इंस्टेंटॉन: Difference between revisions
No edit summary |
|||
(8 intermediate revisions by 5 users not shown) | |||
Line 7: | Line 7: | ||
| footer = The ''dx<sup>1</sup>⊗σ<sub>3</sub>'' coefficient of a [[BPST instanton]] on the ''(x<sup>1</sup>,x<sup>2</sup>)''-slice of '''R'''<sup>4</sup> where ''σ<sub>3</sub>'' is the third [[Pauli matrix]] (top left). The ''dx<sup>2</sup>⊗σ<sub>3</sub>'' coefficient (top right). These coefficients determine the restriction of the BPST instanton ''A'' with ''g=2,ρ=1,z=0'' to this slice. The corresponding field strength centered around ''z=0'' (bottom left). A visual representation of the field strength of a BPST instanton with center ''z'' on the [[compactification (mathematics)|compactification]] ''S<sup>4</sup>'' of '''R'''<sup>4</sup> (bottom right). The BPST instanton is a classical instanton solution to the [[Yang–Mills equations]] on '''R'''<sup>4</sup>. | | footer = The ''dx<sup>1</sup>⊗σ<sub>3</sub>'' coefficient of a [[BPST instanton]] on the ''(x<sup>1</sup>,x<sup>2</sup>)''-slice of '''R'''<sup>4</sup> where ''σ<sub>3</sub>'' is the third [[Pauli matrix]] (top left). The ''dx<sup>2</sup>⊗σ<sub>3</sub>'' coefficient (top right). These coefficients determine the restriction of the BPST instanton ''A'' with ''g=2,ρ=1,z=0'' to this slice. The corresponding field strength centered around ''z=0'' (bottom left). A visual representation of the field strength of a BPST instanton with center ''z'' on the [[compactification (mathematics)|compactification]] ''S<sup>4</sup>'' of '''R'''<sup>4</sup> (bottom right). The BPST instanton is a classical instanton solution to the [[Yang–Mills equations]] on '''R'''<sup>4</sup>. | ||
}} | }} | ||
इंस्टेंटॉन (या प्यूडोपार्टिकल) एक ऐसी धारणा है, जो भौतिकीय और गणितीय भौतिकी में प्रकट होती है। एक इंस्टेंटॉन क्वांटम यांत्रिकी या क्वांटम | '''इंस्टेंटॉन''' (या '''प्यूडोपार्टिकल''') एक ऐसी धारणा है, जो भौतिकीय और गणितीय भौतिकी में प्रकट होती है। एक इंस्टेंटॉन क्वांटम यांत्रिकी या क्वांटम क्षेत्र सिद्धांत में एक वर्तमान समाधान है, जो एक अंतिम, गैर-शून्य क्रिया के साथ समीक्षा की जाने वाले समीकरणों के लिए होता है। अधिक ठीक ढंग से, यह यूक्लिडीन समय-स्थान पर पारम्परिक क्षेत्र सिद्धांत के समीकरणों का समाधान है। | ||
इस | इस प्रकार के क्वांटम सिद्धांतों में, चलती वेग में समानता के मानकों के लिए समीकरणों के समाधान को सोचा जा सकता है। महत्वपूर्ण बिंदु ऐक्शन के अधीन होते हैं, और इन्हें स्थानीय अधिकतम, स्थानीय न्यूनतम या सैडल बिंदु कहा जा सकता है। इंस्टेंटों क्वांटम क्षेत्र सिद्धांत में महत्वपूर्ण होते हैं, क्योंकि: | ||
* वे एक प्रणाली के | * वे एक प्रणाली के पारम्परिक व्यवहार के लिए अग्रणी क्वांटम सुधार के रूप में [[कार्यात्मक एकीकरण]] में प्रदर्शित होते हैं, और | ||
* उनका उपयोग यांग-मिल्स सिद्धांत जैसे विभिन्न प्रणालियों में | * उनका उपयोग यांग-मिल्स सिद्धांत जैसे विभिन्न प्रणालियों में सुरंग व्यवहार का अध्ययन करने के लिए किया जा सकता है। | ||
गतिविज्ञान से संबंधित, तत्वों के परिवारों में | गतिविज्ञान से संबंधित, तत्वों के परिवारों में इंस्टेंटॉन का प्रयोग इंस्टेंटॉन को, अर्थात गति के समीकरण के विभिन्न महत्वपूर्ण स्थानों को एक दूसरे से संबंधित करने की अनुमति देता है। भौतिक विज्ञान में इंस्टेंटॉन विशेष रूप से महत्वपूर्ण होते हैं, क्योंकि इंस्टेंटॉनों के जमावट (और ध्वनि उत्पन्न विरोधाभासी इंस्टेंटॉन) का विवरण ध्वनि-उत्पन्न अस्थिर चरण के रूप में जाना जाता है, जिसे स्वयं-संगठित गंभीर चरण के नाम से जाना जाता है। | ||
== गणित == | == गणित == | ||
गणितीय रूप से, | गणितीय रूप से, यांग-मिल्स इन्स्टेंटन [[प्रमुख बंडल]] पर एक स्व-द्वितीय या विरोध-स्व-द्वितीय संयोजन है, जो गैज सिद्धान्त में भौतिक समय-स्थान की भूमिका निभाता है। इन्स्टेंटन यांग-मिल्स मस्तिष्क के विकल्पों के लिए टोपोलॉजिकली गैर-चार न्यूनतम ऊर्जा के समाधान होते हैं।[5] ऐसे समाधानों को पहली बार चार-आयामी यूक्लिड समय-स्थान के मापदंड सम्पीडित करके खोजा गया था, और उन्हें समय-स्थान में स्थानीय बनाने के लिए प्रेरित किया था, जिससे स्यूडोपार्टिकल और इन्स्टेंटन नाम प्राप्त हुआ। | ||
यांग-मिल्स इंस्टेंटों का वर्णन बहुत संख्यावाले स्थितियों में [[ट्विस्टर सिद्धांत]] द्वारा, जो बीज-जगत की [[बीजगणितीय सतहों|बीजगणितीय]] वस्तुओं से संबंधित होता है, व एडीएचएम निर्माण या हाइपरकेलर संक्षिप्तीकरण के माध्यम से किए गए हैं। [[साइमन डोनाल्डसन]] का अनोखा काम, जिसके लिए उन्हें उसके उपरांत फील्ड्स मेडल से सम्मानित किया गया, निर्दिष्ट चार-आयामी विभिन्नयता में इंस्टेंटों के प्रारूपी स्थल का उपयोग मनिफोल्ड के एक नए अविन्यास का निर्माण के लिए किया गया था। यह मनिफोल्ड उसकी अस्थायी संरचना पर निर्भर करता है, और यह निर्माण [[होमियोमोर्फिज्म|होमियोमोर्फिक]] लेकिन [[डिफियोमोर्फिज्म|डिफियोमोर्फिक]] चार-आयामी विभिन्न में लागू होता है। इंस्टेंटन के अध्ययन में विकसित कई तकनीकों को मोनोपोलों पर भी लागू किया गया है। इसलिए मैग्नेटिक मोनोपोल यांग-मिल्स समीकरणों के एक आयामी कटवचन के समाधान के रूप में उत्पन्न होते हैं। | |||
== क्वांटम यांत्रिकी == | == क्वांटम यांत्रिकी == | ||
एक | एक इन्स्टैंटॉन एक क्वांटम मैकेनिकल कण के लिए एक प्रतिस्थापित बाधा से गुजरते समय के लिए परावर्तन संभावना की गणना करने के लिए उपयोग किया जा सकता है। एक इन्स्टैंटॉन प्रभाव से एक प्रणाली का उदाहरण [[डबल-वेल क्षमता|दोहरी-कूपक क्षमता]] में एक कण होता है। पारम्परिक कण के विपरीत, एक क्वांटम कण के लिए उस स्थान पर ऊंची ऊर्जा के क्षेत्र को पार करने की संभावना अस्तित्व में होती है, जो उसकी अपनी ऊर्जा से अधिक होती है। | ||
=== तत्काल विचार करने की | === तत्काल विचार करने की अभिप्रेरणा === | ||
डबल-वेल | [[डबल-वेल क्षमता|दोहरी-कूपक क्षमता]] के अंदर एकल कण गति के क्वांटम यांत्रिकी पर विचार करें <math>V(x)={1\over 4}(x^2-1)^2.</math> | ||
स्थितिज ऊर्जा का न्यूनतम मान होता है <math>x=\pm 1</math>, और इन्हें | स्थितिज ऊर्जा का न्यूनतम मान होता है <math>x=\pm 1</math>, और इन्हें पारम्परिक मिनिमा कहा जाता है, क्योंकि पारम्परिक यांत्रिकी में कण उनमें से एक में भ्रमित करते हैं। पारम्परिक यांत्रिकी में दो निम्नतम ऊर्जा अवस्थाएँ हैं। | ||
क्वांटम यांत्रिकी में, हम श्रोडिंगर समीकरण को हल करते हैं | क्वांटम यांत्रिकी में, हम श्रोडिंगर समीकरण को हल करते हैं- | ||
:<math>-{\hbar^2\over 2m}{\partial^2\over \partial x^2}\psi+V(x)\psi(x)=E\psi(x), </math> | :<math>-{\hbar^2\over 2m}{\partial^2\over \partial x^2}\psi+V(x)\psi(x)=E\psi(x), </math> | ||
ऊर्जा | ऊर्जा आइनस्टेट्स की पहचान करने के लिए यदि हम ऐसा करते हैं, तो हमें दो अवस्थाओं के अतिरिक्त केवल अद्वितीय न्यूनतम-ऊर्जा अवस्था मिलेगी। ग्राउंड-स्टेट तरंग फलन दोनों पारम्परिक मिनीमा पर स्थानीयकृत होता है <math>x=\pm 1</math> क्वांटम हस्तक्षेप या क्वांटम सुरंग निर्माण के कारण उनमें से केवल एक के अतिरिक्त होता है। | ||
इंस्टेन्टॉन्स उस कार्यक्षेत्र को समझने के लिए एक उपकरण हैं, जिससे हम अर्ध-पारम्परिक अनुमान के भीतर क्योंकि इलुक्लिड समय के पथ-अंश प्रकारीकरण का प्रयोग करते हुए यह होता है। हम सर्वप्रथम यह देखेंगे कि डब्ल्यूकेबी अनुमान का उपयोग करके तरंग फलन तय करना संभव है, और उसके पश्चात पथ-अंश प्रकारीकरण का उपयोग करके इंस्टेन्टॉन्स को प्रस्तुत करेंगे। | |||
=== [[WKB सन्निकटन]] === | === [[WKB सन्निकटन|डब्ल्यूकेबी निकटता]] === | ||
इस संभावना की गणना करने का एक | इस संभावना की गणना करने का एक विधि, अर्ध-पारम्परिक डब्ल्यूकेबी निकटता के माध्यम से है, जिसके लिए मूल्य की आवश्यकता होती है <math>\hbar</math> छोटा होना। कण के लिए समय स्वतंत्र श्रोडिंगर समीकरण पढ़ता है- | ||
