Pakrasi HB, Tang YJ |title=Metabolic Engineering of Synechocystis sp. Strain PCC 6803 for Isobutanol Production |journal=Applied and Environmental Microbiology |date=26 November 2012 |volume=79 |issue=3 |pages=908–914 |doi=10.1128/AEM.02827-12 |pmid=23183979 |pmc=3568544}}</ref> इसका | * सायनोबैक्टीरिया पौधों की तुलना में तेजी से बढ़ते हैं<ref name="Cyanobacteria Review">{{cite journal|vauthors=((Machado IMP)), Atsumi S |title=सायनोबैक्टीरियल जैव ईंधन उत्पादन|journal=Journal of Biotechnology|date=1 November 2012|volume=162|issue=1|pages=50–56 |pmid=22446641 |doi=10.1016/j.jbiotec.2012.03.005}}</ref> और पौधों की तुलना में सूर्य के प्रकाश को अधिक कुशलता से अवशोषित करते हैं।<ref name="The instigator">{{cite journal|vauthors=Varman AM, Xiao Y, Pakrasi HB, Tang YJ |title=Metabolic Engineering of Synechocystis sp. Strain PCC 6803 for Isobutanol Production |journal=Applied and Environmental Microbiology |date=26 November 2012 |volume=79 |issue=3 |pages=908–914 |doi=10.1128/AEM.02827-12 |pmid=23183979 |pmc=3568544}}</ref> इसका अर्थ यह है कि उन्हें अन्य जैव ईंधन बायोसिंथेसाइज़र के लिए उपयोग किए जाने वाले पौधे पदार्थ की तुलना में तीव्र दर से पुनःपूर्ति की जा सकती है। | ||
* सायनोबैक्टीरिया को गैर-कृषि योग्य भूमि (खेती के लिए उपयोग न की जाने वाली भूमि) पर उगाया जा सकता है।<ref name="Cyanobacteria Review" />यह भोजन बनाम ईंधन को रोकता है।<ref name="Cyanobacteria Review" />* | * सायनोबैक्टीरिया को गैर-कृषि योग्य भूमि (खेती के लिए उपयोग न की जाने वाली भूमि) पर उगाया जा सकता है।<ref name="Cyanobacteria Review" /> यह भोजन बनाम ईंधन को रोकता है।<ref name="Cyanobacteria Review" /> | ||
** क्योंकि सीओ<sub>2</sub> वायुमंडल से प्राप्त होता है, सायनोबैक्टीरिया को आइसोबुटानॉल को संश्लेषित करने के लिए पौधे के पदार्थ की आवश्यकता नहीं होती है (अन्य जीवों में जो आइसोबुटानॉल को संश्लेषित करते हैं, पौधे का पदार्थ आइसोबुटानॉल को कृत्रिम रूप से इकट्ठा करने के लिए आवश्यक कार्बन का स्रोत है)।<ref name="The instigator" />चूँकि आइसोबुटानॉल उत्पादन की इस विधि द्वारा पादप पदार्थ का उपयोग नहीं किया जाता है, इसलिए खाद्य | *.<ref name="The instigator" />इससे दो लाभ मिलते हैं: | ||
** क्योंकि सीओ<sub>2</sub> वायुमंडल से प्राप्त होता है, सायनोबैक्टीरिया को आइसोबुटानॉल को संश्लेषित करने के लिए पौधे के पदार्थ की आवश्यकता नहीं होती है (अन्य जीवों में जो आइसोबुटानॉल को संश्लेषित करते हैं, पौधे का पदार्थ आइसोबुटानॉल को कृत्रिम रूप से इकट्ठा करने के लिए आवश्यक कार्बन का स्रोत है)।<ref name="The instigator" />चूँकि आइसोबुटानॉल उत्पादन की इस विधि द्वारा पादप पदार्थ का उपयोग नहीं किया जाता है, इसलिए खाद्य स्रोतबं से पादप पदार्थ प्राप्त करने और खाद्य-ईंधन मूल्य संबंध बनाने की आवश्यकता से बचा जाता है।<ref name="Cyanobacteria Review" />** क्योंकि सीओ<sub>2</sub> साइनोबैक्टीरिया द्वारा वायुमंडल से अवशोषित किया जाता है, [[जैविक उपचार]] की संभावना (साइनोबैक्टीरिया के रूप में अतिरिक्त CO को हटाकर)<sub>2</sub> वायुमंडल से) उपस्थित है।<ref name="The instigator" /> | |||
सायनोबैक्टीरिया की प्राथमिक कमियाँ हैं: | सायनोबैक्टीरिया की प्राथमिक कमियाँ हैं: | ||
* बड़े होने पर | * बड़े होने पर वह पर्यावरणीय परिस्थितियों के प्रति संवहदनशील होते हैं। साइनोबैक्टीरिया अनुचित [[तरंग दैर्ध्य]] और तीव्रता, CO की सूर्य की रोशनी से बहुत पीड़ित होते हैं<sub>2</sub> अनुचित एकाग्रता, या एच<sub>2</sub>अनुचित लवणता के बावजूद, खारे पानी और [[समुद्री जल]] में साइनोबैक्टीरिया की प्रचुर मात्रा पनपने में सक्षम है। इन कारकों को आम तौर पर नियंत्रित करना कठिन होता है, और आइसोबुटानोल के साइनोबैक्टीरियल उत्पादन में एक बड़ी बाधा उत्पन्न करते हैं।<ref name="Thug life">{{cite journal |vauthors=Singh NK, Dhar DW |title=दूसरी पीढ़ी के जैव ईंधन के रूप में सूक्ष्म शैवाल। एक समीक्षा|journal=Agronomy for Sustainable Development |date=11 March 2011 |volume=31 |issue=4 |pages=605–629 |doi=10.1007/s13593-011-0018-0 |s2cid=38589348 |url=https://hal.archives-ouvertes.fr/hal-00930486/file/hal-00930486.pdf}}</ref> | ||
* सायनोबैक्टीरिया [[बायोरिएक्टर]] को संचालित करने के लिए उच्च ऊर्जा की आवश्यकता होती है। संस्कृतियों को निरंतर मिश्रण की आवश्यकता होती है, और जैवसंश्लेषक उत्पादों की कटाई ऊर्जा-गहन है। इससे सायनोबैक्टीरिया के माध्यम से आइसोबुटानॉल उत्पादन की दक्षता कम हो जाती है।<ref name="Thug life" /> | * सायनोबैक्टीरिया [[बायोरिएक्टर]] को संचालित करने के लिए उच्च ऊर्जा की आवश्यकता होती है। संस्कृतियों को निरंतर मिश्रण की आवश्यकता होती है, और जैवसंश्लेषक उत्पादों की कटाई ऊर्जा-गहन है। इससे सायनोबैक्टीरिया के माध्यम से आइसोबुटानॉल उत्पादन की दक्षता कम हो जाती है।<ref name="Thug life" /> | ||
साइनोबैक्टीरिया को उनके ब्यूटेनॉल उत्पादन को बढ़ाने के लिए फिर से इंजीनियर किया जा सकता है, जो | साइनोबैक्टीरिया को उनके ब्यूटेनॉल उत्पादन को बढ़ाने के लिए फिर से इंजीनियर किया जा सकता है, जो पाथवह इंजीनियरिंग में एक डिजाइन सिद्धांत के रूप में एटीपी और कॉफ़ेक्टर ड्राइविंग बलों के महत्व को दर्शाता है। अनेक जीवों में [[ एसिटाइल कोआ ]] पर निर्भर मार्ग का उपयोग करके ब्यूटेनॉल का उत्पादन करने की क्षमता होती है। इस मार्ग के साथ मुख्य समस्या पहली प्रतिक्रिया है जिसमें दो एसिटाइल-सीओए अणुओं का [[एसिटोएसिटाइल-सीओए]] में संघनन सम्मिलित है। यह प्रतिक्रिया इससे जुड़ी सकारात्मक [[गिब्स मुक्त ऊर्जा]] (डीजी = 6.8 किलो कैलोरी/मोल) के कारण थर्मोडायनामिक रूप से प्रतिकूल है।<ref>{{cite journal|title=एसीटोएसिटाइल कोएंजाइम-एसीटोएसीटेट के एंजाइमैटिक ब्रेकडाउन और संश्लेषण में मध्यवर्ती के रूप में|journal=J Am Chem Soc |year=1953|volume=75|issue=6|pages=1517–1518|vauthors=Stern JR, Coon MJ, Delcampillo A |doi=10.1021/ja01102a540}}</ref><ref>{{cite journal |title=एटीपी सायनोबैक्टीरिया में 1-ब्यूटेनॉल के प्रत्यक्ष प्रकाश संश्लेषक उत्पादन को संचालित करता है|journal=Proceedings of the National Academy of Sciences of the United States of America|year=2012|vauthors=Lan EI, Liao JC |doi=10.1073/pnas.1200074109 |bibcode=2012PNAS..109.6018L |volume=109 |issue=16 |pages=6018–6023 |pmid=22474341 |pmc=3341080 |doi-access=free}}</ref> | ||
Line 55: | Line 56: | ||
===[[Saccharomyces cerevisiae]]=== | ===[[Saccharomyces cerevisiae]]=== | ||