:<math>\frac{d^2\psi}{dx^2}=\frac{2m(V(x)-E)}{\hbar^2}\psi.</math> | :<math>\frac{d^2\psi}{dx^2}=\frac{2m(V(x)-E)}{\hbar^2}\psi.</math> | ||
Line 46: | Line 44: | ||
:<math>k=\frac{\sqrt{2m(E-V)}}{\hbar}.</math> | :<math>k=\frac{\sqrt{2m(E-V)}}{\hbar}.</math> | ||
इसका तात्पर्य यह है कि यदि कण की ऊर्जा संभावित ऊर्जा से कम है, तो एक घातीय रूप से घटते कार्य को प्राप्त करता है। संबंधित | इसका तात्पर्य यह है कि यदि कण की ऊर्जा संभावित ऊर्जा से कम है, तो एक घातीय रूप से घटते कार्य को प्राप्त करता है। संबंधित सुरंग आयाम आनुपातिक है | ||
:<math>e^{-\frac{1}{\hbar}\int_a^b\sqrt{2m(V(x)-E)} \, dx},</math> | :<math>e^{-\frac{1}{\hbar}\int_a^b\sqrt{2m(V(x)-E)} \, dx},</math> | ||
जहां ए और बी | जहां ए और बी सुरंग प्रक्षेपवक्र की प्रारंभिक और अंत बिंदु हैं। | ||
=== तत्काल के माध्यम से पथ अभिन्न व्याख्या === | === तत्काल के माध्यम से पथ अभिन्न व्याख्या === | ||
Line 55: | Line 53: | ||
:<math>K(a,b;t)=\langle x=a|e^{-\frac{i\mathbb{H}t}{\hbar}}|x=b\rangle =\int d[x(t)]e^{\frac{iS[x(t)]}{\hbar}}.</math> | :<math>K(a,b;t)=\langle x=a|e^{-\frac{i\mathbb{H}t}{\hbar}}|x=b\rangle =\int d[x(t)]e^{\frac{iS[x(t)]}{\hbar}}.</math> | ||
यूक्लिडियन स्पेसटाइम के लिए [[ बाती का घूमना ]] (विश्लेषणात्मक निरंतरता) की प्रक्रिया के | यूक्लिडियन स्पेसटाइम के लिए [[ बाती का घूमना |बाती का घूमना]] (विश्लेषणात्मक निरंतरता) की प्रक्रिया के पश्चात (<math>it\rightarrow \tau</math>), मिलता है | ||
:<math>K_E(a,b;\tau)=\langle x=a|e^{-\frac{\mathbb{H}\tau}{\hbar}}|x=b\rangle =\int d[x(\tau)]e^{-\frac{S_E[x(\tau)]}{\hbar}},</math> | :<math>K_E(a,b;\tau)=\langle x=a|e^{-\frac{\mathbb{H}\tau}{\hbar}}|x=b\rangle =\int d[x(\tau)]e^{-\frac{S_E[x(\tau)]}{\hbar}},</math> | ||
Line 63: | Line 61: | ||
संभावित ऊर्जा परिवर्तन संकेत <math> V(x) \rightarrow - V(x) </math> विक रोटेशन के तहत और मिनिमा मैक्सिमा में बदल जाती है, जिससे <math> V(x) </math> अधिकतम ऊर्जा की दो पहाड़ियों को प्रदर्शित करता है। | संभावित ऊर्जा परिवर्तन संकेत <math> V(x) \rightarrow - V(x) </math> विक रोटेशन के तहत और मिनिमा मैक्सिमा में बदल जाती है, जिससे <math> V(x) </math> अधिकतम ऊर्जा की दो पहाड़ियों को प्रदर्शित करता है। | ||
आइए अब हम यूक्लिडियन क्रिया के स्थानीय न्यूनतम पर विचार करें <math>S_E</math> डबल-वेल क्षमता के साथ <math>V(x)={1\over 4}(x^2-1)^2</math>, और हम सेट करते हैं <math>m=1</math> सिर्फ गणना की सादगी के लिए। चूँकि हम जानना चाहते हैं कि कैसे दो | आइए अब हम यूक्लिडियन क्रिया के स्थानीय न्यूनतम पर विचार करें <math>S_E</math> डबल-वेल क्षमता के साथ <math>V(x)={1\over 4}(x^2-1)^2</math>, और हम सेट करते हैं <math>m=1</math> सिर्फ गणना की सादगी के लिए। चूँकि हम जानना चाहते हैं कि, कैसे दो पारम्परिक रूप से निम्नतम ऊर्जा अवस्थाएँ हैं <math>x=\pm1</math> जुड़े हुए हैं, आइए सेट करें <math>a=-1</math> और <math>b=1</math>. | ||
के लिए <math>a=-1</math> और <math> b=1</math>, हम यूक्लिडियन क्रिया को इस रूप में फिर से लिख सकते हैं | के लिए <math>a=-1</math> और <math> b=1</math>, हम यूक्लिडियन क्रिया को इस रूप में फिर से लिख सकते हैं | ||
Line 69: | Line 67: | ||
:<math> \quad =\int_{\tau_a}^{\tau_b}d \tau {1\over 2}\left({d x\over d \tau}-\sqrt{2V(x)}\right)^2 + \int_{-1}^{1}d x {1\over \sqrt{2}}(1-x^2). </math> | :<math> \quad =\int_{\tau_a}^{\tau_b}d \tau {1\over 2}\left({d x\over d \tau}-\sqrt{2V(x)}\right)^2 + \int_{-1}^{1}d x {1\over \sqrt{2}}(1-x^2). </math> | ||
:<math> \quad \ge {2\sqrt{2}\over 3}. </math> | :<math> \quad \ge {2\sqrt{2}\over 3}. </math> | ||
उपरोक्त असमानता के समाधान से संतृप्त है <math> {d x\over d \tau}=\sqrt{2V(x)}</math> शर्त के साथ <math>x(\tau_a)=-1</math> और <math>x(\tau_b)=1</math>. ऐसे समाधान | उपरोक्त असमानता के समाधान से संतृप्त है <math> {d x\over d \tau}=\sqrt{2V(x)}</math> शर्त के साथ <math>x(\tau_a)=-1</math> और <math>x(\tau_b)=1</math>. ऐसे समाधान उपलब्ध हैं, और जब समाधान सरल रूप लेता है <math>\tau_a=-\infty</math> और <math>\tau_b=\infty</math>. तत्काल समाधान के लिए स्पष्ट सूत्र द्वारा दिया गया है | ||
:<math> x(\tau)=\tanh\left({1\over \sqrt{2}}(\tau-\tau_0)\right). </math> | :<math> x(\tau)=\tanh\left({1\over \sqrt{2}}(\tau-\tau_0)\right). </math> | ||
यहाँ <math>\tau_0</math> एक मनमाना स्थिरांक है। चूंकि यह समाधान एक पारम्परिक वैक्यूम से कूदता है <math>x=-1</math> दूसरे | यहाँ <math>\tau_0</math> एक मनमाना स्थिरांक है। चूंकि यह समाधान एक पारम्परिक वैक्यूम से कूदता है <math>x=-1</math> दूसरे पारम्परिक निर्वात के लिए <math>x=1</math> तुरंत चारों ओर <math>\tau=\tau_0</math>, इसे इंस्टेंटन कहा जाता है। | ||
[[डबल-वेल क्षमता|दोहरी-कूपक क्षमता]] के लिए स्पष्ट सूत्र | |||
मुलर-कर्स्टन द्वारा डबल-वेल | मुलर-कर्स्टन द्वारा [[डबल-वेल क्षमता|दोहरी-कूपक क्षमता]] के साथ श्रोडिंगर समीकरण की ईजेनर्जीज़ के लिए स्पष्ट सूत्र दिया गया है।<ref>H.J.W. Müller-Kirsten, Introduction to Quantum Mechanics: Schrödinger Equation and Path Integral, 2nd ed. (World Scientific, 2012), {{ISBN|978-981-4397-73-5}}; formula (18.175b), p. 525.</ref> श्रोडिंगर समीकरण पर लागू गड़बड़ी विधि (साथ ही सीमा की स्थिति) दोनों द्वारा व्युत्पत्ति के साथ, और पथ अभिन्न से स्पष्ट व्युत्पत्ति परिणाम निम्न है। श्रोडिंगर समीकरण के मापदंडों को परिभाषित करना और समीकरणों द्वारा क्षमता को ज्ञात करना- | ||
:<math> \frac{d^2y(z)}{dz^2} + [E-V(z)]y(z) = 0, </math> | :<math> \frac{d^2y(z)}{dz^2} + [E-V(z)]y(z) = 0, </math> | ||
Line 90: | Line 88: | ||
e^{-h^6/6\sqrt{2}c^2}. | e^{-h^6/6\sqrt{2}c^2}. | ||
</math> | </math> | ||
स्पष्ट रूप से ये | स्पष्ट रूप से ये आइनवैल्यूज उपगामित हैं (<math>h^2\rightarrow\infty</math>) क्षमता के हार्मोनिक भाग के परिणामस्वरूप अपेक्षित गिरावट। | ||
=== परिणाम === | === परिणाम === | ||
गणितीय रूप से | गणितीय रूप से निर्धारित यूक्लिडियन पथ तकनीक से प्राप्त परिणाम विक-रोटेशन करने से मिंकोवस्कियन पथ तकनीक का उचित विचार करने के समान भौतिक परिणाम देते हैं। इस उदाहरण से देखा जा सकता है कि विक-रोटेशन के माध्यम से क्लासिकल रूप से अनुमत रीजन में एक पारम्परिक पथ के अंतर्गत पार करने के लिए कार्यक्षमता की गणना (<math>V(x)</math>) के साथ) मिंकोवस्कियन पथ तकनीक का उपयोग करने के समान होती है। (चित्रों में बोलें तो यूक्लिडियन चित्र में एक पारम्परिक तत्व, जो कि किंक समाधान के रूप में जाना जाता है, दो हिल्स में परिणत होता है। इस उदाहरण में, दोहरी-कूपक क्षमता के दो "वेकुआ " (अर्थात ग्राउंड स्टेट) यूक्लिडियन संस्करण में पहाड़ियों में परिवर्तित हो जाते हैं। | ||
इस प्रकार, (यूक्लिडियन, | इस प्रकार, (यूक्लिडियन, अर्थात, काल्पनिक समय के साथ) (1 + 1)- आयामी क्षेत्र सिद्धांत का तात्कालिक क्षेत्र समाधान - प्रथम परिमाणित क्वांटम यांत्रिक विवरण - दो वैकुआ के बीच एक सुरंग प्रभाव के रूप में व्याख्या करने की अनुमति देता है, राज्यों को भौतिक (1-आयामी स्थान + वास्तविक समय) मिन्कोस्कीयन प्रणाली के आवधिक इंस्टेंटन्स की आवश्यकता होती है। इस विषयों में दोहरी वेल क्षमता लिखा है- | ||
:<math> V(\phi) = \frac{m^4}{2g^2}\left(1 - \frac{g^2\phi^2}{m^2}\right)^2 </math> | :<math> V(\phi) = \frac{m^4}{2g^2}\left(1 - \frac{g^2\phi^2}{m^2}\right)^2 </math> | ||
तत्काल, | तत्काल, अर्थात का समाधान | ||
:<math> \frac{d^2\phi}{d\tau^2} = V'(\phi), </math> | :<math> \frac{d^2\phi}{d\tau^2} = V'(\phi), </math> | ||
( | (अर्थात ऊर्जा के साथ <math>E_{cl} = 0</math>), है | ||
:<math> \phi_c(\tau) = \frac{m}{g}\tanh\left[m(\tau - \tau_0)\right],</math> | :<math> \phi_c(\tau) = \frac{m}{g}\tanh\left[m(\tau - \tau_0)\right],</math> | ||
जहाँ<math>\tau = it</math> यूक्लिडियन समय है। | जहाँ<math>\tau = it</math> यूक्लिडियन समय है। | ||
ध्यान दें कि | |||
ध्यान दें कि इन दो वैकुए के आस-पास एकल घटना के प्रति नैवे पर्तुर्बेशन का एक आसान तरीके से पता नहीं लग सकता (मिंकोवस्कियन वर्णन का) जो इस क्वांटम यांत्रिकी प्रणाली के वैक्यूम संरचना की प्रकृति को परिवर्तित करता है। वास्तव में, नैवे क्षोभ को सीमा प्रतिबंधो द्वारा पूरा किया जाना चाहिए, और ये गैर-क्षोभ प्रभाव प्रदान करती हैं, जैसा कि ऊपर के स्पष्ट सूत्र और एकल घटनाओं के लिए अन्य वैद्युत जैसे कोसाइन वैद्युत (मैथ्यू फलन) या अन्य आवर्ती वैद्युतों (लेम फलन और स्फेरोइडल तरंग फलन) के लिए उपयोग किए जाने वाले अनुरूप गणनाओं से स्पष्ट होता है, और चाहे आप श्रोडिन्गर मापदंड का उपयोग करें या पथ-इंटीग्रल का। | |||
इस प्रकार, (इयुक्लिडियन, यानी कि काल्पनिक समय के साथ) (1 + 1)-आयामी फ़ील्ड सिद्धांत का इंस्टेंटॉन क्षेत्र समाधान – प्रथम क्वांटाइज़्ड क्वांटम यांत्रिकी विवरण – दो भौतिक ग्राउंड स्थिति (उच्च स्थितियों के लिए आवश्यक होते हैं) के मध्य एक सुरंग प्रभाव के रूप में व्याख्या किया जा सकता है। अन्ततः, दोहरी-वेल के विकल्प की तुलना में उपलब्ध इस नमूने में क्षेत्र के दो "खाली स्थान" मिं से एक से दूसरे के मध्य सुरंग के लिए इंस्टेंटॉन का उपयोग किया जा सकता है। | |||
=== आवधिक तत्काल === | === आवधिक तत्काल === | ||
आयामी क्षेत्र वितरण या क्वांटम मैकेनिक्स में, "इन्स्टैंटन" को एक पारम्परिक (न्यूटन की प्रकारकी) गति के समानीकरण के रूप में परिभाषित किया जाता है, जिसमें यूक्लिडीयन समय और अंतिम यूक्लिडीयन क्रिया होती है। सोलिटन के सन्दर्भ में, उससे संबंधित समाधान को "किंक" के रूप में जाना जाता है। पारम्परिक कणों के व्यवहार के अनुपम तुलना से, ऐसे समाधान या कॉन्फ़िगरेशन, और अन्य, सामूहिक रूप से "प्सेडोपार्टिकल" या "प्सेडोक्लासिकल विन्यास" के रूप में जाने जाते हैं। "इन्स्टैंटन" (किंक) समाधान के साथ, एक और समाधान "एंटी-इन्स्टैंटन" (एंटी-किंक) जाना जाता है, और इन्स्टैंटन और एंटी-इन्स्टैंटन को "टोपोलॉजिकल चार्ज" +1 और -1 से भिन्न किया जाता है, परन्तु दोनों का यूक्लिडीय क्रिया समान होता है। | |||
आवधिक इंस्टेंटन इंस्टेंटन का एक सामान्यीकरण है।<ref>Harald J.W. Müller-Kirsten, Introduction to Quantum Mechanics: Schrödinger Equation and Path Integral, 2nd ed., World Scientific (Singapore, 2012).</ref> स्पष्ट रूप में वे जेकोबियन अण्डाकार कार्यों के संदर्भ में अभिव्यक्त होते हैं जो आवधिक कार्य हैं (त्रिकोणमितीय कार्यों के प्रभावी रूप से सामान्यीकरण)। अनंत अवधि की सीमा में ये आवधिक इंस्टेंटॉन - जिन्हें प्रायः उछाल, बबल या इसी प्रकार के रूप में जाना जाता है - इंस्टेंटॉन में कम हो जाते हैं। | |||
ये प्सेडो-पारम्परिक विन्यास की स्थिरता का अध्ययन प्सेडो-पार्टिकल विन्यास को परिभाषित करने वाले लैग्रेंजियन को उसके चारों ओर विस्तृत करके उसकी बहुत छोटी अस्थिरता की समीकरण की मूल्यांकन के द्वारा किया जा सकता है। चतुर्थ-गुणित विस्तारों (दोहरी वेल, विपरीत दोहरी वेल) और आवृत्ति-विशिष्ट (मैथ्यू) खाई के सभी संस्करणों के लिए ये समीकरण लामे समीकरणों के रूप में पाए जाते हैं, देखें लामे फलन। इन समीकरणों के इगनवैल्यूज़ जाने जाते हैं और अस्थिरता के मामले में, पथ अंश का मूल्यांकन करके उससे अपघटन दरों की गणना की जा सकती है। | |||
=== प्रतिक्रिया दर सिद्धांत में इंस्टेंटन === | === प्रतिक्रिया दर सिद्धांत में इंस्टेंटन === | ||
प्रतिक्रिया दर सिद्धांत के संदर्भ में रासायनिक प्रतिक्रियाओं में परमाणुओं के | प्रतिक्रिया दर सिद्धांत के संदर्भ में रासायनिक प्रतिक्रियाओं में परमाणुओं के सुरंग की दर की गणना करने के लिए आवधिक इंस्टेंटॉन का उपयोग किया जाता है। एक रासायनिक प्रतिक्रिया की प्रगति को उच्च आयामी [[संभावित ऊर्जा सतह]] (पीईएस) पर स्यूडोपार्टिकल के आंदोलन के रूप में वर्णित किया जा सकता है। थर्मल दर स्थिर <math>k</math> फिर मुक्त ऊर्जा के काल्पनिक भाग से संबंधित हो सकता है <math>F</math> द्वारा | ||
<math>k(\beta) = -\frac{2}{\hbar} \text{Im} \mathrm{F} = \frac{2}{\beta \hbar} \text{Im} \ \text{ln}(Z_k) \approx \frac{2}{\hbar \beta} \frac{\text{Im} Z_k }{\text{Re} Z_k } ,\ \ \text{Re} Z_k \gg \text{Im} Z_k </math> | <math>k(\beta) = -\frac{2}{\hbar} \text{Im} \mathrm{F} = \frac{2}{\beta \hbar} \text{Im} \ \text{ln}(Z_k) \approx \frac{2}{\hbar \beta} \frac{\text{Im} Z_k }{\text{Re} Z_k } ,\ \ \text{Re} Z_k \gg \text{Im} Z_k </math> | ||
Line 127: | Line 128: | ||
:<math>Z_k = \oint \mathcal{D} \mathbf{x}(\tau) e^{-S_E[\mathbf{x}(\tau)]/\hbar}, \ \ \ S_E = \int_0^{\beta \hbar} \left( \frac{\dot{\mathbf{x}}}{2}^2 + V(\mathbf{x}(\tau)) \right) d\tau</math> | :<math>Z_k = \oint \mathcal{D} \mathbf{x}(\tau) e^{-S_E[\mathbf{x}(\tau)]/\hbar}, \ \ \ S_E = \int_0^{\beta \hbar} \left( \frac{\dot{\mathbf{x}}}{2}^2 + V(\mathbf{x}(\tau)) \right) d\tau</math> | ||
पथ इंटीग्रल को तब सबसे तेज डिसेंट इंटीग्रेशन के माध्यम से अनुमानित किया जाता है जो केवल | पथ इंटीग्रल को तब सबसे तेज डिसेंट इंटीग्रेशन के माध्यम से अनुमानित किया जाता है जो केवल पारम्परिक समाधानों और उनके चारों ओर द्विघात उतार-चढ़ाव के योगदान को ध्यान में रखता है। यह बड़े पैमाने पर भारित निर्देशांक में दर स्थिर अभिव्यक्ति के लिए उपज देता है | ||
<math>k(\beta) = \frac{2}{\beta\hbar} \left( \frac{ \text{det}\left[ -\frac{\partial^2}{\partial \tau^2} + \mathbf{V}''(x_\text{RS}(\tau)) \right] }{\text{det} \left[- \frac{\partial^2}{\partial \tau^2} + \mathbf{V}''(x_\text{Inst}(\tau)) \right] } \right)^\frac{1}{2}{\exp\left({\frac{-S_E[x_\text{inst}(\tau) + S_E[x_\text{RS}(\tau)] }{\hbar}}\right)}</math> | <math>k(\beta) = \frac{2}{\beta\hbar} \left( \frac{ \text{det}\left[ -\frac{\partial^2}{\partial \tau^2} + \mathbf{V}''(x_\text{RS}(\tau)) \right] }{\text{det} \left[- \frac{\partial^2}{\partial \tau^2} + \mathbf{V}''(x_\text{Inst}(\tau)) \right] } \right)^\frac{1}{2}{\exp\left({\frac{-S_E[x_\text{inst}(\tau) + S_E[x_\text{RS}(\tau)] }{\hbar}}\right)}</math> | ||
Line 134: | Line 135: | ||
=== उलटा डबल-वेल फॉर्मूला === | === उलटा डबल-वेल फॉर्मूला === | ||
डबल-वेल पोटेंशियल के लिए उल्टे | डबल-वेल पोटेंशियल के लिए उल्टे दोहरी वेल क्षमता के लिए आइगेनवैल्यू प्राप्त कर सकते हैं। इस मामले में, यद्यपि, आइगेनवैल्यू जटिल हैं। समीकरणों द्वारा पैरामीटर परिभाषित करना | ||
:<math> \frac{d^2y}{dz^2} + [E - V(z)]y(z) = 0, \;\;\; | :<math> \frac{d^2y}{dz^2} + [E - V(z)]y(z) = 0, \;\;\; | ||
V(z) = \frac{1}{4}h^4z^2 - \frac{1}{2}c^2z^4, </math> | V(z) = \frac{1}{4}h^4z^2 - \frac{1}{2}c^2z^4, </math> | ||
Line 152: | Line 153: | ||
समानताएं (लाल), मेरिडियन (नीला) और हाइपरमेरिडियन (हरा)<ref group="note">Because this projection is [[conformal map|conformal]], the curves intersect each other orthogonally (in the yellow points) as in 4D. All curves are circles: the curves that intersect <0,0,0,1> have infinite radius (= straight line).</ref>]] | समानताएं (लाल), मेरिडियन (नीला) और हाइपरमेरिडियन (हरा)<ref group="note">Because this projection is [[conformal map|conformal]], the curves intersect each other orthogonally (in the yellow points) as in 4D. All curves are circles: the curves that intersect <0,0,0,1> have infinite radius (= straight line).</ref>]] | ||
|} | |} | ||
क्वांटम क्षेत्र सिद्धांत (क्यूएफटी) का अध्ययन | क्वांटम क्षेत्र सिद्धांत (क्यूएफटी) का अध्ययन करते समय, एक सिद्धांत की वैक्यवादिक संरचना सीधे इन्स्टेंटॉन की ओर आकर्षित कर सकती है। जैसा कि एक दोहरी वेल क्वांटम यांत्रिकी प्रणाली का उदाहरण दर्शाता है, एक सामान्य रूप से वैक्यूम सिद्धांत का सच्चा वैक्यूम नहीं हो सकता। इसके अतिरिक्त, एक क्षेत्र सिद्धांत का सच्चा वैक्यूम कई टोपोलॉजिकली असमान्य सेक्टरों के "अधिव्यापन" का हो सकता है, जिसे "टोपोलॉजिकल वैक्यूम" कहा जाता है। | ||