सैक्रोमाइसेस सेरेविसिया, या एस. सेरेविसिया, खमीर की एक प्रजाति है। यह स्वाभाविक रूप से अपने [[वेलिन]] बायोसिंथेटिक मार्ग के माध्यम से कम मात्रा में आइसोबुटानॉल का उत्पादन करता है।<ref name="Ehrlich pathway enhance">{{cite journal|vauthors=Kondo T, Tezuka H, Ishii J, Matsuda F, Ogino C, Kondo A |title=सैक्रोमाइसेस सेरेविसिया द्वारा ग्लूकोज से बढ़े हुए आइसोबुटानॉल उत्पादन के लिए एर्लिच मार्ग को बढ़ाने और कार्बन प्रवाह को बदलने के लिए जेनेटिक इंजीनियरिंग|journal=Journal of Biotechnology |date=1 May 2012 |volume=159 |issue=1–2 |pages=32–37 |doi=10.1016/j.jbiotec.2012.01.022 |pmid=22342368}}</ref> एस. सेरेविसिया अनेक कारणों से आइसोबुटानॉल जैव ईंधन उत्पादन के लिए एक आदर्श उम्मीदवार है: | सैक्रोमाइसेस सेरेविसिया, या एस. सेरेविसिया, खमीर की एक प्रजाति है। यह स्वाभाविक रूप से अपने [[वेलिन|वहलिन]] बायोसिंथेटिक मार्ग के माध्यम से कम मात्रा में आइसोबुटानॉल का उत्पादन करता है।<ref name="Ehrlich pathway enhance">{{cite journal|vauthors=Kondo T, Tezuka H, Ishii J, Matsuda F, Ogino C, Kondo A |title=सैक्रोमाइसेस सेरेविसिया द्वारा ग्लूकोज से बढ़े हुए आइसोबुटानॉल उत्पादन के लिए एर्लिच मार्ग को बढ़ाने और कार्बन प्रवाह को बदलने के लिए जेनेटिक इंजीनियरिंग|journal=Journal of Biotechnology |date=1 May 2012 |volume=159 |issue=1–2 |pages=32–37 |doi=10.1016/j.jbiotec.2012.01.022 |pmid=22342368}}</ref> एस. सेरेविसिया अनेक कारणों से आइसोबुटानॉल जैव ईंधन उत्पादन के लिए एक आदर्श उम्मीदवार है: | ||
* एस. सेरेविसिया को कम [[पीएच]] पर उगाया जा सकता है, जिससे औद्योगिक बायोरिएक्टरों में वृद्धि के दौरान संदूषण को रोकने में मदद मिलती है।<ref name="Nature Review" />* एस. सेरेविसिया बैक्टीरियोफेज से प्रभावित नहीं हो सकता क्योंकि यह एक [[यूकेरियोट]] है।<ref name="Nature Review" />*एस. सेरेविसिया और इसके जीव विज्ञान के बारे में व्यापक वैज्ञानिक ज्ञान पहले से ही उपस्थित है।<ref name="Nature Review" /> | * एस. सेरेविसिया को कम [[पीएच]] पर उगाया जा सकता है, जिससे औद्योगिक बायोरिएक्टरों में वृद्धि के दौरान संदूषण को रोकने में मदद मिलती है।<ref name="Nature Review" />* एस. सेरेविसिया बैक्टीरियोफेज से प्रभावित नहीं हो सकता क्योंकि यह एक [[यूकेरियोट]] है।<ref name="Nature Review" />*एस. सेरेविसिया और इसके जीव विज्ञान के बारे में व्यापक वैज्ञानिक ज्ञान पहले से ही उपस्थित है।<ref name="Nature Review" /> | ||
एस. सेरेविसिया के | एस. सेरेविसिया के वहलिन बायोसिंथेटिक मार्ग में एंजाइमों की अधिक अभिव्यक्ति का उपयोग आइसोबुटानॉल उपज में सुधार के लिए किया गया है।<ref name="Ehrlich pathway enhance"/><ref name=cytosol>{{cite journal |author1=MATSUDA, Fumio |author2=KONDO, Takashi |author3=IDA, Kengo |author4=TEZUKA, Hironori |author5=ISHII, Jun |author6= KONDO, Akihiko |title=सैक्रोमाइसेस सेरेविसिया के साइटोसोल में आइसोबुटानॉल जैवसंश्लेषण के लिए एक कृत्रिम मार्ग का निर्माण|journal=Bioscience, Biotechnology, and Biochemistry |date=1 January 2012 |volume=76 |issue=11 |pages=2139–2141 |doi=10.1271/bbb.120420 |pmid=23132567 |s2cid=21726896}}</ref><ref name="overexpression of 2-keto">{{cite journal|author1=Lee, Won-Heong |author2=Seo, Seung-Oh |author3=Bae, Yi-Hyun |author4=Nan, Hong |author5=Jin, Yong-Su |author6=Seo, Jin-Ho |title=Isobutanol production in engineered Saccharomyces cerevisiae by overexpression of 2-ketoisovalerate decarboxylase and valine biosynthetic enzymes|journal=Bioprocess and Biosystems Engineering |date=28 April 2012 |volume=35 |issue=9 |pages=1467–1475 |pmid=22543927 |s2cid=25012774 |doi=10.1007/s00449-012-0736-y}}</ref> चूंकि, एस. सेरेविसिया में अंतर्निहित जीव विज्ञान के कारण इसके साथ काम करना कठिन सिद्ध हुआ है: | ||
* यूकेरियोट के रूप में, एस. सेरेविसिया आनुवंशिक रूप से ई. कोली या बी. सबटिलिस की तुलना में अधिक जटिल है, और परिणामस्वरूप आनुवंशिक रूप से परिवर्तन करना कठिन होता है।<ref name="Nature Review" /> | * यूकेरियोट के रूप में, एस. सेरेविसिया आनुवंशिक रूप से ई. कोली या बी. सबटिलिस की तुलना में अधिक जटिल है, और परिणामस्वरूप आनुवंशिक रूप से परिवर्तन करना कठिन होता है।<ref name="Nature Review" /> | ||
* एस. सेरेविसिया में इथेनॉल#किण्वन होता है। यह प्राकृतिक क्षमता प्रबल हो सकती है और परिणामस्वरूप एस. सेरेविसिया द्वारा आइसोबुटानॉल उत्पादन को रोक सकती है।<ref name="Nature Review" />* एस. सेरेविसिया आइसोबुटानॉल का उत्पादन करने के लिए पांच-कार्बन शर्करा का उपयोग नहीं कर सकता है। पांच-कार्बन शर्करा का उपयोग करने में असमर्थता एस. सेरेविसिया को लिग्नोसेल्यूलोज का उपयोग करने से रोकती है, और इसका | * एस. सेरेविसिया में इथेनॉल#किण्वन होता है। यह प्राकृतिक क्षमता प्रबल हो सकती है और परिणामस्वरूप एस. सेरेविसिया द्वारा आइसोबुटानॉल उत्पादन को रोक सकती है।<ref name="Nature Review" />* एस. सेरेविसिया आइसोबुटानॉल का उत्पादन करने के लिए पांच-कार्बन शर्करा का उपयोग नहीं कर सकता है। पांच-कार्बन शर्करा का उपयोग करने में असमर्थता एस. सेरेविसिया को लिग्नोसेल्यूलोज का उपयोग करने से रोकती है, और इसका अर्थ है कि एस. सेरेविसिया को आइसोबुटानोल का उत्पादन करने के लिए मानव उपभोग के लिए इच्छित पौधे पदार्थ का उपयोग करना चाहिए। जब एस. सेरेविसिया द्वारा आइसोबुटानॉल का उत्पादन किया जाता है तब इसके परिणामस्वरूप प्रतिकूल खाद्य/ईंधन मूल्य संबंध उत्पन्न होता है।<ref name="Nature Review" /> | ||
Line 93: | Line 94: | ||
*अपेक्षाकृत उच्च [[ऊर्जा घनत्व]], गैसोलीन का 98%।<ref name="इंजीनियर्ड राल्सटोनिया यूट्रोफा में ब्रांच्ड-चेन अल्कोहल के उत्पादन पर अध्ययन">{{cite journal|vauthors=Lu J, Brigham CJ, Gai CS, Sinskey AJ |title=इंजीनियर्ड राल्सटोनिया यूट्रोफा में ब्रांच्ड-चेन अल्कोहल के उत्पादन पर अध्ययन|journal=Applied Microbiology and Biotechnology|date=4 August 2012 |volume=96|issue=1|pages=283–297 |doi=10.1007/s00253-012-4320-9 |pmid=22864971 |s2cid=62337 |url=http://dspace.mit.edu/bitstream/1721.1/75742/1/sinksey5.pdf |hdl=1721.1/75742 |hdl-access=free}}</ref> | *अपेक्षाकृत उच्च [[ऊर्जा घनत्व]], गैसोलीन का 98%।<ref name="इंजीनियर्ड राल्सटोनिया यूट्रोफा में ब्रांच्ड-चेन अल्कोहल के उत्पादन पर अध्ययन">{{cite journal|vauthors=Lu J, Brigham CJ, Gai CS, Sinskey AJ |title=इंजीनियर्ड राल्सटोनिया यूट्रोफा में ब्रांच्ड-चेन अल्कोहल के उत्पादन पर अध्ययन|journal=Applied Microbiology and Biotechnology|date=4 August 2012 |volume=96|issue=1|pages=283–297 |doi=10.1007/s00253-012-4320-9 |pmid=22864971 |s2cid=62337 |url=http://dspace.mit.edu/bitstream/1721.1/75742/1/sinksey5.pdf |hdl=1721.1/75742 |hdl-access=free}}</ref> | ||