एक इंस्टेंटन और इसकी व्याख्या का एक अच्छी | एक इंस्टेंटन और इसकी व्याख्या का एक अच्छी प्रकारसे समझा और व्याख्यात्मक उदाहरण एक गैर-अबेलियन समूह के साथ एक क्यूएफटी के संदर्भ में पाया जा सकता है। गैर-अबेलियन गेज समूह,<ref group="note">See also: [[Non-abelian gauge theory]]</ref> यांग-मिल्स सिद्धांत। यांग-मिल्स सिद्धांत के लिए इन असमान क्षेत्रों को एसयू (2) के तीसरे होमोटोपी समूह (जिसका समूह कई गुना [[3-क्षेत्र]] है) द्वारा वर्गीकृत किया जा सकता है (एक उपयुक्त गेज में) <math>S^3</math>). एक निश्चित टोपोलॉजिकल वैक्यूम को एक [[टोपोलॉजिकल इनवेरिएंट]], [[पोंट्रीगिन इंडेक्स]] द्वारा लेबल किया जाता है। के तीसरे होमोटॉपी समूह के रूप में <math>S^3</math> [[पूर्णांक|पूर्णांको]] का समुच्चय पाया गया है, | ||
: होमोटॉपी समूह |<math>\pi_3</math>3-गोला|<math>(S^3)=</math>पूर्णांक |<math>\mathbb{Z}\,</math>ब्रा-केट नोटेशन द्वारा निरूपित असीम रूप से कई स्थलीय रूप से असमान वैकुआ हैं<math>|N\rangle </math>, जहाँ<math>N</math> उनका संबंधित पोंट्रीगिन इंडेक्स है। एक इंस्टेंटन यूक्लिडियन स्पेसटाइम में गति के | : होमोटॉपी समूह |<math>\pi_3</math>3-गोला|<math>(S^3)=</math>पूर्णांक |<math>\mathbb{Z}\,</math>ब्रा-केट नोटेशन द्वारा निरूपित असीम रूप से कई स्थलीय रूप से असमान वैकुआ हैं<math>|N\rangle </math>, जहाँ<math>N</math> उनका संबंधित पोंट्रीगिन इंडेक्स है। एक इंस्टेंटन यूक्लिडियन स्पेसटाइम में गति के पारम्परिक समीकरणों को पूरा करने वाला एक क्षेत्र विन्यास है, जिसे इन विभिन्न टोपोलॉजिकल वैकुआ के बीच एक सुरंग प्रभाव के रूप में व्याख्या किया गया है। इसे फिर से एक पूर्णांक संख्या, इसकी पोंट्रीगिन इंडेक्स द्वारा लेबल किया गया है, <math>Q</math>. इंडेक्स के साथ एक इंस्टेंटन की कल्पना कर सकते हैं <math>Q</math> टोपोलॉजिकल वैकुआ के बीच सुरंग की मात्रा निर्धारित करना <math>|N\rangle </math> और <math>|N+Q\rangle </math>. यदि Q = 1 है, तो इसके खोजकर्ताओं [[अलेक्जेंडर बेलाविन]], [[अलेक्जेंडर मार्कोविच पॉलाकोव]], अल्बर्ट एस। श्वार्ज़ और यू के नाम पर विन्यास का नाम BPST इंस्टेंटन है। एस टायपकिन। सिद्धांत के सच्चे निर्वात को कोण थीटा द्वारा लेबल किया गया है और यह टोपोलॉजिकल क्षेत्रों का ओवरलैप है: | ||
:<math>|\theta\rangle =\sum_{N=-\infty}^{N=+\infty}e^{i \theta N}|N\rangle.</math> | :<math>|\theta\rangle =\sum_{N=-\infty}^{N=+\infty}e^{i \theta N}|N\rangle.</math> | ||
जेरार्डस 'टी हूफ्ट|जेरार्ड'टी हूफ्ट ने पहली बार [http://inspirehep.net/search?p=PHRVA,D14,3432] में फ़र्मियन से जुड़े एक सिद्धांत में | जेरार्डस 'टी हूफ्ट|जेरार्ड'टी हूफ्ट ने पहली बार [http://inspirehep.net/search?p=PHRVA,D14,3432] में फ़र्मियन से जुड़े एक सिद्धांत में बीपीएसटी इंस्टेंटन के प्रभावों की क्षेत्र सैद्धांतिक गणना की। उन्होंने दिखाया कि तत्काल पृष्ठभूमि में डायराक समीकरण के शून्य मोड कम ऊर्जा प्रभावी क्रिया में एक गैर-परेशान बहु-फर्मियन इंटरैक्शन की ओर ले जाते हैं। | ||
== यांग-मिल्स सिद्धांत == | == यांग-मिल्स सिद्धांत == | ||
संरचना समूह जी, बेस एम, | संरचना समूह जी, बेस एम, संयोजन (गणित) ए, और [[वक्रता]] (यांग-मिल्स फील्ड टेन्सर) एफ के साथ एक प्रमुख बंडल पर पारम्परिक यांग-मिल्स की कार्रवाई है | ||
:<math>S_{YM} = \int_M \left|F\right|^2 d\mathrm{vol}_M,</math> | :<math>S_{YM} = \int_M \left|F\right|^2 d\mathrm{vol}_M,</math> | ||
जहाँ<math>d\mathrm{vol}_M</math> [[वॉल्यूम फॉर्म]] चालू है <math>M</math>. यदि आंतरिक उत्पाद चालू है <math>\mathfrak{g}</math>, का [[झूठ बीजगणित]] <math>G</math> जिसमें <math>F</math> मान लेता है, [[ मारक रूप ]] द्वारा दिया जाता है <math>\mathfrak{g}</math>, तो इसे इस रूप में दर्शाया जा सकता है <math>\int_M \mathrm{Tr}(F \wedge *F)</math>, तब से | जहाँ <math>d\mathrm{vol}_M</math> [[वॉल्यूम फॉर्म]] चालू है <math>M</math>. यदि आंतरिक उत्पाद चालू है <math>\mathfrak{g}</math>, का [[झूठ बीजगणित|भ्रमित बीजगणित]] <math>G</math> जिसमें <math>F</math> मान लेता है, [[ मारक रूप |मारक रूप]] द्वारा दिया जाता है <math>\mathfrak{g}</math>, तो इसे इस रूप में दर्शाया जा सकता है <math>\int_M \mathrm{Tr}(F \wedge *F)</math>, तब से | ||
:<math>F \wedge *F = \langle F, F \rangle d\mathrm{vol}_M.</math> | :<math>F \wedge *F = \langle F, F \rangle d\mathrm{vol}_M.</math> | ||
उदाहरण के लिए, [[गेज समूह]] [[U(1)]] के मामले में, F विद्युत चुम्बकीय क्षेत्र [[टेन्सर]] होगा। क्रिया (भौतिकी) से, यांग-मिल्स समीकरण अनुसरण करते हैं। वे हैं | उदाहरण के लिए, [[गेज समूह]] [[U(1)]] के मामले में, F विद्युत चुम्बकीय क्षेत्र [[टेन्सर]] होगा। क्रिया (भौतिकी) से, यांग-मिल्स समीकरण अनुसरण करते हैं। वे हैं- | ||
:<math>\mathrm{d}F = 0, \quad \mathrm{d}{*F} = 0.</math> | :<math>\mathrm{d}F = 0, \quad \mathrm{d}{*F} = 0.</math> | ||
Line 175: | Line 176: | ||
:<math>{*F} = \pm F\,</math> | :<math>{*F} = \pm F\,</math> | ||
स्वचालित रूप से यांग-मिल्स समीकरण का भी समाधान है। यह सरलीकरण 4 कई गुना पर होता है:<math>s=1</math> ताकि <math>*^2=+1</math> 2-रूपों पर। इस | स्वचालित रूप से यांग-मिल्स समीकरण का भी समाधान है। यह सरलीकरण 4 कई गुना पर होता है:<math>s=1</math> ताकि <math>*^2=+1</math> 2-रूपों पर। इस प्रकार के समाधान सामान्यतः उपलब्ध होते हैं, यद्यपि उनका सटीक चरित्र बेस स्पेस एम, प्रधान बंडल पी और गेज ग्रुप जी के आयाम और टोपोलॉजी पर निर्भर करता है। | ||
नाबेलियन यांग-मिल्स सिद्धांतों में, <math>DF=0</math> और <math>D*F=0</math> जहां D [[बाहरी सहसंयोजक व्युत्पन्न]] है। इसके अलावा, | नाबेलियन यांग-मिल्स सिद्धांतों में, <math>DF=0</math> और <math>D*F=0</math> जहां D [[बाहरी सहसंयोजक व्युत्पन्न]] है। इसके अलावा, बियांची पहचान | ||
:<math>DF=dF+A\wedge F-F\wedge A=d(dA+A\wedge A)+A\wedge (dA+A\wedge A)-(dA + A\wedge A)\wedge A=0</math> | :<math>DF=dF+A\wedge F-F\wedge A=d(dA+A\wedge A)+A\wedge (dA+A\wedge A)-(dA + A\wedge A)\wedge A=0</math> | ||
संतुष्ट है। | संतुष्ट है। | ||
क्वांटम | क्वांटम क्षेत्र सिद्धान्त में, एक इंस्टेंटन चार-आयामी यूक्लिडियन स्पेस में एक [[टोपोलॉजी]] नॉनट्रिविअल फील्ड कॉन्फ़िगरेशन है ([[मिन्कोव्स्की स्पेसटाइम]] के विक घूर्णन के रूप में माना जाता है)। विशेष रूप से, यह यांग-मिल्स [[गेज क्षेत्र]] ए को संदर्भित करता है जो [[अनंत पर बिंदु]] पर [[शुद्ध गेज]] तक पहुंचता है। इसका तात्पर्य क्षेत्र बल है | ||
:<math>\mathbf{F}=d\mathbf{A}+\mathbf{A}\wedge\mathbf{A}</math> | :<math>\mathbf{F}=d\mathbf{A}+\mathbf{A}\wedge\mathbf{A}</math> | ||
अनंत में मिट जाता है। इंस्टेंटन नाम इस तथ्य से निकला है कि ये क्षेत्र अंतरिक्ष और (यूक्लिडियन) समय में स्थानीयकृत हैं - दूसरे शब्दों में, एक विशिष्ट पल में। | अनंत में मिट जाता है। इंस्टेंटन नाम इस तथ्य से निकला है कि ये क्षेत्र अंतरिक्ष और (यूक्लिडियन) समय में स्थानीयकृत हैं - दूसरे शब्दों में, एक विशिष्ट पल में। | ||
द्वि-आयामी अंतरिक्ष पर इंस्टेंटन का मामला कल्पना करना आसान हो सकता है क्योंकि यह गेज [[समूह (गणित)]] के सबसे सरल | द्वि-आयामी अंतरिक्ष पर इंस्टेंटन का मामला कल्पना करना आसान हो सकता है, क्योंकि यह गेज [[समूह (गणित)]] के सबसे सरल विषय को स्वीकार करता है, अर्थात् यू (1), जो एक [[एबेलियन समूह]] है। इस विषय में क्षेत्र ए को केवल [[वेक्टर क्षेत्र]] के रूप में देखा जा सकता है। एक इंस्टेंटन एक विन्यास है, उदाहरण के लिए, तीर एक केंद्रीय बिंदु (अर्थात, हेजहोग राज्य) से दूर इंगित करता है। यूक्लिडियन चार आयामी अंतरिक्ष में, <math>\mathbb{R}^4</math>, एबेलियन इंस्टेंटन असंभव हैं। | ||
एक पल का क्षेत्र विन्यास निर्वात अवस्था से बहुत भिन्न होता है। इस वजह से [[फेनमैन आरेख]] | एक पल का क्षेत्र विन्यास निर्वात अवस्था से बहुत भिन्न होता है। इस वजह से [[फेनमैन आरेख|फेनमैन आरेखो]] का उपयोग करके इंस्टेंटॉन का अध्ययन नहीं किया जा सकता है, जिसमें केवल क्षोभ सिद्धांत (क्वांटम यांत्रिकी) प्रभाव सम्मिलित हैं। इंस्टेंटन मूल रूप से गैर-भ्रमित करने वाले हैं। | ||
यांग-मिल्स ऊर्जा किसके द्वारा दी जाती है | यांग-मिल्स ऊर्जा किसके द्वारा दी जाती है | ||
:<math>\frac{1}{2}\int_{\mathbb{R}^4} \operatorname{Tr}[*\mathbf{F}\wedge \mathbf{F}]</math> | :<math>\frac{1}{2}\int_{\mathbb{R}^4} \operatorname{Tr}[*\mathbf{F}\wedge \mathbf{F}]</math> | ||
जहां ∗ हॉज द्वैत है। अगर हम जोर देते हैं कि यांग-मिल्स समीकरणों के समाधान में परिमित [[ऊर्जा]] है, तो अनंत पर समाधान की वक्रता (एक [[सीमा (गणित)]] के रूप में ली गई) शून्य होनी चाहिए। इसका तात्पर्य यह है कि चेर्न-साइमन्स इनवेरिएंट को 3-स्पेस सीमा पर परिभाषित किया जा सकता है। यह स्टोक्स के प्रमेय के माध्यम से [[अभिन्न]] लेने के | जहां ∗ हॉज द्वैत है। अगर हम जोर देते हैं कि यांग-मिल्स समीकरणों के समाधान में परिमित [[ऊर्जा]] है, तो अनंत पर समाधान की वक्रता (एक [[सीमा (गणित)]] के रूप में ली गई) शून्य होनी चाहिए। इसका तात्पर्य यह है कि चेर्न-साइमन्स इनवेरिएंट को 3-स्पेस सीमा पर परिभाषित किया जा सकता है। यह स्टोक्स के प्रमेय के माध्यम से [[अभिन्न]] लेने के सामान है- | ||
:<math>\int_{\mathbb{R}^4}\operatorname{Tr}[\mathbf{F}\wedge\mathbf{F}].</math> | :<math>\int_{\mathbb{R}^4}\operatorname{Tr}[\mathbf{F}\wedge\mathbf{F}].</math> | ||
Line 208: | Line 209: | ||
यदि यह बाउंड संतृप्त है, तो समाधान एक बोगोमोल्नी प्रसाद सोमरफील्ड बाउंड स्टेट है। ऐसे राज्यों के लिए, या तो ∗F = F या ∗F = - F [[होमोटॉपी अपरिवर्तनीय]] के चिह्न पर निर्भर करता है। | यदि यह बाउंड संतृप्त है, तो समाधान एक बोगोमोल्नी प्रसाद सोमरफील्ड बाउंड स्टेट है। ऐसे राज्यों के लिए, या तो ∗F = F या ∗F = - F [[होमोटॉपी अपरिवर्तनीय]] के चिह्न पर निर्भर करता है। | ||
मानक मॉडल में इंस्टेंटन के [[इलेक्ट्रोवीक इंटरैक्शन]] और क्रोमोडायनामिक क्षेत्र दोनों में | मानक मॉडल में इंस्टेंटन के [[इलेक्ट्रोवीक इंटरैक्शन]] और क्रोमोडायनामिक क्षेत्र दोनों में उपलब्ध होने की प्रतीक्षा है, यद्यपि, उनके अस्तित्व की अभी तक प्रायोगिक ढंग से पुष्टि नहीं हुई है।<ref>{{cite journal|last1=Amoroso|first1=Simone|last2=Kar|first2=Deepak|last3=Schott|first3=Matthias|title=एलएचसी पर क्यूसीडी इंस्टैंटन्स की खोज कैसे करें|journal=The European Physical Journal C|year=2021|volume=81|issue=7|page=624|doi=10.1140/epjc/s10052-021-09412-1|arxiv=2012.09120|bibcode=2021EPJC...81..624A|s2cid=229220708}}</ref> [[क्वांटम क्रोमोडायनामिक्स]] (क्यूसीडी) के निर्वात में संघनन के गठन को समझने और तथाकथित 'एटा-प्राइम पार्टिकल', एक [[गोल्डस्टोन बोसोन]] के द्रव्यमान को समझाने में इंस्टेंटन प्रभाव महत्वपूर्ण हैं।<ref group="note">See also: [[Chiral symmetry breaking|Pseudo-Goldstone boson]]</ref> जिसने क्यूसीडी के [[चिराल विसंगति]] के माध्यम से द्रव्यमान प्राप्त किया है। ध्यान दें कि कभी-कभी एक सिद्धांत में एक अतिरिक्त अंतरिक्ष आयाम के साथ एक संगत सॉलिटॉन भी होता है। इंस्टेंटन पर हालिया शोध उन्हें [[डी-branes|डी-ब्रेन्स]] और [[ब्लैक होल्स]] जैसे विषयों और निश्चित रूप से क्यूसीडी की वैक्यूम संरचना से जोड़ता है। उदाहरण के लिए, ओरिएंटेड [[स्ट्रिंग सिद्धांत]] में, एक डीपी ब्रैन एक गेज सिद्धान्त है जो विश्व वॉल्यूम (पी + 5) -आकार यू (एन) गेज सिद्धान्त में एन के ढेर पर है। | ||
डी(पी + 4)-ब्रेन। | डी(पी + 4)-ब्रेन। | ||
== आयामों की विभिन्न संख्या == | == आयामों की विभिन्न संख्या == | ||
इंस्टेंटन गेज सिद्धांतों के गैर-प्रतिस्पर्धी गतिशीलता में एक केंद्रीय भूमिका निभाते हैं। भौतिक उत्तेजन का प्रकार जो एक पल पैदा करता है, स्पेसटाइम के आयामों की संख्या पर निर्भर करता है, | इंस्टेंटन गेज सिद्धांतों के गैर-प्रतिस्पर्धी गतिशीलता में एक केंद्रीय भूमिका निभाते हैं। भौतिक उत्तेजन का प्रकार जो एक पल पैदा करता है, स्पेसटाइम के आयामों की संख्या पर निर्भर करता है, परन्तु, आश्चर्यजनक रूप से, इन तात्कालिकों से निपटने के लिए औपचारिकता अपेक्षाकृत आयाम-स्वतंत्र है। | ||
4-आयामी गेज सिद्धांतों में, जैसा कि पिछले खंड में वर्णित है, इंस्टेंटन गेज बंडल हैं जो एक नॉनट्रिविअल [[ विभेदक रूप ]]| फोर-फॉर्म [[विशेषता वर्ग]] के साथ हैं। यदि गेज समरूपता एक [[एकात्मक समूह]] या [[विशेष एकात्मक समूह]] है तो यह विशेषता वर्ग दूसरा [[चेर्न वर्ग]] है, जो गेज समूह यू (1) के मामले में गायब हो जाता है। यदि गेज समरूपता एक ओर्थोगोनल समूह है तो यह वर्ग | 4-आयामी गेज सिद्धांतों में, जैसा कि पिछले खंड में वर्णित है, इंस्टेंटन गेज बंडल हैं जो एक नॉनट्रिविअल [[ विभेदक रूप |विभेदक रूप]] | फोर-फॉर्म [[विशेषता वर्ग]] के साथ हैं। यदि गेज समरूपता एक [[एकात्मक समूह]] या [[विशेष एकात्मक समूह]] है तो यह विशेषता वर्ग दूसरा [[चेर्न वर्ग]] है, जो गेज समूह यू (1) के मामले में गायब हो जाता है। यदि गेज समरूपता एक ओर्थोगोनल समूह है तो यह वर्ग प्रथम पोंट्रेजगिन वर्ग है। | ||
[[हिग्स फील्ड]] के साथ 3-आयामी गेज सिद्धांतों में, 'टी हूफ्ट-पोल्याकोव मोनोपोल्स इंस्टेंटन की भूमिका निभाते हैं। 1977 के अपने पेपर [http://inspirehep.net/record/112352 क्वार्क कन्फाइनमेंट एंड टोपोलॉजी ऑफ गेज ग्रुप्स] में, अलेक्जेंडर मार्कोविच पोलाकोव ने प्रदर्शित किया कि 3-आयामी [[क्वांटम इलेक्ट्रोडायनामिक्स]] में तत्काल प्रभाव एक स्केलर क्षेत्र से मिलकर फोटॉन के लिए द्रव्यमान का कारण बनता है। . | [[हिग्स फील्ड|हिग्स क्षेत्र]] के साथ 3-आयामी गेज सिद्धांतों में, 'टी हूफ्ट-पोल्याकोव मोनोपोल्स इंस्टेंटन की भूमिका निभाते हैं। 1977 के अपने पेपर [http://inspirehep.net/record/112352 क्वार्क कन्फाइनमेंट एंड टोपोलॉजी ऑफ गेज ग्रुप्स] में, अलेक्जेंडर मार्कोविच पोलाकोव ने प्रदर्शित किया कि 3-आयामी [[क्वांटम इलेक्ट्रोडायनामिक्स|क्वांटम विद्युत् गतिविज्ञान]] में तत्काल प्रभाव एक स्केलर क्षेत्र से मिलकर फोटॉन के लिए द्रव्यमान का कारण बनता है। . | ||
2-आयामी एबेलियन गेज सिद्धांतों में [[वर्ल्डशीट इंस्टेंटन]] चुंबकीय [[भंवर]] हैं। वे स्ट्रिंग | 2-आयामी एबेलियन गेज सिद्धांतों में [[वर्ल्डशीट इंस्टेंटन]] चुंबकीय [[भंवर]] हैं। वे स्ट्रिंग सिद्धान्त में कई गैर-प्रतिस्पर्धी प्रभावों के लिए जिम्मेदार हैं, दर्पण समरूपता (स्ट्रिंग सिद्धान्त) में एक केंद्रीय भूमिका निभा रहे हैं। | ||
1-आयामी क्वांटम यांत्रिकी में, इंस्टेंटन्स [[क्वांटम टनलिंग]] का वर्णन करते हैं, जो गड़बड़ी सिद्धांत में अदृश्य है। | 1-आयामी क्वांटम यांत्रिकी में, इंस्टेंटन्स [[क्वांटम टनलिंग|क्वांटम सुरंग]] का वर्णन करते हैं, जो गड़बड़ी सिद्धांत में अदृश्य है। | ||
== 4डी | == 4डी अति सममित गेज सिद्धांत == | ||
अति सममित गेज सिद्धांत सामान्यतः [[सुपरसिमेट्री नॉनरेनॉर्मलाइजेशन प्रमेय]] का पालन करते हैं, जो क्वांटम सुधारों के प्रकारों को प्रतिबंधित करते हैं, जो स्वरूपों के क्वांटम सुधारों को प्रतिबंधित करती हैं,एवं जो अनुमोदन विज्ञान में होते हैं। इन सद्धांतो में से कई केवल क्षोभ सिद्धांत में गणनीय सुधारों पर ही लागू होती हैं, इसलिए इनस्टैंटन, जो क्षोभ सिद्धांत में नहीं देखे जाते हैं, इन मात्राओं को सुधारने के लिए एकमात्र संभावना हैं।। | |||
1980 के दशक में कई लेखकों द्वारा | 1980 के दशक में कई लेखकों द्वारा अति सममित सिद्धांतों में तत्काल गणना के लिए क्षेत्र सैद्धांतिक तकनीकों का व्यापक अध्ययन किया गया था। चूंकि सुपरसिममेट्री तत्काल पृष्ठभूमि में फर्मियोनिक बनाम बोसोनिक गैर-शून्य मोड को रद्द करने की आश्वासन देती है, इसलिए तत्काल सैडल बिंदु की सम्मिलित 'टी हूफ्ट गणना शून्य मोड पर एकीकरण को कम कर देती है। | ||