*हवा से पानी को सरलता से अवशोषित नहीं करता है, जिससे इंजन और पाइपलाइनों का क्षरण रुक जाता है।<ref name="Nature Review"/>*गैसोलीन के साथ किसी भी अनुपात में मिलाया जा सकता है,<ref name="बुटानोल-सहिष्णु एंटरोकोकस फ़ेशियम की जांच की गई, जो बुटानोल उत्पादन में सक्षम है">{{cite journal|vauthors=((Ting CNW)), Wu J, Takahashi K, Endo A, Zhao H |title=बुटानोल-सहिष्णु एंटरोकोकस फ़ेशियम की जांच की गई, जो बुटानोल उत्पादन में सक्षम है|journal=Applied Biochemistry and Biotechnology|date=8 September 2012 |volume=168 |issue=6 |pages=1672–1680|doi=10.1007/s12010-012-9888-0|pmid=22961352|s2cid=9201136}}</ref> इसका | *हवा से पानी को सरलता से अवशोषित नहीं करता है, जिससे इंजन और पाइपलाइनों का क्षरण रुक जाता है।<ref name="Nature Review"/>*गैसोलीन के साथ किसी भी अनुपात में मिलाया जा सकता है,<ref name="बुटानोल-सहिष्णु एंटरोकोकस फ़ेशियम की जांच की गई, जो बुटानोल उत्पादन में सक्षम है">{{cite journal|vauthors=((Ting CNW)), Wu J, Takahashi K, Endo A, Zhao H |title=बुटानोल-सहिष्णु एंटरोकोकस फ़ेशियम की जांच की गई, जो बुटानोल उत्पादन में सक्षम है|journal=Applied Biochemistry and Biotechnology|date=8 September 2012 |volume=168 |issue=6 |pages=1672–1680|doi=10.1007/s12010-012-9888-0|pmid=22961352|s2cid=9201136}}</ref> इसका अर्थ है कि ईंधन उपस्थिता पेट्रोलियम बुनियादी ढांचे में प्रतिस्थापन ईंधन या प्रमुख योज्य के रूप में गिर सकता है।<ref name="Nature Review"/>* खाद्य आपूर्ति से जुड़े न होने वाले पौधों के पदार्थ से उत्पादित किया जा सकता है, जिससे ईंधन-कीमत/खाद्य-कीमत संबंध को रोका जा सकता है।<ref name="Nature Review"/><ref name=Elucidating>{{cite journal|last=Trinh|first=Cong T.|title=एनारोबिक एन-ब्यूटेनॉल और आइसोबुटानॉल उत्पादन को बाध्य करने के लिए ''एस्चेरिचिया कोली'' चयापचय को स्पष्ट करना और पुन: प्रोग्राम करना|journal=Applied Microbiology and Biotechnology|date=9 June 2012|volume=95|issue=4|pages=1083–1094|doi=10.1007/s00253-012-4197-7|pmid=22678028|s2cid=10586770}}</ref><ref name="A new carbon catabolite repression mutation of ''Escherichia coli'', mlc*, and its use for producing isobutanol">{{cite journal|vauthors=Nakashima N, Tamura T |title=A new carbon catabolite repression mutation of ''Escherichia coli'', mlc∗, and its use for producing isobutanol |journal=Journal of Bioscience and Bioengineering |date=1 July 2012 |volume=114 |issue=1 |pages=38–44 |doi=10.1016/j.jbiosc.2012.02.029|pmid=22561880}}</ref><ref name=EMA>{{cite journal |vauthors=Li S, Huang D, Li Y, Wen J, Jia X |title=प्राथमिक मोड विश्लेषण द्वारा इंजीनियर्ड आइसोबुटानॉल-उत्पादक बैसिलस सबटिलिस का तर्कसंगत सुधार|journal=Microbial Cell Factories|date=1 January 2012|volume=11|issue=1|pages=101|doi=10.1186/1475-2859-11-101 |pmid=22862776 |pmc=3475101}}</ref> | ||
*यह मानते हुए कि यह अवशिष्ट [[ लिग्नोसेल्युलोसिक बायोमास ]] फीडस्टॉक्स से उत्पन्न होता है, आइसोबुटानॉल को गैसोलीन के साथ मिश्रित करने से [[ग्रीनहाउस गैस]] उत्सर्जन में काफी कमी आ सकती है।<ref>{{Cite journal |vauthors=Wojcieszyk M, Knuutila L, Kroyan Y, de Pinto Balsemão M, Tripathi R, Keskivali J, Karvo A, Santasalo-Aarnio A, Blomstedt O, Larmi M |date=January 2021 |title=स्पार्क इग्निशन इंजन के लिए गैसोलीन बायो-ब्लेंडस्टॉक्स के रूप में एनीसोल और आइसोबुटानॉल का प्रदर्शन|journal=Sustainability |language=en |volume=13 |issue=16 |pages=8729 |doi=10.3390/su13168729 |doi-access=free}}</ref> | *यह मानते हुए कि यह अवशिष्ट [[ लिग्नोसेल्युलोसिक बायोमास ]] फीडस्टॉक्स से उत्पन्न होता है, आइसोबुटानॉल को गैसोलीन के साथ मिश्रित करने से [[ग्रीनहाउस गैस]] उत्सर्जन में काफी कमी आ सकती है।<ref>{{Cite journal |vauthors=Wojcieszyk M, Knuutila L, Kroyan Y, de Pinto Balsemão M, Tripathi R, Keskivali J, Karvo A, Santasalo-Aarnio A, Blomstedt O, Larmi M |date=January 2021 |title=स्पार्क इग्निशन इंजन के लिए गैसोलीन बायो-ब्लेंडस्टॉक्स के रूप में एनीसोल और आइसोबुटानॉल का प्रदर्शन|journal=Sustainability |language=en |volume=13 |issue=16 |pages=8729 |doi=10.3390/su13168729 |doi-access=free}}</ref> | ||
===एन-ब्यूटेनॉल=== | ===एन-ब्यूटेनॉल=== | ||
बुटानॉल जल प्रदूषण को अच्छी प्रकार से सहन करता है और इथेनॉल की तुलना में कम संक्षारक है और गैसोलीन के लिए उपस्थिता [[पाइपलाइन परिवहन]] के माध्यम से वितरण के लिए अधिक उपयुक्त है।<ref name="dupont"/>[[डीजल ईंधन]] या गैसोलीन के साथ मिश्रण में, यदि ईंधन पानी से दूषित हो | बुटानॉल जल प्रदूषण को अच्छी प्रकार से सहन करता है और इथेनॉल की तुलना में कम संक्षारक है और गैसोलीन के लिए उपस्थिता [[पाइपलाइन परिवहन]] के माध्यम से वितरण के लिए अधिक उपयुक्त है।<ref name="dupont"/>[[डीजल ईंधन]] या गैसोलीन के साथ मिश्रण में, यदि ईंधन पानी से दूषित हो तब इथेनॉल की तुलना में ब्यूटेनॉल के इस ईंधन से अलग होने की संभावना कम होती है।<ref name="dupont"/>इथेनॉल युक्त ब्यूटेनॉल और गैसोलीन के साथ [[वाष्प दबाव]] सह-मिश्रण तालमेल भी है, जो इथेनॉल मिश्रण की सुविधा प्रदान करता है। यह मिश्रित ईंधन के भंडारण और वितरण की सुविधा प्रदान करता है।<ref name="dupont"/><ref name="colostate">{{cite web | ||
|url = http://www.ext.colostate.edu/PUBS/FARMMGT/05010.html | |url = http://www.ext.colostate.edu/PUBS/FARMMGT/05010.html | ||
|title = Alcohol for Motor Fuels | |title = Alcohol for Motor Fuels | ||
Line 164: | Line 165: | ||
====ब्यूटेनॉल विशेषताएँ: वायु-ईंधन अनुपात, विशिष्ट ऊर्जा, चिपचिपाहट, विशिष्ट ऊष्मा==== | ====ब्यूटेनॉल विशेषताएँ: वायु-ईंधन अनुपात, विशिष्ट ऊर्जा, चिपचिपाहट, विशिष्ट ऊष्मा==== | ||
ब्यूटेनॉल और इथेनॉल सहित अल्कोहल ईंधन आंशिक रूप से ऑक्सीकृत होते हैं और इसलिए उन्हें गैसोलीन की तुलना में अधिक समृद्ध मिश्रण पर चलाने की आवश्यकता होती है। कारों में मानक गैसोलीन इंजन ईंधन में भिन्नता को समायोजित करने के लिए वायु-ईंधन अनुपात को समायोजित कर सकते हैं, लेकिन केवल मॉडल के आधार पर कुछ सीमाओं के भीतर। यदि इंजन को शुद्ध इथेनॉल या इथेनॉल के उच्च प्रतिशत के साथ गैसोलीन मिश्रण पर चलाने से सीमा पार हो जाती है, | ब्यूटेनॉल और इथेनॉल सहित अल्कोहल ईंधन आंशिक रूप से ऑक्सीकृत होते हैं और इसलिए उन्हें गैसोलीन की तुलना में अधिक समृद्ध मिश्रण पर चलाने की आवश्यकता होती है। कारों में मानक गैसोलीन इंजन ईंधन में भिन्नता को समायोजित करने के लिए वायु-ईंधन अनुपात को समायोजित कर सकते हैं, लेकिन केवल मॉडल के आधार पर कुछ सीमाओं के भीतर। यदि इंजन को शुद्ध इथेनॉल या इथेनॉल के उच्च प्रतिशत के साथ गैसोलीन मिश्रण पर चलाने से सीमा पार हो जाती है, तब इंजन धीमी गति से चलेगा, जो घटकों को गंभीर रूप से नुकसान पहुंचा सकता है। इथेनॉल की तुलना में, ब्यूटेनॉल को रेट्रोफिट की आवश्यकता के बिना उपस्थिता कारों में उपयोग के लिए गैसोलीन के साथ उच्च अनुपात में मिलाया जा सकता है क्योंकि वायु-ईंधन अनुपात और ऊर्जा सामग्री गैसोलीन के करीब है।<ref name="colostate"/><ref name="usatoday"/> | ||
अल्कोहल ईंधन में गैसोलीन की तुलना में प्रति यूनिट वजन और यूनिट आयतन में कम ऊर्जा होती है। प्रति चक्र जारी शुद्ध ऊर्जा की तुलना करना संभव बनाने के लिए कभी-कभी ईंधन विशिष्ट ऊर्जा नामक माप का उपयोग किया जाता है। इसे प्रति वायु ईंधन अनुपात में जारी ऊर्जा के रूप में परिभाषित किया गया है। प्रति चक्र जारी शुद्ध ऊर्जा इथेनॉल या मेथनॉल की तुलना में ब्यूटेनॉल के लिए अधिक है और गैसोलीन की तुलना में लगभग 10% अधिक है।<ref>[http://www.oilgae.com/energy/sou/ae/re/be/alc/but/but.html Butanol Fuel – Biofuels, Bio-energy - Oilgae - Oil from Algae<!-- Bot generated title -->]</ref> | अल्कोहल ईंधन में गैसोलीन की तुलना में प्रति यूनिट वजन और यूनिट आयतन में कम ऊर्जा होती है। प्रति चक्र जारी शुद्ध ऊर्जा की तुलना करना संभव बनाने के लिए कभी-कभी ईंधन विशिष्ट ऊर्जा नामक माप का उपयोग किया जाता है। इसे प्रति वायु ईंधन अनुपात में जारी ऊर्जा के रूप में परिभाषित किया गया है। प्रति चक्र जारी शुद्ध ऊर्जा इथेनॉल या मेथनॉल की तुलना में ब्यूटेनॉल के लिए अधिक है और गैसोलीन की तुलना में लगभग 10% अधिक है।<ref>[http://www.oilgae.com/energy/sou/ae/re/be/alc/but/but.html Butanol Fuel – Biofuels, Bio-energy - Oilgae - Oil from Algae<!-- Bot generated title -->]</ref> | ||