एन = 1 अति सममित गेज सिद्धांत में इंस्टेंटॉन [[सुपरपोटेंशियल]] को संशोधित कर सकते हैं, कभी-कभी सभी वैकुआ को उठा सकते हैं। 1984 में, [[इयान एफ्लेक]], [[माइकल डाइन]] और [[नाथन सीबर्ग]] ने अपने पेपर [http://inspirehep.net/record/15868 डायनेमिकल अति सममित विभंजन इन अति सममित क्यूसीडी] में अति सामर्थ्यवान में तत्काल सुधार की गणना की। अधिक सटीक रूप से, वे केवल गणना करने में सक्षम थे, जब सिद्धांत में विशेष एकात्मक गेज समूह में रंगों की संख्या की तुलना में [[चिरल सुपरफील्ड]] का एक कम गंध होता है, क्योंकि कम गंधों की उपस्थिति में एक अखंड नॉनबेलियन गेज समरूपता एक अवरक्त विचलन की ओर जाता है, और अधिक जायके के मामले में योगदान शून्य के सामान है। चिरल पदार्थ की इस विशेष पसंद के लिए, दुर्बल युग्मन पर गेज समरूपता को पूरी प्रकारसे तोड़ने के लिए स्केलर क्षेत्र के निर्वात अपेक्षा मूल्यों को चुना जा सकता है, जिससे एक विश्वसनीय अर्ध-पारम्परिक काठी बिंदु गणना आगे बढ़ सकती है। तब तक विभिन्न सामूहिक शब्दों से गड़बड़ी पर विचार करते हुए वे रंगों और गंधों की मनमानी संख्या की उपस्थिति में महाशक्ति की गणना करने में सक्षम थे, तब भी मान्य जब सिद्धांत अब दुर्बल रूप से युग्मित नहीं है। | |||
एन = 2 अति सममित गेज सिद्धांत में उच्च सामर्थ्य को क्वांटम सुधारों का कोई प्रभाव नहीं पड़ता। यद्यपि, वैकुअमों के प्रारूपों अंतर्वस्तु की मीट्रिक को इंस्टेंटन से क्वांटम संसोधनो का एक श्रृंखला के रूप में गणना की गई। पहले, एक इंस्टेंटन सुधार को नेथन सीबर्ग द्वारा "[http://inspirehep.net/record/374836 सुपरसिमेट्री और नॉनपर्टर्बेटिव बीटा फलन "] गणित में किया गया था। सर्वप्रथम, नेथन साइबर्ग ने 'सुपरसिमेट्री एवं नॉन-पर्टर्बेटिव बीटा फलन' में एक इन्स्टेंटन की सुधार की गणना की थी। एसयू (2) यांग-मिल्स सिद्धांत के लिए पूर्ण सुधार का समुच्चय नेथन साइबर्ग और एडवर्ड विट्टेन ने 'विद्युत्कीय -चुंबकीय द्वंद्व, मोनोपोल कंडेंसेशन, एवं कन्फाइनमेंट इन एन=2 सुपरसिमेट्री यांग-मिल्स सिद्धांत' में गणना की। इस प्रक्रिया में साइबर्ग-विट्टेन सिद्धांत के नाम से एक विषय बना था।। उन्होंने [http://inspirehep.net/record/375702 मोनोपोल्स, द्वैत और चिराल समरूपता एन = 2 अति सममित क्यूसीडी में टूटने] में मौलिक पदार्थ के साथ एसयू (2) गेज सिद्धांतों के लिए अपनी गणना का विस्तार किया। इन परिणामों को बाद में विभिन्न गेज समूहों और सामग्री सामग्री के लिए बढ़ाया गया था, और प्रत्यक्ष गेज सिद्धांत व्युत्पत्ति भी ज्यादातर विषयों में प्राप्त की गई थी। गेज समूह यू (एन) के साथ गेज सिद्धांतों के लिए [[ निकिता नेक्रासोव |साइबर्ग-विटन]] ज्यामिति 2003 में [[ निकिता नेक्रासोव | निकिता नेक्रासोव]] और [[एंड्री ओकोनकोव]] द्वारा और स्वतंत्र रूप से [[नाकाजिमा खोलें]] और [[कोटा योशीओका]] द्वारा नेकरासोव विभाजन कार्यों का उपयोग करके गेज सिद्धांत से प्राप्त की गई है। | |||
एन = 4 | एन = 4 अति सममित गेज सिद्धांतों में इंस्टैंटॉन वैकुआ के [[मोडुली स्पेस|मोडुली स्थान]] पर मीट्रिक के लिए क्वांटम संसोधन नहीं करते हैं। | ||
== यह भी देखें == | == यह भी देखें == | ||
* {{annotated link| | * {{annotated link|इंस्टेंटन द्रव}} | ||
* {{annotated link| | * {{annotated link|कैलोरोन}} | ||
* {{annotated link| | * {{annotated link|सिडनी कोलमैन}} | ||
* {{annotated link|Holstein–Herring method#Physical Interpretation| | * {{annotated link|Holstein–Herring method#Physical Interpretation|होल्स्टीन-हेरिंग विधि}} | ||
* {{annotated link| | * {{annotated link|गुरुत्वीय इंस्टेंटन}} | ||
* {{annotated link| | * {{annotated link|सेमीक्लास्सिकल संक्रमण अवस्था सिद्धांत}} | ||
* {{annotated link| | * {{annotated link|यांग-मिल्स समीकरण}} | ||
* {{annotated link| | * {{annotated link|गेज सिद्धांत (गणित)}} | ||
==संदर्भ और नोट्स== | ==संदर्भ और नोट्स== | ||
Line 260: | Line 261: | ||
==बाहरी संबंध== | ==बाहरी संबंध== | ||
{{wiktionary-inline|instanton}} | |||
[[Category:Collapse templates]] | |||
[[Category: | |||
[[Category:Created On 29/03/2023]] | [[Category:Created On 29/03/2023]] | ||
[[Category:Lua-based templates]] | |||
[[Category:Machine Translated Page]] | |||
[[Category:Navigational boxes| ]] | |||
[[Category:Navigational boxes without horizontal lists]] | |||
[[Category:Pages using multiple image with auto scaled images]] | |||
[[Category:Pages with script errors]] | |||
[[Category:Sidebars with styles needing conversion]] | |||
[[Category:Template documentation pages|Documentation/doc]] | |||
[[Category:Templates Vigyan Ready]] | |||
[[Category:Templates generating microformats]] | |||
[[Category:Templates that add a tracking category]] | |||
[[Category:Templates that are not mobile friendly]] | |||
[[Category:Templates that generate short descriptions]] | |||
[[Category:Templates using TemplateData]] | |||
[[Category:Wikipedia metatemplates]] | |||
[[Category:क्वांटम क्रोमोडायनामिक्स]] | |||
[[Category:क्वांटम यांत्रिकी]] | |||
[[Category:गेज सिद्धांत]] | |||
[[Category:विभेदक ज्यामिति]] | |||
[[Category:विसंगतियाँ (भौतिकी)]] |
Latest revision as of 16:32, 10 October 2023
इंस्टेंटॉन (या प्यूडोपार्टिकल) एक ऐसी धारणा है, जो भौतिकीय और गणितीय भौतिकी में प्रकट होती है। एक इंस्टेंटॉन क्वांटम यांत्रिकी या क्वांटम क्षेत्र सिद्धांत में एक वर्तमान समाधान है, जो एक अंतिम, गैर-शून्य क्रिया के साथ समीक्षा की जाने वाले समीकरणों के लिए होता है। अधिक ठीक ढंग से, यह यूक्लिडीन समय-स्थान पर पारम्परिक क्षेत्र सिद्धांत के समीकरणों का समाधान है।
इस प्रकार के क्वांटम सिद्धांतों में, चलती वेग में समानता के मानकों के लिए समीकरणों के समाधान को सोचा जा सकता है। महत्वपूर्ण बिंदु ऐक्शन के अधीन होते हैं, और इन्हें स्थानीय अधिकतम, स्थानीय न्यूनतम या सैडल बिंदु कहा जा सकता है। इंस्टेंटों क्वांटम क्षेत्र सिद्धांत में महत्वपूर्ण होते हैं, क्योंकि:
- वे एक प्रणाली के पारम्परिक व्यवहार के लिए अग्रणी क्वांटम सुधार के रूप में कार्यात्मक एकीकरण में प्रदर्शित होते हैं, और
- उनका उपयोग यांग-मिल्स सिद्धांत जैसे विभिन्न प्रणालियों में सुरंग व्यवहार का अध्ययन करने के लिए किया जा सकता है।
गतिविज्ञान से संबंधित, तत्वों के परिवारों में इंस्टेंटॉन का प्रयोग इंस्टेंटॉन को, अर्थात गति के समीकरण के विभिन्न महत्वपूर्ण स्थानों को एक दूसरे से संबंधित करने की अनुमति देता है। भौतिक विज्ञान में इंस्टेंटॉन विशेष रूप से महत्वपूर्ण होते हैं, क्योंकि इंस्टेंटॉनों के जमावट (और ध्वनि उत्पन्न विरोधाभासी इंस्टेंटॉन) का विवरण ध्वनि-उत्पन्न अस्थिर चरण के रूप में जाना जाता है, जिसे स्वयं-संगठित गंभीर चरण के नाम से जाना जाता है।
गणित
गणितीय रूप से, यांग-मिल्स इन्स्टेंटन प्रमुख बंडल पर एक स्व-द्वितीय या विरोध-स्व-द्वितीय संयोजन है, जो गैज सिद्धान्त में भौतिक समय-स्थान की भूमिका निभाता है। इन्स्टेंटन यांग-मिल्स मस्तिष्क के विकल्पों के लिए टोपोलॉजिकली गैर-चार न्यूनतम ऊर्जा के समाधान होते हैं।[5] ऐसे समाधानों को पहली बार चार-आयामी यूक्लिड समय-स्थान के मापदंड सम्पीडित करके खोजा गया था, और उन्हें समय-स्थान में स्थानीय बनाने के लिए प्रेरित किया था, जिससे स्यूडोपार्टिकल और इन्स्टेंटन नाम प्राप्त हुआ।
यांग-मिल्स इंस्टेंटों का वर्णन बहुत संख्यावाले स्थितियों में ट्विस्टर सिद्धांत द्वारा, जो बीज-जगत की बीजगणितीय वस्तुओं से संबंधित होता है, व एडीएचएम निर्माण या हाइपरकेलर संक्षिप्तीकरण के माध्यम से किए गए हैं। साइमन डोनाल्डसन का अनोखा काम, जिसके लिए उन्हें उसके उपरांत फील्ड्स मेडल से सम्मानित किया गया, निर्दिष्ट चार-आयामी विभिन्नयता में इंस्टेंटों के प्रारूपी स्थल का उपयोग मनिफोल्ड के एक नए अविन्यास का निर्माण के लिए किया गया था। यह मनिफोल्ड उसकी अस्थायी संरचना पर निर्भर करता है, और यह निर्माण होमियोमोर्फिक लेकिन डिफियोमोर्फिक चार-आयामी विभिन्न में लागू होता है। इंस्टेंटन के अध्ययन में विकसित कई तकनीकों को मोनोपोलों पर भी लागू किया गया है। इसलिए मैग्नेटिक मोनोपोल यांग-मिल्स समीकरणों के एक आयामी कटवचन के समाधान के रूप में उत्पन्न होते हैं।
क्वांटम यांत्रिकी