Line 191: | Line 192: | ||
|- | |- | ||
|} | |} | ||
लंबी कार्बन श्रृंखलाओं के साथ अल्कोहल की चिपचिपाहट बढ़ जाती है। इस कारण से, जब अधिक चिपचिपा विलायक वांछित होता है | लंबी कार्बन श्रृंखलाओं के साथ अल्कोहल की चिपचिपाहट बढ़ जाती है। इस कारण से, जब अधिक चिपचिपा विलायक वांछित होता है तब ब्यूटेनॉल का उपयोग छोटी अल्कोहल के विकल्प के रूप में किया जाता है। ब्यूटेनॉल की गतिकीय चिपचिपाहट गैसोलीन की तुलना में अनेक गुना अधिक है और उच्च गुणवत्ता वाले डीजल ईंधन जितनी चिपचिपी है।<ref>[http://www.engineeringtoolbox.com/kinematic-viscosity-d_397.html Engineering Toolbox]</ref> | ||
इंजन में ईंधन को जलने से पहले वाष्पीकृत करना पड़ता है। ठंड के मौसम में ठंड शुरू होने के दौरान अल्कोहल ईंधन के साथ अपर्याप्त वाष्पीकरण एक ज्ञात समस्या है। चूंकि ब्यूटेनॉल के वाष्पीकरण की गर्मी इथेनॉल की तुलना में आधे से भी कम है, इसलिए बुटेनॉल पर चलने वाले इंजन को इथेनॉल या मेथनॉल पर चलने वाले इंजन की तुलना में ठंड के मौसम में शुरू करना आसान होना चाहिए।<ref name="colostate"/> | इंजन में ईंधन को जलने से पहले वाष्पीकृत करना पड़ता है। ठंड के मौसम में ठंड शुरू होने के दौरान अल्कोहल ईंधन के साथ अपर्याप्त वाष्पीकरण एक ज्ञात समस्या है। चूंकि ब्यूटेनॉल के वाष्पीकरण की गर्मी इथेनॉल की तुलना में आधे से भी कम है, इसलिए बुटेनॉल पर चलने वाले इंजन को इथेनॉल या मेथनॉल पर चलने वाले इंजन की तुलना में ठंड के मौसम में शुरू करना आसान होना चाहिए।<ref name="colostate"/> | ||
Revision as of 09:25, 10 August 2023
ब्यूटेनॉल का उपयोग आंतरिक दहन इंजन में ईंधन के रूप में किया जा सकता है। यह इथेनॉल की तुलना में गैसोलीन के अधिक समान है। सी4-हाइड्रोकार्बन, ब्यूटेनॉल जैव-व्युत्पन्न ईंधन है और इस प्रकार बिना किसी संशोधन के गैसोलीन के साथ उपयोग के लिए डिज़ाइन किए गए वाहनों में काम करता है।[1] आइसोबुटानोल एन-ब्यूटेनॉल और आइसोबुटानॉल दोनों का संभावित ईंधन के रूप में अध्ययन किया गया है। दोनों का उत्पादन बायोमास (बायोबुटानॉल के रूप में)[2][3][4]) और साथ ही जीवाश्म ईंधन (पेट्रोब्यूटेनॉल के रूप में) से किया जा सकता है।[5]) रासायनिक गुण आइसोमर (एन-ब्यूटेनॉल या आइसोबुटानॉल) पर निर्भर करते हैं। इसकी उत्पादन विधि पर निर्भर नहीं करते है।
चूंकि अनेक स्थितियों में जटिल, ब्यूटेनॉल ईंधन संभवतः ही कभी आर्थिक रूप से प्रतिस्पर्धी होता है।
आनुवंशिक रूप से संशोधित जीव
ब्यूटेनॉल की उच्च उपज प्राप्त करने में मेटाबॉलिक इंजीनियरिंग और जेनेटिक इंजीनियरिंग का उपयोग करके मेटाबोलिक नेटवर्क में परिवर्तन सम्मिलित है।[6][7] जबकि यह महत्वपूर्ण प्रगति हुई है, ब्यूटेनॉल के उत्पादन के लिए किण्वन (जैव रसायन) मार्ग अप्रभावी बने हुए हैं। टिटर और उपज कम है और पृथक्करण बहुत मूल्यवान है। इस प्रकार ब्यूटेनॉल का माइक्रोबियल उत्पादन पेट्रोलियम-व्युत्पन्न ब्यूटेनॉल के सापेक्ष व्यय-प्रतिस्पर्धी नहीं है।[8]
चूंकि व्यावसायिक रूप से अप्रमाणित, इलेक्ट्रोकेमिकल और माइक्रोबियल उत्पादन विधियों का संयोजन स्थायी ऊर्जा से ब्यूटेनॉल का उत्पादन करने का उपाय प्रदान कर सकता है।[9]
इशरीकिया कोली
एस्चेरिचिया कोली या ई. कोली, एक ग्राम ऋणात्मक , बेसिलस छड़ के आकार काजीवाणु है। ई. कोलाई वह सूक्ष्मजीव है, जिसके आइसोबुटानॉल के व्यावसायिक उत्पादन की ओर बढ़ने की सबसे अधिक संभावना है।[10] अपने इंजीनियर्ड रूप में, ई. कोलाई किसी भी सूक्ष्मजीव की तुलना में आइसोबुटानॉल की उच्चतम उपज उत्पन्न करता है।[citation needed] ई. कोली के चयापचय में सुधार के लिए मेटाबोलिक नेटवर्क मेटाबोलिक नेटवर्क सिमुलेशन जैसी विधियों का उपयोग किया गया है, जिससे बड़ी मात्रा में आइसोबुटानॉल का उत्पादन किया जा सके।[11] ई. कोलाई अनेक कारणों से आदर्श आइसोबुटानॉल जैव-संश्लेषक है:
- ई. कोलाई ऐसा जीव है, जिसके लिए आनुवंशिक परिवर्तन के अनेक उपकरण उपस्थित हैं और यह ऐसा जीव है, जिसके लिए वैज्ञानिक साहित्य का व्यापक भंडार उपस्थित है।[10] ज्ञान का यह खजाना वैज्ञानिकों द्वारा ई. कोलाई को सरलता से संशोधित करने की अनुमति देता है।
- ई. कोलाई में आइसोबुटानॉल के संश्लेषण में लिग्नोसेल्यूलोज (कृषि से बचा हुआ अपशिष्ट पौधा पदार्थ) का उपयोग करने की क्षमता है। लिग्नो सेलूलोज़ का उपयोग ई. कोलाई को मानव उपभोग के लिए पादप पदार्थ का उपयोग करने से रोकता है और किसी भी खाद्य-ईंधन मूल्य संबंध को रोकता है। जो ई. कोलाई द्वारा आइसोबुटानॉल के जैवसंश्लेषण से होता है।[10]
- आनुवंशिक संशोधन का उपयोग लिग्नोसेल्यूलोज के क्षेत्र को व्यापक बनाने के लिए किया गया है। जिसका उपयोग ई. कोलाई द्वारा किया जा सकता है। इसने ई. कोली को उपयोगी और विविध आइसोबुटानॉल जैव-संश्लेषक बना दिया है।[12]
ई. कोलाई का प्राथमिक दोष यह है कि बड़े होने पर यह अक्तेरिओफगेस के प्रति संवहदनशील होता है। यह संवहदनशीलता संभावित रूप से सम्पूर्ण बायोरिएक्टर को संवृत कर सकती है।[10] इसके अतिरिक्त, ई. कोली में आइसोबुटानॉल के लिए मूल प्रतिक्रिया मार्ग कोशिका में आइसोबुटानॉल की सीमित सांद्रता पर अच्छी प्रकार से कार्य करता है। उच्च सांद्रता में ई. कोलाई की संवहदनशीलता को कम करने के लिए, संश्लेषण में सम्मिलित एंजाइमो के उत्परिवर्तकों को यादृच्छिक उत्परिवर्तन द्वारा उत्पन्न किया जा सकता है। संयोग से कुछ उत्परिवर्ती आइसोबुटानॉल के प्रति अधिक प्रभावी सिद्ध हो सकते हैं, जो संश्लेषण की समग्र उपज को बढ़ाएगा।[13]
क्लोस्ट्रिडिया
एन-ब्यूटेनॉल का उत्पादन ए.बी.ई. द्वारा बायोमास के किण्वन (जैव रसायन) द्वारा किया जा सकता है। क्लोस्ट्रीडियम एसिटोब्यूटाइलिकम, क्लॉस्ट्रिडियम बेजरिनकी का उपयोग करके प्रक्रिया करें। सी. एसिटोब्यूटाइलिकम का उपयोग एक बार स्टार्च से एसीटोन के उत्पादन के लिए किया जाता था। ब्यूटेनॉल किण्वन का उप-उत्पाद था (ब्यूटेनॉल से दोगुना उत्पादन किया गया था)। बायोब्यूटेनॉल के लिए फीडस्टॉक इथेनॉल के लिए समान हैं: ऊर्जा फसले जैसे चुकंदर, गन्ना, मक्का अनाज, गेहूं और कसावा, संभावित गैर-खाद्य ऊर्जा फसलें जैसे स्विचग्रास और यहां तक कि उत्तरी अमेरिका में पार्थेनियम सिल्वर साथ ही कृषि उपोत्पाद जैसे खोई, पुआल और मक्के के डंठल (वनस्पति विज्ञान) आदि इनमे सम्मिलित है।[14] ड्यूपॉन्ट के अनुसार उपस्थित बायोएथेनॉल संयंत्रों को व्यय प्रभावी प्रकार से बायोब्यूटेनॉल उत्पादन के लिए फिर से तैयार किया जा सकता है।[15] इसके अतिरिक्त बायोमास और कृषि उपोत्पादों से ब्यूटेनॉल का उत्पादन इथेनॉल या मेथनॉल उत्पादन की तुलना में अधिक कुशल हो सकता है (अर्थात प्रति यूनिट सौर ऊर्जा व्यय के लिए यूनिट इंजन मोटिव पावर)।[16]
क्लोस्ट्रीडियम का प्रकार ऑक्सीजन की उपस्थिति में भी लगभग किसी भी प्रकार के सेल्यूलोज को ब्यूटेनॉल में परिवर्तित कर सकता है।[17]
क्लोस्ट्रीडियम सेलुलोलिटिकम का स्ट्रेन, प्राचीन सेल्युलोज-डिग्रेडिंग सूक्ष्म जीव, सेल्युलोज से सीधे आइसोबुटानॉल प्रदान करता है।[18]
क्लोस्ट्रीडियम क्लुयवहरी में उपस्थित चयापचय मार्गों का उपयोग करके ब्यूटायरेट (ब्यूटेनॉल ईंधन का अग्रदूत) का उत्पादन करने के लिए सक्सिनेट और इथेनॉल के संयोजन को किण्वित किया जा सकता है। सक्सिनेट टीसीए चक्र का मध्यवर्ती है, जो ग्लूकोज का चयापचय करता है। क्लोस्ट्रीडियम एसिटोब्यूटाइलिकम और क्लोस्ट्रीडियम सैकरोब्यूटाइलिकम जैसे अवायवीय जीव बैक्टीरिया में भी ये मार्ग होते हैं। सक्सिनेट को पहले सक्रिय किया जाता है और फिर 4-हाइड्रॉक्सीब्यूटाइरेट देने के लिए दो-चरणीय प्रतिक्रिया द्वारा कम किया जाता है, जिसे बाद में क्रोटोनील-सीओए चयापचय किया गया| क्रोटोनील-कोएंजाइम ए (सीओए) में चयापचय किया जाता है। फिर क्रोटोनील-सीओए को ब्यूटायरेट में बदल दिया जाता है। क्लोस्ट्रीडियम से इन ब्यूटेनॉल उत्पादन मार्गों से संबंधित जीन को ई. कोली में क्लोन किया गया था।[19]
साइनोबैक्टीरीया
सायनोबैक्टीरिया प्रकाश संश्लेषक जीवाणुओं का समूह है।[20] जब आनुवंशिक रूप से आइसोबुटानॉल और इसके अनुरूप एल्डीहाइड का उत्पादन करने के लिए इंजीनियर किया जाता है। तब वह आइसोबुटानॉल जैवसंश्लेषण के लिए उपयुक्त होते हैं।[21] सायनोबैक्टीरिया की आइसोबुटानॉल उत्पादक प्रजातियां जैव ईंधन सिंथेसाइज़र के रूप में अनेक लाभ प्रदान करती हैं:
- सायनोबैक्टीरिया पौधों की तुलना में तेजी से बढ़ते हैं[22] और पौधों की तुलना में सूर्य के प्रकाश को अधिक कुशलता से अवशोषित करते हैं।[23] इसका अर्थ यह है कि उन्हें अन्य जैव ईंधन बायोसिंथेसाइज़र के लिए उपयोग किए जाने वाले पौधे पदार्थ की तुलना में तीव्र दर से पुनःपूर्ति की जा सकती है।
- सायनोबैक्टीरिया को गैर-कृषि योग्य भूमि (खेती के लिए उपयोग न की जाने वाली भूमि) पर उगाया जा सकता है।[22] यह भोजन बनाम ईंधन को रोकता है।[22]
- .[23]इससे दो लाभ मिलते हैं:
- क्योंकि सीओ2 वायुमंडल से प्राप्त होता है, सायनोबैक्टीरिया को आइसोबुटानॉल को संश्लेषित करने के लिए पौधे के पदार्थ की आवश्यकता नहीं होती है (अन्य जीवों में जो आइसोबुटानॉल को संश्लेषित करते हैं, पौधे का पदार्थ आइसोबुटानॉल को कृत्रिम रूप से इकट्ठा करने के लिए आवश्यक कार्बन का स्रोत है)।[23]चूँकि आइसोबुटानॉल उत्पादन की इस विधि द्वारा पादप पदार्थ का उपयोग नहीं किया जाता है, इसलिए खाद्य स्रोतबं से पादप पदार्थ प्राप्त करने और खाद्य-ईंधन मूल्य संबंध बनाने की आवश्यकता से बचा जाता है।[22]** क्योंकि सीओ2 साइनोबैक्टीरिया द्वारा वायुमंडल से अवशोषित किया जाता है, जैविक उपचार की संभावना (साइनोबैक्टीरिया के रूप में अतिरिक्त CO को हटाकर)2 वायुमंडल से) उपस्थित है।[23]
सायनोबैक्टीरिया की प्राथमिक कमियाँ हैं:
- बड़े होने पर वह पर्यावरणीय परिस्थितियों के प्रति संवहदनशील होते हैं। साइनोबैक्टीरिया अनुचित तरंग दैर्ध्य और तीव्रता, CO की सूर्य की रोशनी से बहुत पीड़ित होते हैं2 अनुचित एकाग्रता, या एच2अनुचित लवणता के बावजूद, खारे पानी और समुद्री जल में साइनोबैक्टीरिया की प्रचुर मात्रा पनपने में सक्षम है। इन कारकों को आम तौर पर नियंत्रित करना कठिन होता है, और आइसोबुटानोल के साइनोबैक्टीरियल उत्पादन में एक बड़ी बाधा उत्पन्न करते हैं।[24]
- सायनोबैक्टीरिया बायोरिएक्टर को संचालित करने के लिए उच्च ऊर्जा की आवश्यकता होती है। संस्कृतियों को निरंतर मिश्रण की आवश्यकता होती है, और जैवसंश्लेषक उत्पादों की कटाई ऊर्जा-गहन है। इससे सायनोबैक्टीरिया के माध्यम से आइसोबुटानॉल उत्पादन की दक्षता कम हो जाती है।[24]
साइनोबैक्टीरिया को उनके ब्यूटेनॉल उत्पादन को बढ़ाने के लिए फिर से इंजीनियर किया जा सकता है, जो पाथवह इंजीनियरिंग में एक डिजाइन सिद्धांत के रूप में एटीपी और कॉफ़ेक्टर ड्राइविंग बलों के महत्व को दर्शाता है। अनेक जीवों में एसिटाइल कोआ पर निर्भर मार्ग का उपयोग करके ब्यूटेनॉल का उत्पादन करने की क्षमता होती है। इस मार्ग के साथ मुख्य समस्या पहली प्रतिक्रिया है जिसमें दो एसिटाइल-सीओए अणुओं का एसिटोएसिटाइल-सीओए में संघनन सम्मिलित है। यह प्रतिक्रिया इससे जुड़ी सकारात्मक गिब्स मुक्त ऊर्जा (डीजी = 6.8 किलो कैलोरी/मोल) के कारण थर्मोडायनामिक रूप से प्रतिकूल है।[25][26]
बेसिलस सुबटिलिस
बैसिलस सबटिलिस एक ग्राम पॉजिटिव रॉड के आकार का बैक्टीरिया है। बैसिलस सबटिलिस ई. कोलाई के समान अनेक फायदे और नुकसान प्रदान करता है, लेकिन इसका कम प्रमुखता से उपयोग किया जाता है और यह ई. कोली जितनी बड़ी मात्रा में आइसोबुटानॉल का उत्पादन नहीं करता है।[10]ई. कोली के समान, बी. सबटिलिस लिग्नोसेल्युलोज से आइसोबुटानॉल का उत्पादन करने में सक्षम है, और सामान्य आनुवंशिक तकनीकों द्वारा सरलता से इसमें परिवर्तन किया जा सकता है।[10]प्राथमिक मोड विश्लेषण का उपयोग बी. सबटिलिस द्वारा उपयोग किए जाने वाले आइसोबुटानॉल-संश्लेषण चयापचय मार्ग को उत्तम बनाने के लिए भी किया गया है, जिससे आइसोबुटानॉल की उच्च उपज उत्पन्न होती है।[27]
Saccharomyces cerevisiae
सैक्रोमाइसेस सेरेविसिया, या एस. सेरेविसिया, खमीर की एक प्रजाति है। यह स्वाभाविक रूप से अपने वहलिन बायोसिंथेटिक मार्ग के माध्यम से कम मात्रा में आइसोबुटानॉल का उत्पादन करता है।[28] एस. सेरेविसिया अनेक कारणों से आइसोबुटानॉल जैव ईंधन उत्पादन के लिए एक आदर्श उम्मीदवार है:
- एस. सेरेविसिया को कम पीएच पर उगाया जा सकता है, जिससे औद्योगिक बायोरिएक्टरों में वृद्धि के दौरान संदूषण को रोकने में मदद मिलती है।[10]* एस. सेरेविसिया बैक्टीरियोफेज से प्रभावित नहीं हो सकता क्योंकि यह एक यूकेरियोट है।[10]*एस. सेरेविसिया और इसके जीव विज्ञान के बारे में व्यापक वैज्ञानिक ज्ञान पहले से ही उपस्थित है।[10]
एस. सेरेविसिया के वहलिन बायोसिंथेटिक मार्ग में एंजाइमों की अधिक अभिव्यक्ति का उपयोग आइसोबुटानॉल उपज में सुधार के लिए किया गया है।[28][29][30] चूंकि, एस. सेरेविसिया में अंतर्निहित जीव विज्ञान के कारण इसके साथ काम करना कठिन सिद्ध हुआ है:
- यूकेरियोट के रूप में, एस. सेरेविसिया आनुवंशिक रूप से ई. कोली या बी. सबटिलिस की तुलना में अधिक जटिल है, और परिणामस्वरूप आनुवंशिक रूप से परिवर्तन करना कठिन होता है।[10]
- एस. सेरेविसिया में इथेनॉल#किण्वन होता है। यह प्राकृतिक क्षमता प्रबल हो सकती है और परिणामस्वरूप एस. सेरेविसिया द्वारा आइसोबुटानॉल उत्पादन को रोक सकती है।[10]* एस. सेरेविसिया आइसोबुटानॉल का उत्पादन करने के लिए पांच-कार्बन शर्करा का उपयोग नहीं कर सकता है। पांच-कार्बन शर्करा का उपयोग करने में असमर्थता एस. सेरेविसिया को लिग्नोसेल्यूलोज का उपयोग करने से रोकती है, और इसका अर्थ है कि एस. सेरेविसिया को आइसोबुटानोल का उत्पादन करने के लिए मानव उपभोग के लिए इच्छित पौधे पदार्थ का उपयोग करना चाहिए। जब एस. सेरेविसिया द्वारा आइसोबुटानॉल का उत्पादन किया जाता है तब इसके परिणामस्वरूप प्रतिकूल खाद्य/ईंधन मूल्य संबंध उत्पन्न होता है।[10]
रालस्टोनिया यूट्रोफा
एक लालची हत्यारा (=रालस्टोनिया यूट्रोफा) एक ग्राम-नकारात्मक जीवाणु है | बेटाप्रोटोबैक्टीरिया वर्ग का ग्राम-नकारात्मक मृदा जीवाणु। यह अप्रत्यक्ष रूप से विद्युत ऊर्जा को आइसोबुटानोल में परिवर्तित करने में सक्षम है। यह रूपांतरण अनेक चरणों में पूरा होता है:[31]
- एनोड को एच के मिश्रण में रखा जाता है2ओ और सीओ2.
- एनोड के माध्यम से और एक इलेक्ट्रोकेमिकल प्रक्रिया एच के माध्यम से एक विद्युत धारा प्रवाहित की जाती है2ओ और सीओ2 चींटी का तेजाब को संश्लेषित करने के लिए संयुक्त किया जाता है।
- सी. नेकेटर (बिजली के प्रति सहिष्णु एक स्ट्रेन (जीव विज्ञान) से बना) का एक जीवाणु कल्चर एच के भीतर रखा जाता है2ओ और सीओ2 मिश्रण.