एक इन्स्टैंटॉन एक क्वांटम मैकेनिकल कण के लिए एक प्रतिस्थापित बाधा से गुजरते समय के लिए परावर्तन संभावना की गणना करने के लिए उपयोग किया जा सकता है। एक इन्स्टैंटॉन प्रभाव से एक प्रणाली का उदाहरण दोहरी-कूपक क्षमता में एक कण होता है। पारम्परिक कण के विपरीत, एक क्वांटम कण के लिए उस स्थान पर ऊंची ऊर्जा के क्षेत्र को पार करने की संभावना अस्तित्व में होती है, जो उसकी अपनी ऊर्जा से अधिक होती है।
तत्काल विचार करने की अभिप्रेरणा
दोहरी-कूपक क्षमता के अंदर एकल कण गति के क्वांटम यांत्रिकी पर विचार करें स्थितिज ऊर्जा का न्यूनतम मान होता है , और इन्हें पारम्परिक मिनिमा कहा जाता है, क्योंकि पारम्परिक यांत्रिकी में कण उनमें से एक में भ्रमित करते हैं। पारम्परिक यांत्रिकी में दो निम्नतम ऊर्जा अवस्थाएँ हैं।
क्वांटम यांत्रिकी में, हम श्रोडिंगर समीकरण को हल करते हैं-
ऊर्जा आइनस्टेट्स की पहचान करने के लिए यदि हम ऐसा करते हैं, तो हमें दो अवस्थाओं के अतिरिक्त केवल अद्वितीय न्यूनतम-ऊर्जा अवस्था मिलेगी। ग्राउंड-स्टेट तरंग फलन दोनों पारम्परिक मिनीमा पर स्थानीयकृत होता है क्वांटम हस्तक्षेप या क्वांटम सुरंग निर्माण के कारण उनमें से केवल एक के अतिरिक्त होता है।
इंस्टेन्टॉन्स उस कार्यक्षेत्र को समझने के लिए एक उपकरण हैं, जिससे हम अर्ध-पारम्परिक अनुमान के भीतर क्योंकि इलुक्लिड समय के पथ-अंश प्रकारीकरण का प्रयोग करते हुए यह होता है। हम सर्वप्रथम यह देखेंगे कि डब्ल्यूकेबी अनुमान का उपयोग करके तरंग फलन तय करना संभव है, और उसके पश्चात पथ-अंश प्रकारीकरण का उपयोग करके इंस्टेन्टॉन्स को प्रस्तुत करेंगे।
डब्ल्यूकेबी निकटता
इस संभावना की गणना करने का एक विधि, अर्ध-पारम्परिक डब्ल्यूकेबी निकटता के माध्यम से है, जिसके लिए मूल्य की आवश्यकता होती है छोटा होना। कण के लिए समय स्वतंत्र श्रोडिंगर समीकरण पढ़ता है-
यदि क्षमता स्थिर होती, तो समाधान आनुपातिकता कारक तक एक समतल तरंग होता,
साथ
इसका तात्पर्य यह है कि यदि कण की ऊर्जा संभावित ऊर्जा से कम है, तो एक घातीय रूप से घटते कार्य को प्राप्त करता है। संबंधित सुरंग आयाम आनुपातिक है
जहां ए और बी सुरंग प्रक्षेपवक्र की प्रारंभिक और अंत बिंदु हैं।
तत्काल के माध्यम से पथ अभिन्न व्याख्या
वैकल्पिक रूप से, पथ अभिन्न सूत्रीकरण का उपयोग तत्काल व्याख्या की अनुमति देता है और इस दृष्टिकोण के साथ एक ही परिणाम प्राप्त किया जा सकता है। पथ अभिन्न सूत्रीकरण में, संक्रमण आयाम को व्यक्त किया जा सकता है
यूक्लिडियन स्पेसटाइम के लिए बाती का घूमना (विश्लेषणात्मक निरंतरता) की प्रक्रिया के पश्चात (), मिलता है
यूक्लिडियन कार्रवाई के साथ
संभावित ऊर्जा परिवर्तन संकेत विक रोटेशन के तहत और मिनिमा मैक्सिमा में बदल जाती है, जिससे अधिकतम ऊर्जा की दो पहाड़ियों को प्रदर्शित करता है।
आइए अब हम यूक्लिडियन क्रिया के स्थानीय न्यूनतम पर विचार करें डबल-वेल क्षमता के साथ , और हम सेट करते हैं सिर्फ गणना की सादगी के लिए। चूँकि हम जानना चाहते हैं कि, कैसे दो पारम्परिक रूप से निम्नतम ऊर्जा अवस्थाएँ हैं जुड़े हुए हैं, आइए सेट करें और . के लिए और , हम यूक्लिडियन क्रिया को इस रूप में फिर से लिख सकते हैं
उपरोक्त असमानता के समाधान से संतृप्त है शर्त के साथ और . ऐसे समाधान उपलब्ध हैं, और जब समाधान सरल रूप लेता है और . तत्काल समाधान के लिए स्पष्ट सूत्र द्वारा दिया गया है
यहाँ एक मनमाना स्थिरांक है। चूंकि यह समाधान एक पारम्परिक वैक्यूम से कूदता है दूसरे पारम्परिक निर्वात के लिए तुरंत चारों ओर , इसे इंस्टेंटन कहा जाता है।
दोहरी-कूपक क्षमता के लिए स्पष्ट सूत्र
मुलर-कर्स्टन द्वारा दोहरी-कूपक क्षमता के साथ श्रोडिंगर समीकरण की ईजेनर्जीज़ के लिए स्पष्ट सूत्र दिया गया है।[1] श्रोडिंगर समीकरण पर लागू गड़बड़ी विधि (साथ ही सीमा की स्थिति) दोनों द्वारा व्युत्पत्ति के साथ, और पथ अभिन्न से स्पष्ट व्युत्पत्ति परिणाम निम्न है। श्रोडिंगर समीकरण के मापदंडों को परिभाषित करना और समीकरणों द्वारा क्षमता को ज्ञात करना-
और
के लिए eigenvalues पाए जाते हैं:
स्पष्ट रूप से ये आइनवैल्यूज उपगामित हैं () क्षमता के हार्मोनिक भाग के परिणामस्वरूप अपेक्षित गिरावट।
परिणाम
गणितीय रूप से निर्धारित यूक्लिडियन पथ तकनीक से प्राप्त परिणाम विक-रोटेशन करने से मिंकोवस्कियन पथ तकनीक का उचित विचार करने के समान भौतिक परिणाम देते हैं। इस उदाहरण से देखा जा सकता है कि विक-रोटेशन के माध्यम से क्लासिकल रूप से अनुमत रीजन में एक पारम्परिक पथ के अंतर्गत पार करने के लिए कार्यक्षमता की गणना () के साथ) मिंकोवस्कियन पथ तकनीक का उपयोग करने के समान होती है। (चित्रों में बोलें तो यूक्लिडियन चित्र में एक पारम्परिक तत्व, जो कि किंक समाधान के रूप में जाना जाता है, दो हिल्स में परिणत होता है। इस उदाहरण में, दोहरी-कूपक क्षमता के दो "वेकुआ " (अर्थात ग्राउंड स्टेट) यूक्लिडियन संस्करण में पहाड़ियों में परिवर्तित हो जाते हैं।
इस प्रकार, (यूक्लिडियन, अर्थात, काल्पनिक समय के साथ) (1 + 1)- आयामी क्षेत्र सिद्धांत का तात्कालिक क्षेत्र समाधान - प्रथम परिमाणित क्वांटम यांत्रिक विवरण - दो वैकुआ के बीच एक सुरंग प्रभाव के रूप में व्याख्या करने की अनुमति देता है, राज्यों को भौतिक (1-आयामी स्थान + वास्तविक समय) मिन्कोस्कीयन प्रणाली के आवधिक इंस्टेंटन्स की आवश्यकता होती है। इस विषयों में दोहरी वेल क्षमता लिखा है-
तत्काल, अर्थात का समाधान
(अर्थात ऊर्जा के साथ ), है
जहाँ यूक्लिडियन समय है।
ध्यान दें कि इन दो वैकुए के आस-पास एकल घटना के प्रति नैवे पर्तुर्बेशन का एक आसान तरीके से पता नहीं लग सकता (मिंकोवस्कियन वर्णन का) जो इस क्वांटम यांत्रिकी प्रणाली के वैक्यूम संरचना की प्रकृति को परिवर्तित करता है। वास्तव में, नैवे क्षोभ को सीमा प्रतिबंधो द्वारा पूरा किया जाना चाहिए, और ये गैर-क्षोभ प्रभाव प्रदान करती हैं, जैसा कि ऊपर के स्पष्ट सूत्र और एकल घटनाओं के लिए अन्य वैद्युत जैसे कोसाइन वैद्युत (मैथ्यू फलन) या अन्य आवर्ती वैद्युतों (लेम फलन और स्फेरोइडल तरंग फलन) के लिए उपयोग किए जाने वाले अनुरूप गणनाओं से स्पष्ट होता है, और चाहे आप श्रोडिन्गर मापदंड का उपयोग करें या पथ-इंटीग्रल का।
इस प्रकार, (इयुक्लिडियन, यानी कि काल्पनिक समय के साथ) (1 + 1)-आयामी फ़ील्ड सिद्धांत का इंस्टेंटॉन क्षेत्र समाधान – प्रथम क्वांटाइज़्ड क्वांटम यांत्रिकी विवरण – दो भौतिक ग्राउंड स्थिति (उच्च स्थितियों के लिए आवश्यक होते हैं) के मध्य एक सुरंग प्रभाव के रूप में व्याख्या किया जा सकता है। अन्ततः, दोहरी-वेल के विकल्प की तुलना में उपलब्ध इस नमूने में क्षेत्र के दो "खाली स्थान" मिं से एक से दूसरे के मध्य सुरंग के लिए इंस्टेंटॉन का उपयोग किया जा सकता है।
आवधिक तत्काल
आयामी क्षेत्र वितरण या क्वांटम मैकेनिक्स में, "इन्स्टैंटन" को एक पारम्परिक (न्यूटन की प्रकारकी) गति के समानीकरण के रूप में परिभाषित किया जाता है, जिसमें यूक्लिडीयन समय और अंतिम यूक्लिडीयन क्रिया होती है। सोलिटन के सन्दर्भ में, उससे संबंधित समाधान को "किंक" के रूप में जाना जाता है। पारम्परिक कणों के व्यवहार के अनुपम तुलना से, ऐसे समाधान या कॉन्फ़िगरेशन, और अन्य, सामूहिक रूप से "प्सेडोपार्टिकल" या "प्सेडोक्लासिकल विन्यास" के रूप में जाने जाते हैं। "इन्स्टैंटन" (किंक) समाधान के साथ, एक और समाधान "एंटी-इन्स्टैंटन" (एंटी-किंक) जाना जाता है, और इन्स्टैंटन और एंटी-इन्स्टैंटन को "टोपोलॉजिकल चार्ज" +1 और -1 से भिन्न किया जाता है, परन्तु दोनों का यूक्लिडीय क्रिया समान होता है।
आवधिक इंस्टेंटन इंस्टेंटन का एक सामान्यीकरण है।[2] स्पष्ट रूप में वे जेकोबियन अण्डाकार कार्यों के संदर्भ में अभिव्यक्त होते हैं जो आवधिक कार्य हैं (त्रिकोणमितीय कार्यों के प्रभावी रूप से सामान्यीकरण)। अनंत अवधि की सीमा में ये आवधिक इंस्टेंटॉन - जिन्हें प्रायः उछाल, बबल या इसी प्रकार के रूप में जाना जाता है - इंस्टेंटॉन में कम हो जाते हैं।
ये प्सेडो-पारम्परिक विन्यास की स्थिरता का अध्ययन प्सेडो-पार्टिकल विन्यास को परिभाषित करने वाले लैग्रेंजियन को उसके चारों ओर विस्तृत करके उसकी बहुत छोटी अस्थिरता की समीकरण की मूल्यांकन के द्वारा किया जा सकता है। चतुर्थ-गुणित विस्तारों (दोहरी वेल, विपरीत दोहरी वेल) और आवृत्ति-विशिष्ट (मैथ्यू) खाई के सभी संस्करणों के लिए ये समीकरण लामे समीकरणों के रूप में पाए जाते हैं, देखें लामे फलन। इन समीकरणों के इगनवैल्यूज़ जाने जाते हैं और अस्थिरता के मामले में, पथ अंश का मूल्यांकन करके उससे अपघटन दरों की गणना की जा सकती है।