- सी. नेकेटर का कल्चर फिर मिश्रण से फॉर्मिक एसिड को आइसोबुटानॉल में परिवर्तित करता है।
- जैवसंश्लेषित आइसोबुटानॉल को फिर मिश्रण से अलग किया जाता है, और इसे जैव ईंधन के रूप में इस्तेमाल किया जा सकता है।
फीडस्टॉक्स
कच्चे माल की उच्च व्यय को ब्यूटेनॉल के व्यावसायिक उत्पादन में मुख्य बाधाओं में से एक माना जाता है। सस्ते और प्रचुर मात्रा में फीडस्टॉक का उपयोग, जैसे, मअनेक स्टोवर, प्रक्रिया की आर्थिक व्यवहार्यता को बढ़ा सकता है। <संदर्भ नाम = करीमी अलविजेह 641-653 >Karimi Alavijeh, Masih; Karimi, Keikhosro (March 2019). "अमेरिका में कॉर्न स्टोवर से बायोबूटानॉल का उत्पादन". Industrial Crops and Products. 129: 641–653. doi:10.1016/j.indcrop.2018.12.054. ISSN 0926-6690. S2CID 104367378.</ref>
मेटाबोलिक इंजीनियरिंग का उपयोग किसी जीव को ग्लूकोज के बजाय ग्लिसरॉल जैसे सस्ते सब्सट्रेट का उपयोग करने की अनुमति देने के लिए किया जा सकता है। क्योंकि किण्वन (जैव रसायन) प्रक्रियाओं के लिए खाद्य पदार्थों से प्राप्त ग्लूकोज की आवश्यकता होती है, ब्यूटेनॉल उत्पादन खाद्य आपूर्ति पर नकारात्मक प्रभाव डाल सकता है (भोजन बनाम ईंधन बहस देखें)। ब्यूटेनॉल उत्पादन के लिए ग्लिसरॉल एक अच्छा वैकल्पिक स्रोत है। जबकि ग्लूकोज स्रोत मूल्यवान और सीमित हैं, ग्लिसरॉल प्रचुर मात्रा में है और इसकी बाजार कीमत कम है क्योंकि यह बायोडीजल उत्पादन का अपशिष्ट उत्पाद है। ग्लिसरॉल से ब्यूटेनॉल का उत्पादन चयापचय मार्गों का उपयोग करके आर्थिक रूप से व्यवहार्य है जो जीवाणु क्लॉस्ट्रिडियम पेस्ट्यूरियनम में उपस्थित है। रेफरी>Malaviya A, Jang Y, Lee SY (2012). "क्लोस्ट्रीडियम पेस्ट्यूरियनम के एक अत्यधिक उत्पादक उत्परिवर्ती द्वारा ग्लिसरॉल से कम उपोत्पाद निर्माण के साथ निरंतर ब्यूटेनॉल उत्पादन". Appl Microbiol Biotechnol. 93 (4): 1485–1494. doi:10.1007/s00253-011-3629-0. PMID 22052388. S2CID 1597829.</ref>
दक्षता में सुधार
क्लाउड पॉइंट पृथक्करण नामक एक प्रक्रिया उच्च दक्षता के साथ ब्यूटेनॉल की पुनर्प्राप्ति की अनुमति दे सकती है।[32]
निर्माता और वितरण
ड्यूपॉन्ट और बीपी ने अगली पीढ़ी के जैव ईंधन के विकास, उत्पादन और विपणन के अपने संयुक्त प्रयास का पहला उत्पाद बायोबुटानॉल बनाने की योजना बनाई है।[33] यूरोप में स्विस कंपनी बुटाल्को[34] सेल्युलोसिक सामग्रियों से बायोब्यूटेनॉल के उत्पादन के लिए आनुवंशिक रूप से संशोधित यीस्ट विकसित कर रहा है। संयुक्त राज्य अमेरिका स्थित कंपनी गॉरमेट बुटानोल एक ऐसी प्रक्रिया विकसित कर रही है जो जैविक कचरे को बायोबुटानोल में परिवर्तित करने के लिए कवक का उपयोग करती है।[35][36] सेल्टिक नवीकरणीय व्हिस्की और निम्न-श्रेणी के आलू के उत्पादन से निकलने वाले कचरे से बायोबुटानॉल बनाता है।
सामान्य ईंधन के गुण
आइसोबुटानोल
आइसोबुटानॉल एक दूसरी पीढ़ी का जैव ईंधन है। अनेक गुणों वाला दूसरी पीढ़ी का जैव ईंधन है जो इथेनॉल द्वारा प्रस्तुत समस्याओं का समाधान करता है।[10] आइसोबुटानॉल के गुण इसे एक आकर्षक जैव ईंधन बनाते हैं:
- अपेक्षाकृत उच्च ऊर्जा घनत्व, गैसोलीन का 98%।[37]
- हवा से पानी को सरलता से अवशोषित नहीं करता है, जिससे इंजन और पाइपलाइनों का क्षरण रुक जाता है।[10]*गैसोलीन के साथ किसी भी अनुपात में मिलाया जा सकता है,[38] इसका अर्थ है कि ईंधन उपस्थिता पेट्रोलियम बुनियादी ढांचे में प्रतिस्थापन ईंधन या प्रमुख योज्य के रूप में गिर सकता है।[10]* खाद्य आपूर्ति से जुड़े न होने वाले पौधों के पदार्थ से उत्पादित किया जा सकता है, जिससे ईंधन-कीमत/खाद्य-कीमत संबंध को रोका जा सकता है।[10][11][12][27]
- यह मानते हुए कि यह अवशिष्ट लिग्नोसेल्युलोसिक बायोमास फीडस्टॉक्स से उत्पन्न होता है, आइसोबुटानॉल को गैसोलीन के साथ मिश्रित करने से ग्रीनहाउस गैस उत्सर्जन में काफी कमी आ सकती है।[39]
एन-ब्यूटेनॉल
बुटानॉल जल प्रदूषण को अच्छी प्रकार से सहन करता है और इथेनॉल की तुलना में कम संक्षारक है और गैसोलीन के लिए उपस्थिता पाइपलाइन परिवहन के माध्यम से वितरण के लिए अधिक उपयुक्त है।[15]डीजल ईंधन या गैसोलीन के साथ मिश्रण में, यदि ईंधन पानी से दूषित हो तब इथेनॉल की तुलना में ब्यूटेनॉल के इस ईंधन से अलग होने की संभावना कम होती है।[15]इथेनॉल युक्त ब्यूटेनॉल और गैसोलीन के साथ वाष्प दबाव सह-मिश्रण तालमेल भी है, जो इथेनॉल मिश्रण की सुविधा प्रदान करता है। यह मिश्रित ईंधन के भंडारण और वितरण की सुविधा प्रदान करता है।[15][40][41]
Fuel | Energy density |
Air-fuel ratio |
Specific energy |
Heat of vaporization |
RON | MON | AKI |
---|---|---|---|---|---|---|---|
Gasoline and biogasoline | 32 MJ/L | 14.7 | 2.9 MJ/kg air | 0.36 MJ/kg | 91–99 | 81–89 | 87-95 |
Butanol fuel | 29.2 MJ/L | 11.1 | 3.6 MJ/kg air | 0.43 MJ/kg | 96 | 78 | 87 |
Anhydrous Ethanol fuel | 19.6 MJ/L | 9.0 | 3.0 MJ/kg air | 0.92 MJ/kg | 107 | 89 | |
Methanol fuel | 16 MJ/L | 6.4 | 3.1 MJ/kg air | 1.2 MJ/kg | 106 | 92 |
एन-ब्यूटेनॉल की ऑक्टेन रेटिंग गैसोलीन के समान है लेकिन इथेनॉल और मेथनॉल से कम है। एन-ब्यूटेनॉल में 96 का आरओएन (ऑक्टेन रेटिंग) और 78 का एक एमओएन (ऑक्टेन रेटिंग) है (परिणामस्वरूप (आर + एम)/2 पंप ऑक्टेन संख्या 87 है, जैसा कि उत्तरी अमेरिका में उपयोग किया जाता है) जबकि टी-ब्यूटेनॉल में ऑक्टेन है 105 RON और 89 MON की रेटिंग।[43] टी-बुटानोल का उपयोग गैसोलीन में एक योज्य के रूप में किया जाता है, लेकिन इसे शुद्ध रूप में ईंधन के रूप में उपयोग नहीं किया जा सकता है क्योंकि इसका अपेक्षाकृत उच्च गलनांक 25.5°C (79°F) इसे जेल में बदल देता है और कमरे के तापमान के करीब जम जाता है। दूसरी ओर, आइसोबुटानॉल का गलनांक एन-ब्यूटेनॉल से कम होता है और अनुकूल आरओएन 113 और एमओएन 94 होता है, और इस प्रकार यह उच्च अंश वाले गैसोलीन मिश्रणों, एन-ब्यूटेनॉल के साथ मिश्रण, या एक स्टैंडअलोन ईंधन के रूप में बहुत उत्तम अनुकूल है।[44] उच्च ऑक्टेन रेटिंग वाले ईंधन में इंजन की दस्तक खटखटाने (संपीड़न द्वारा अत्यधिक तीव्र और सहज दहन) की संभावना कम होती है और किसी भी आधुनिक कार इंजन की नियंत्रण प्रणाली इग्निशन टाइमिंग को समायोजित करके इसका लाभ उठा सकती है। इससे ऊर्जा दक्षता में सुधार होगा, जिससे विभिन्न ईंधनों की ऊर्जा सामग्री की तुलना से उत्तम ईंधन अर्थव्यवस्था प्राप्त होगी। संपीड़न अनुपात को बढ़ाकर, ईंधन अर्थव्यवस्था, शक्ति और टॉर्क में और अधिक लाभ प्राप्त किया जा सकता है। इसके विपरीत, कम ऑक्टेन रेटिंग वाले ईंधन में खटखटाने की संभावना अधिक होती है और दक्षता कम हो जाएगी। खटखटाने से इंजन को नुकसान भी हो सकता है। 87 ऑक्टेन पर चलने के लिए डिज़ाइन किए गए इंजनों में उच्च ऑक्टेन ईंधन के साथ संचालित होने से कोई अतिरिक्त बिजली/ईंधन अर्थव्यवस्था नहीं होगी।
ब्यूटेनॉल विशेषताएँ: वायु-ईंधन अनुपात, विशिष्ट ऊर्जा, चिपचिपाहट, विशिष्ट ऊष्मा
ब्यूटेनॉल और इथेनॉल सहित अल्कोहल ईंधन आंशिक रूप से ऑक्सीकृत होते हैं और इसलिए उन्हें गैसोलीन की तुलना में अधिक समृद्ध मिश्रण पर चलाने की आवश्यकता होती है। कारों में मानक गैसोलीन इंजन ईंधन में भिन्नता को समायोजित करने के लिए वायु-ईंधन अनुपात को समायोजित कर सकते हैं, लेकिन केवल मॉडल के आधार पर कुछ सीमाओं के भीतर। यदि इंजन को शुद्ध इथेनॉल या इथेनॉल के उच्च प्रतिशत के साथ गैसोलीन मिश्रण पर चलाने से सीमा पार हो जाती है, तब इंजन धीमी गति से चलेगा, जो घटकों को गंभीर रूप से नुकसान पहुंचा सकता है। इथेनॉल की तुलना में, ब्यूटेनॉल को रेट्रोफिट की आवश्यकता के बिना उपस्थिता कारों में उपयोग के लिए गैसोलीन के साथ उच्च अनुपात में मिलाया जा सकता है क्योंकि वायु-ईंधन अनुपात और ऊर्जा सामग्री गैसोलीन के करीब है।[40][41]
अल्कोहल ईंधन में गैसोलीन की तुलना में प्रति यूनिट वजन और यूनिट आयतन में कम ऊर्जा होती है। प्रति चक्र जारी शुद्ध ऊर्जा की तुलना करना संभव बनाने के लिए कभी-कभी ईंधन विशिष्ट ऊर्जा नामक माप का उपयोग किया जाता है। इसे प्रति वायु ईंधन अनुपात में जारी ऊर्जा के रूप में परिभाषित किया गया है। प्रति चक्र जारी शुद्ध ऊर्जा इथेनॉल या मेथनॉल की तुलना में ब्यूटेनॉल के लिए अधिक है और गैसोलीन की तुलना में लगभग 10% अधिक है।[45]
Substance | Kinematic viscosity at 20 °C |
---|---|
Butanol | 3.64 cSt |
Diesel | >3 cSt |
Ethanol | 1.52 cSt |
Water | 1.0 cSt |
Methanol | 0.64 cSt |
Gasoline | 0.4–0.8 cSt |
लंबी कार्बन श्रृंखलाओं के साथ अल्कोहल की चिपचिपाहट बढ़ जाती है। इस कारण से, जब अधिक चिपचिपा विलायक वांछित होता है तब ब्यूटेनॉल का उपयोग छोटी अल्कोहल के विकल्प के रूप में किया जाता है। ब्यूटेनॉल की गतिकीय चिपचिपाहट गैसोलीन की तुलना में अनेक गुना अधिक है और उच्च गुणवत्ता वाले डीजल ईंधन जितनी चिपचिपी है।[46] इंजन में ईंधन को जलने से पहले वाष्पीकृत करना पड़ता है। ठंड के मौसम में ठंड शुरू होने के दौरान अल्कोहल ईंधन के साथ अपर्याप्त वाष्पीकरण एक ज्ञात समस्या है। चूंकि ब्यूटेनॉल के वाष्पीकरण की गर्मी इथेनॉल की तुलना में आधे से भी कम है, इसलिए बुटेनॉल पर चलने वाले इंजन को इथेनॉल या मेथनॉल पर चलने वाले इंजन की तुलना में ठंड के मौसम में शुरू करना आसान होना चाहिए।[40]
ब्यूटेनॉल ईंधन मिश्रण
गैसोलीन में इथेनॉल और मेथनॉल के मिश्रण के मानक यूरोपीय संघ, अमेरिका और ब्राजील सहित अनेक देशों में उपस्थित हैं। अनुमानित समतुल्य ब्यूटेनॉल मिश्रणों की गणना ब्यूटेनॉल, इथेनॉल और गैसोलीन के Stoiciometric ईंधन-वायु अनुपात के बीच संबंधों से की जा सकती है। गैसोलीन के रूप में बेचे जाने वाले ईंधन के लिए सामान्य इथेनॉल ईंधन मिश्रण वर्तमान में 5% से 10% तक है। यह अनुमान लगाया गया है कि लगभग 9.5 गीगालीटर (जीएल) गैसोलीन बचाया जा सकता है और लगभग 64.6 जीएल ब्यूटेनॉल-गैसोलीन मिश्रण 16% (बीयू16) संभावित रूप से अमेरिका में मअनेक के अवशेषों से उत्पादित किया जा सकता है, जो कुल घरेलू गैसोलीन के 11.8% के बराबर है। व्यय।<संदर्भ नाम = करीमी अलविजेह 641-653 />
एन-ब्यूटेनॉल की संभावित आक्रामक केले जैसी गंध के कारण उपभोक्ता स्वीकृति सीमित हो सकती है।[47] ऐसे ईंधन का विपणन करने की योजना चल रही है जो 85% इथेनॉल और 15% ब्यूटेनॉल (ई85बी) है, इसलिए उपस्थिता ई85 आंतरिक दहन इंजन 100% नवीकरणीय ईंधन पर चल सकते हैं जो किसी भी जीवाश्म ईंधन का उपयोग किए बिना बनाया जा सकता है। क्योंकि इसकी लंबी हाइड्रोकार्बन श्रृंखला के कारण यह काफी हद तक रासायनिक ध्रुवता | गैर-ध्रुवीय है, यह इथेनॉल की तुलना में गैसोलीन के अधिक समान है। ब्यूटेनॉल को बिना किसी संशोधन के गैसोलीन के उपयोग के लिए डिज़ाइन किए गए वाहनों में काम करने के लिए प्रदर्शित किया गया है।
वाहनों में ब्यूटेनॉल
वर्तमान में किसी भी उत्पादन वाहन को 100% ब्यूटेनॉल के उपयोग के लिए निर्माता द्वारा अनुमोदित नहीं किया गया है। 2009 की शुरुआत तक, संयुक्त राज्य अमेरिका में केवल कुछ वाहनों को E85 ईंधन (अर्थात 85% इथेनॉल + 15% गैसोलीन) का उपयोग करने की मंजूरी दी गई थी। चूंकि, ब्राज़ील में सभी वाहन निर्माता (फ़िएट, फ़ोर्ड, VW, GM, टोयोटा, होंडा, प्यूज़ो, सिट्रोएन और अन्य) लचीले-ईंधन वाहन का उत्पादन करते हैं| फ्लेक्स-ईंधन वाहन जो 100% गैसोलीन और या 85% इथेनॉल (ई85) तक इथेनॉल और गैसोलीन के किसी भी मिश्रण पर चल सकते हैं। ये फ्लेक्स ईंधन कारें 2009 में ब्राजील में निजी वाहनों की बिक्री का 90% प्रतिनिधित्व करती हैं। बीपी और ड्यूपॉन्ट, ब्यूटेनॉल ईंधन का उत्पादन और प्रचार करने के लिए एक संयुक्त उद्यम में लगे हुए हैं, दावा करते हैं[15]बायोब्यूटेनॉल को यूरोपीय गैसोलीन में 10%v/v और अमेरिकी गैसोलीन में 11.5%v/v तक मिश्रित किया जा सकता है।[48][49] 2009 पेटिट ले मैंस रेस में, डायसन रेसिंग का नंबर 16 लोला बी08/80|लोला बी09/86 - माज़दा एमजेडआर इंजन|माज़्दा एमजेडआर-आर टीम टेक्नोलॉजी पार्टनर बीपी द्वारा विकसित बायोबुटानॉल और इथेनॉल के मिश्रण पर चला।
यह भी देखें
- विमानन जैव ईंधन#उत्पादन
- वायु-ईंधन अनुपात
- जैव शराब
- जैव ईंधन
- बायोडीजल
- बायोहाइड्रोजन
- बायोमास का मिश्रित अल्कोहल ईंधन में जैव रूपांतरण
- बुटानोल
- उत्प्रेरक
- डाइमिथाइल ईथर
- आसवन
- उत्सर्जन मानक
- ऊर्जा फसल
- इथेनॉल ईंधन
- फॉर्मिक एसिड: आइसोबुटानॉल का उत्पादन करने के लिए एक मध्यस्थ के रूप में इस्तेमाल किया जा सकता है CO2 रोगाणुओं का उपयोग करना[50][51][52]
- गेवो जैव ईंधन
- औद्योगिक किण्वन
- वनस्पति तेलों की सूची#जैव ईंधन के लिए उपयोग किए जाने वाले तेल
संदर्भ
- ↑ "ButylFuel, LLC". Retrieved 2008-01-29.
- ↑ Sampa Maiti; et al. (Dec 10, 2015). "Quest for sustainable bio‐production and recovery of butanol as a promising solution to fossil fuel". Energy Research. 40 (4): 411–438. doi:10.1002/er.3458. S2CID 101240621.
- ↑ Alternative Fuels and Advanced Vehicles Data Center: Biobutanol
- ↑ "Cobalt Biofuels | Biobutanol and Beyond". Archived from the original on 2008-10-25. Retrieved 2008-10-27.
- ↑ Atsumi, Shota; Hanai, Taizo; Liao, James C. (2008), "Non-fermentative pathways for synthesis of branched-chain higher alcohols as biofuels", Nature, 451 (7174): 86–89, Bibcode:2008Natur.451...86A, doi:10.1038/nature06450, PMID 18172501, S2CID 4413113
- ↑ Berezina OV, Zakharova NV, Yarotsky SV, Zverlov VV (Dec 2012). "ब्यूटेनॉल के माइक्रोबियल उत्पादक". Applied Biochemistry and Microbiology. 48 (7): 625–638.
- ↑ The Korea Advanced Institute of Science and Technology (KAIST) (Oct 23, 2012). "मेटाबोलिक रूप से इंजीनियर सूक्ष्मजीव द्वारा उन्नत जैव ईंधन का अत्यधिक कुशल उत्पादन". ScienceDaily.
- ↑ Veettil SI, Kumar L, Koukoulas AA (2016). "Can Microbially derived advanced biofuels ever compete with conventional bioethanol? A critical review". BioResources. 11 (4): 10711–10755. doi:10.15376/biores.11.4.Veettil.
- ↑ Li H, Opgenorth PH, Wernick DG, Rogers S, Wu TY, Higashide W, Malati P, Huo YX, Cho KM, Liao JC (29 March 2012). "Integrated Electromicrobial Conversion of CO2 to Higher Alcohols". Science. 335 (6076): 1596. Bibcode:2012Sci...335.1596L. doi:10.1126/science.1217643. PMID 22461604. S2CID 24328552.
- ↑ 10.00 10.01 10.02 10.03 10.04 10.05 10.06 10.07 10.08 10.09 10.10 10.11 10.12 10.13 10.14 10.15 Peralta-Yahya PP, Zhang F, del Cardayre SB, Keasling JD (15 August 2012). "उन्नत जैव ईंधन के उत्पादन के लिए माइक्रोबियल इंजीनियरिंग". Nature. 488 (7411): 320–328. Bibcode:2012Natur.488..320P. doi:10.1038/nature11478. PMID 22895337. S2CID 4423203.
- ↑ 11.0 11.1 Trinh, Cong T. (9 June 2012). "एनारोबिक एन-ब्यूटेनॉल और आइसोबुटानॉल उत्पादन को बाध्य करने के लिए एस्चेरिचिया कोली चयापचय को स्पष्ट करना और पुन: प्रोग्राम करना". Applied Microbiology and Biotechnology. 95 (4): 1083–1094. doi:10.1007/s00253-012-4197-7. PMID 22678028. S2CID 10586770.
- ↑ 12.0 12.1 Nakashima N, Tamura T (1 July 2012). "A new carbon catabolite repression mutation of Escherichia coli, mlc∗, and its use for producing isobutanol". Journal of Bioscience and Bioengineering. 114 (1): 38–44. doi:10.1016/j.jbiosc.2012.02.029. PMID 22561880.
- ↑ Chong, Huiqing; Geng, Hefang; Zhang, Hongfang; Song, Hao; Huang, Lei; Jiang, Rongrong (2013-11-06). "ई को बढ़ाना। कोलाई आइसोबुटानॉल सहिष्णुता इंजीनियरिंग के माध्यम से इसके वैश्विक प्रतिलेखन कारक सीएमपी रिसेप्टर प्रोटीन (सीआरपी)". Biotechnology and Bioengineering (in English). 111 (4): 700–708. doi:10.1002/bit.25134. ISSN 0006-3592. PMID 24203355. S2CID 28120139.
- ↑ Ars | Publication Request: Butanol Production From Agricultural Biomass
- ↑ 15.0 15.1 15.2 15.3 15.4 "बायोबुटानॉल तथ्य पत्रक" (PDF). BP and DuPont. Archived from the original (PDF) on 2009-01-21. Retrieved 2009-05-13.
- ↑ Washington University in St. Louis (28 January 2008). "नई तकनीकें ब्यूटेनॉल, एक बेहतर जैव ईंधन बनाती हैं". ScienceDaily.
- ↑ "नवीन जीवाणु सेलूलोज़ से सीधे ब्यूटेनॉल का उत्पादन करता है". Green Car Congress. August 28, 2011. Retrieved November 17, 2012.
- ↑ Higashide, Wendy; Li, Yongchao; Yang, Yunfeng; Liao, James C. (2011-04-15). "सेल्युलोज से आइसोबुटानॉल के उत्पादन के लिए क्लोस्ट्रीडियम सेलुलोलिटिकम की मेटाबोलिक इंजीनियरिंग". Applied and Environmental Microbiology. 77 (8): 2727–2733. Bibcode:2011ApEnM..77.2727H. doi:10.1128/AEM.02454-10. ISSN 0099-2240. PMC 3126361. PMID 21378054.
- ↑ Sohling B, Gottschalk G (1996). "क्लोस्ट्रीडियम क्लुयवेरी में एनारोबिक सक्सिनेट डिग्रेडेशन पाथवे का आणविक विश्लेषण". Journal of Bacteriology. 178 (3): 871–880. doi:10.1128/jb.178.3.871-880.1996. PMC 177737. PMID 8550525.
- ↑ Cyanobacteria
- ↑ Atsumi, Shota; Higashide, Wendy; Liao, James C (December 2009). "कार्बन डाइऑक्साइड का आइसोब्यूटिराल्डिहाइड में प्रत्यक्ष प्रकाश संश्लेषक पुनर्चक्रण". Nature Biotechnology. 27 (12): 1177–1180. doi:10.1038/nbt.1586. PMID 19915552. S2CID 1492698.
- ↑ 22.0 22.1 22.2 22.3 Machado IMP, Atsumi S (1 November 2012). "सायनोबैक्टीरियल जैव ईंधन उत्पादन". Journal of Biotechnology. 162 (1): 50–56. doi:10.1016/j.jbiotec.2012.03.005. PMID 22446641.
- ↑ 23.0 23.1 23.2 23.3 Varman AM, Xiao Y, Pakrasi HB, Tang YJ (26 November 2012). "Metabolic Engineering of Synechocystis sp. Strain PCC 6803 for Isobutanol Production". Applied and Environmental Microbiology. 79 (3): 908–914. doi:10.1128/AEM.02827-12. PMC 3568544. PMID 23183979.
- ↑ 24.0 24.1 Singh NK, Dhar DW (11 March 2011). "दूसरी पीढ़ी के जैव ईंधन के रूप में सूक्ष्म शैवाल। एक समीक्षा" (PDF). Agronomy for Sustainable Development. 31 (4): 605–629. doi:10.1007/s13593-011-0018-0. S2CID 38589348.
- ↑ Stern JR, Coon MJ, Delcampillo A (1953). "एसीटोएसिटाइल कोएंजाइम-एसीटोएसीटेट के एंजाइमैटिक ब्रेकडाउन और संश्लेषण में मध्यवर्ती के रूप में". J Am Chem Soc. 75 (6): 1517–1518. doi:10.1021/ja01102a540.
- ↑ Lan EI, Liao JC (2012). "एटीपी सायनोबैक्टीरिया में 1-ब्यूटेनॉल के प्रत्यक्ष प्रकाश संश्लेषक उत्पादन को संचालित करता है". Proceedings of the National Academy of Sciences of the United States of America. 109 (16): 6018–6023. Bibcode:2012PNAS..109.6018L. doi:10.1073/pnas.1200074109. PMC 3341080. PMID 22474341.
- ↑ 27.0 27.1 Li S, Huang D, Li Y, Wen J, Jia X (1 January 2012). "प्राथमिक मोड विश्लेषण द्वारा इंजीनियर्ड आइसोबुटानॉल-उत्पादक बैसिलस सबटिलिस का तर्कसंगत सुधार". Microbial Cell Factories. 11 (1): 101. doi:10.1186/1475-2859-11-101. PMC 3475101. PMID 22862776.
- ↑ 28.0 28.1 Kondo T, Tezuka H, Ishii J, Matsuda F, Ogino C, Kondo A (1 May 2012). "सैक्रोमाइसेस सेरेविसिया द्वारा ग्लूकोज से बढ़े हुए आइसोबुटानॉल उत्पादन के लिए एर्लिच मार्ग को बढ़ाने और कार्बन प्रवाह को बदलने के लिए जेनेटिक इंजीनियरिंग". Journal of Biotechnology. 159 (1–2): 32–37. doi:10.1016/j.jbiotec.2012.01.022. PMID 22342368.
- ↑ MATSUDA, Fumio; KONDO, Takashi; IDA, Kengo; TEZUKA, Hironori; ISHII, Jun; KONDO, Akihiko (1 January 2012). "सैक्रोमाइसेस सेरेविसिया के साइटोसोल में आइसोबुटानॉल जैवसंश्लेषण के लिए एक कृत्रिम मार्ग का निर्माण". Bioscience, Biotechnology, and Biochemistry. 76 (11): 2139–2141. doi:10.1271/bbb.120420. PMID 23132567. S2CID 21726896.
- ↑ Lee, Won-Heong; Seo, Seung-Oh; Bae, Yi-Hyun; Nan, Hong; Jin, Yong-Su; Seo, Jin-Ho (28 April 2012). "Isobutanol production in engineered Saccharomyces cerevisiae by overexpression of 2-ketoisovalerate decarboxylase and valine biosynthetic enzymes". Bioprocess and Biosystems Engineering. 35 (9): 1467–1475. doi:10.1007/s00449-012-0736-y. PMID 22543927. S2CID 25012774.
- ↑ Li, Han; Opgenorth, Paul H.; Wernick, David G.; Rogers, Steve; Wu, Tung-Yun; Higashide, Wendy; Malati, Peter; Huo, Yi-Xin; Cho, Kwang Myung; Liao, James C. (2012-03-30). "Integrated Electromicrobial Conversion of CO2 to Higher Alcohols". Science (in English). 335 (6076): 1596. Bibcode:2012Sci...335.1596L. doi:10.1126/science.1217643. ISSN 0036-8075. PMID 22461604. S2CID 24328552.
- ↑ "नई प्रक्रिया लागत कम करते हुए वैकल्पिक ईंधन का उत्पादन दोगुना कर देती है". University of Illinois College of Agricultural, Consumer and Environmental Sciences. Aug 14, 2012.
- ↑ DuPont and BP Disclose Advanced Biofuels Partnership Targeting Multiple Butanol Molecules
- ↑ Home
- ↑ "Gourmet Butanol". Archived from the original on 2019-09-02. Retrieved 2020-07-09.
- ↑ Maine college wins EPA grant for food waste-to-fuel research | Biomassmagazine.com
- ↑ Lu J, Brigham CJ, Gai CS, Sinskey AJ (4 August 2012). "इंजीनियर्ड राल्सटोनिया यूट्रोफा में ब्रांच्ड-चेन अल्कोहल के उत्पादन पर अध्ययन" (PDF). Applied Microbiology and Biotechnology. 96 (1): 283–297. doi:10.1007/s00253-012-4320-9. hdl:1721.1/75742. PMID 22864971. S2CID 62337.
- ↑ Ting CNW, Wu J, Takahashi K, Endo A, Zhao H (8 September 2012). "बुटानोल-सहिष्णु एंटरोकोकस फ़ेशियम की जांच की गई, जो बुटानोल उत्पादन में सक्षम है". Applied Biochemistry and Biotechnology. 168 (6): 1672–1680. doi:10.1007/s12010-012-9888-0. PMID 22961352. S2CID 9201136.
- ↑ Wojcieszyk M, Knuutila L, Kroyan Y, de Pinto Balsemão M, Tripathi R, Keskivali J, Karvo A, Santasalo-Aarnio A, Blomstedt O, Larmi M (January 2021). "स्पार्क इग्निशन इंजन के लिए गैसोलीन बायो-ब्लेंडस्टॉक्स के रूप में एनीसोल और आइसोबुटानॉल का प्रदर्शन". Sustainability (in English). 13 (16): 8729. doi:10.3390/su13168729.
- ↑ 40.0 40.1 40.2 J.L. Smith; J.P. Workman (December 20, 2007). "Alcohol for Motor Fuels". Colorado State University. Archived from the original on 2011-07-26. Retrieved 2008-01-29.
- ↑ 41.0 41.1 Randall Chase (2006-06-23). "DuPont, BP join to make butanol; they say it outperforms ethanol as a fuel additive". Associated Press. Retrieved 2008-01-29.
- ↑ Internal Combustion Engines, Edward F. Obert, 1973
- ↑ UNEP.org-Properties of oxygenates Archived 2011-02-21 at the Wayback Machine (PDF).
- ↑ iea-amf.org-Advanced Motor Fuels: Butanol Properties (HTML).
- ↑ Butanol Fuel – Biofuels, Bio-energy - Oilgae - Oil from Algae
- ↑ Engineering Toolbox
- ↑ "उत्पाद सुरक्षा - एन-ब्यूटेनॉल". dow.com. Dow Chemical Company. Archived from the original on April 2, 2015. Retrieved July 9, 2013.
- ↑ "बीपी-ड्यूपॉन्ट जैव ईंधन तथ्य पत्रक" (PDF). BP and DuPont. Archived from the original (PDF) on 2012-02-29. Retrieved 2013-07-25.
- ↑ "Boosting Biomass-to...Butanol?". Green Car Congress. 20 July 2005. Retrieved 2008-01-29.
- ↑ "Extracting energy from air - is this the future of fuel?". Archived from the original on 2020-10-03. Retrieved 2019-08-21.
- ↑ UCLA Researchers Use Electricity and CO2 to Make Butanol
- ↑ Integrated Electromicrobial Conversion of CO2 to Higher Alcohols
बाहरी संबंध
- Biobutanol (EERE).
- Biobutanol research news from Green Car Congress
- Butanol 3D view and pdb-file