प्रतिक्रिया दर सिद्धांत में इंस्टेंटन
प्रतिक्रिया दर सिद्धांत के संदर्भ में रासायनिक प्रतिक्रियाओं में परमाणुओं के सुरंग की दर की गणना करने के लिए आवधिक इंस्टेंटॉन का उपयोग किया जाता है। एक रासायनिक प्रतिक्रिया की प्रगति को उच्च आयामी संभावित ऊर्जा सतह (पीईएस) पर स्यूडोपार्टिकल के आंदोलन के रूप में वर्णित किया जा सकता है। थर्मल दर स्थिर फिर मुक्त ऊर्जा के काल्पनिक भाग से संबंधित हो सकता है द्वारा
जिसके तहत विहित विभाजन कार्य है जिसकी गणना स्थिति प्रतिनिधित्व में बोल्ट्जमैन ऑपरेटर का पता लगाकर की जाती है।
विक रोटेशन का उपयोग करना और यूक्लिडियन समय की पहचान करना one द्रव्यमान भारित निर्देशांक में विभाजन फलन के लिए पथ अभिन्न प्रतिनिधित्व प्राप्त करता है
पथ इंटीग्रल को तब सबसे तेज डिसेंट इंटीग्रेशन के माध्यम से अनुमानित किया जाता है जो केवल पारम्परिक समाधानों और उनके चारों ओर द्विघात उतार-चढ़ाव के योगदान को ध्यान में रखता है। यह बड़े पैमाने पर भारित निर्देशांक में दर स्थिर अभिव्यक्ति के लिए उपज देता है
जहाँएक आवधिक तत्काल है और स्यूडोपार्टिकल का तुच्छ समाधान बाकी है जो प्रतिक्रियाशील राज्य विन्यास का प्रतिनिधित्व करता है।
उलटा डबल-वेल फॉर्मूला
डबल-वेल पोटेंशियल के लिए उल्टे दोहरी वेल क्षमता के लिए आइगेनवैल्यू प्राप्त कर सकते हैं। इस मामले में, यद्यपि, आइगेनवैल्यू जटिल हैं। समीकरणों द्वारा पैरामीटर परिभाषित करना
मुलर-कर्स्टन द्वारा दिए गए eigenvalues के लिए हैं
इस अभिव्यक्ति का काल्पनिक हिस्सा बेंडर और वू के प्रसिद्ध परिणाम से सहमत है।[3] उनके अंकन में
क्वांटम क्षेत्र सिद्धांत
Hypersphere | |
---|---|
क्वांटम क्षेत्र सिद्धांत (क्यूएफटी) का अध्ययन करते समय, एक सिद्धांत की वैक्यवादिक संरचना सीधे इन्स्टेंटॉन की ओर आकर्षित कर सकती है। जैसा कि एक दोहरी वेल क्वांटम यांत्रिकी प्रणाली का उदाहरण दर्शाता है, एक सामान्य रूप से वैक्यूम सिद्धांत का सच्चा वैक्यूम नहीं हो सकता। इसके अतिरिक्त, एक क्षेत्र सिद्धांत का सच्चा वैक्यूम कई टोपोलॉजिकली असमान्य सेक्टरों के "अधिव्यापन" का हो सकता है, जिसे "टोपोलॉजिकल वैक्यूम" कहा जाता है।
एक इंस्टेंटन और इसकी व्याख्या का एक अच्छी प्रकारसे समझा और व्याख्यात्मक उदाहरण एक गैर-अबेलियन समूह के साथ एक क्यूएफटी के संदर्भ में पाया जा सकता है। गैर-अबेलियन गेज समूह,[note 2] यांग-मिल्स सिद्धांत। यांग-मिल्स सिद्धांत के लिए इन असमान क्षेत्रों को एसयू (2) के तीसरे होमोटोपी समूह (जिसका समूह कई गुना 3-क्षेत्र है) द्वारा वर्गीकृत किया जा सकता है (एक उपयुक्त गेज में) ). एक निश्चित टोपोलॉजिकल वैक्यूम को एक टोपोलॉजिकल इनवेरिएंट, पोंट्रीगिन इंडेक्स द्वारा लेबल किया जाता है। के तीसरे होमोटॉपी समूह के रूप में पूर्णांको का समुच्चय पाया गया है,
- होमोटॉपी समूह |3-गोला|पूर्णांक |ब्रा-केट नोटेशन द्वारा निरूपित असीम रूप से कई स्थलीय रूप से असमान वैकुआ हैं, जहाँ उनका संबंधित पोंट्रीगिन इंडेक्स है। एक इंस्टेंटन यूक्लिडियन स्पेसटाइम में गति के पारम्परिक समीकरणों को पूरा करने वाला एक क्षेत्र विन्यास है, जिसे इन विभिन्न टोपोलॉजिकल वैकुआ के बीच एक सुरंग प्रभाव के रूप में व्याख्या किया गया है। इसे फिर से एक पूर्णांक संख्या, इसकी पोंट्रीगिन इंडेक्स द्वारा लेबल किया गया है, . इंडेक्स के साथ एक इंस्टेंटन की कल्पना कर सकते हैं टोपोलॉजिकल वैकुआ के बीच सुरंग की मात्रा निर्धारित करना और . यदि Q = 1 है, तो इसके खोजकर्ताओं अलेक्जेंडर बेलाविन, अलेक्जेंडर मार्कोविच पॉलाकोव, अल्बर्ट एस। श्वार्ज़ और यू के नाम पर विन्यास का नाम BPST इंस्टेंटन है। एस टायपकिन। सिद्धांत के सच्चे निर्वात को कोण थीटा द्वारा लेबल किया गया है और यह टोपोलॉजिकल क्षेत्रों का ओवरलैप है:
जेरार्डस 'टी हूफ्ट|जेरार्ड'टी हूफ्ट ने पहली बार [1] में फ़र्मियन से जुड़े एक सिद्धांत में बीपीएसटी इंस्टेंटन के प्रभावों की क्षेत्र सैद्धांतिक गणना की। उन्होंने दिखाया कि तत्काल पृष्ठभूमि में डायराक समीकरण के शून्य मोड कम ऊर्जा प्रभावी क्रिया में एक गैर-परेशान बहु-फर्मियन इंटरैक्शन की ओर ले जाते हैं।
यांग-मिल्स सिद्धांत
संरचना समूह जी, बेस एम, संयोजन (गणित) ए, और वक्रता (यांग-मिल्स फील्ड टेन्सर) एफ के साथ एक प्रमुख बंडल पर पारम्परिक यांग-मिल्स की कार्रवाई है
जहाँ वॉल्यूम फॉर्म चालू है . यदि आंतरिक उत्पाद चालू है , का भ्रमित बीजगणित जिसमें मान लेता है, मारक रूप द्वारा दिया जाता है , तो इसे इस रूप में दर्शाया जा सकता है , तब से
उदाहरण के लिए, गेज समूह U(1) के मामले में, F विद्युत चुम्बकीय क्षेत्र टेन्सर होगा। क्रिया (भौतिकी) से, यांग-मिल्स समीकरण अनुसरण करते हैं। वे हैं-
इनमें से पहला सर्वसमिका है, क्योंकि dF = d2A = 0, लेकिन कनेक्शन A के लिए दूसरा एक दूसरे क्रम का आंशिक अंतर समीकरण है, और यदि Minkowski वर्तमान वेक्टर गायब नहीं होता है, तो rhs पर शून्य। दूसरे समीकरण के द्वारा प्रतिस्थापित किया जाता है . लेकिन ध्यान दें कि ये समीकरण कितने समान हैं; वे एक हॉज स्टार से भिन्न होते हैं। इस प्रकार सरल प्रथम कोटि (गैर-रैखिक) समीकरण का हल
स्वचालित रूप से यांग-मिल्स समीकरण का भी समाधान है। यह सरलीकरण 4 कई गुना पर होता है: ताकि 2-रूपों पर। इस प्रकार के समाधान सामान्यतः उपलब्ध होते हैं, यद्यपि उनका सटीक चरित्र बेस स्पेस एम, प्रधान बंडल पी और गेज ग्रुप जी के आयाम और टोपोलॉजी पर निर्भर करता है।
नाबेलियन यांग-मिल्स सिद्धांतों में, और जहां D बाहरी सहसंयोजक व्युत्पन्न है। इसके अलावा, बियांची पहचान
संतुष्ट है।
क्वांटम क्षेत्र सिद्धान्त में, एक इंस्टेंटन चार-आयामी यूक्लिडियन स्पेस में एक टोपोलॉजी नॉनट्रिविअल फील्ड कॉन्फ़िगरेशन है (मिन्कोव्स्की स्पेसटाइम के विक घूर्णन के रूप में माना जाता है)। विशेष रूप से, यह यांग-मिल्स गेज क्षेत्र ए को संदर्भित करता है जो अनंत पर बिंदु पर शुद्ध गेज तक पहुंचता है। इसका तात्पर्य क्षेत्र बल है
अनंत में मिट जाता है। इंस्टेंटन नाम इस तथ्य से निकला है कि ये क्षेत्र अंतरिक्ष और (यूक्लिडियन) समय में स्थानीयकृत हैं - दूसरे शब्दों में, एक विशिष्ट पल में।
द्वि-आयामी अंतरिक्ष पर इंस्टेंटन का मामला कल्पना करना आसान हो सकता है, क्योंकि यह गेज समूह (गणित) के सबसे सरल विषय को स्वीकार करता है, अर्थात् यू (1), जो एक एबेलियन समूह है। इस विषय में क्षेत्र ए को केवल वेक्टर क्षेत्र के रूप में देखा जा सकता है। एक इंस्टेंटन एक विन्यास है, उदाहरण के लिए, तीर एक केंद्रीय बिंदु (अर्थात, हेजहोग राज्य) से दूर इंगित करता है। यूक्लिडियन चार आयामी अंतरिक्ष में, , एबेलियन इंस्टेंटन असंभव हैं।
एक पल का क्षेत्र विन्यास निर्वात अवस्था से बहुत भिन्न होता है। इस वजह से फेनमैन आरेखो का उपयोग करके इंस्टेंटॉन का अध्ययन नहीं किया जा सकता है, जिसमें केवल क्षोभ सिद्धांत (क्वांटम यांत्रिकी) प्रभाव सम्मिलित हैं। इंस्टेंटन मूल रूप से गैर-भ्रमित करने वाले हैं।
यांग-मिल्स ऊर्जा किसके द्वारा दी जाती है
जहां ∗ हॉज द्वैत है। अगर हम जोर देते हैं कि यांग-मिल्स समीकरणों के समाधान में परिमित ऊर्जा है, तो अनंत पर समाधान की वक्रता (एक सीमा (गणित) के रूप में ली गई) शून्य होनी चाहिए। इसका तात्पर्य यह है कि चेर्न-साइमन्स इनवेरिएंट को 3-स्पेस सीमा पर परिभाषित किया जा सकता है। यह स्टोक्स के प्रमेय के माध्यम से अभिन्न लेने के सामान है-
यह एक होमोटॉपी इनवेरिएंट है और यह हमें बताता है कि इंस्टेंटॉन किस होमोटॉपी वर्ग का है।
चूँकि एक अऋणात्मक समाकलन का समाकल सदैव अऋणात्मक होता है,
सभी वास्तविक θ के लिए। तो, इसका तात्पर्य है
यदि यह बाउंड संतृप्त है, तो समाधान एक बोगोमोल्नी प्रसाद सोमरफील्ड बाउंड स्टेट है। ऐसे राज्यों के लिए, या तो ∗F = F या ∗F = - F होमोटॉपी अपरिवर्तनीय के चिह्न पर निर्भर करता है।
मानक मॉडल में इंस्टेंटन के इलेक्ट्रोवीक इंटरैक्शन और क्रोमोडायनामिक क्षेत्र दोनों में उपलब्ध होने की प्रतीक्षा है, यद्यपि, उनके अस्तित्व की अभी तक प्रायोगिक ढंग से पुष्टि नहीं हुई है।[4] क्वांटम क्रोमोडायनामिक्स (क्यूसीडी) के निर्वात में संघनन के गठन को समझने और तथाकथित 'एटा-प्राइम पार्टिकल', एक गोल्डस्टोन बोसोन के द्रव्यमान को समझाने में इंस्टेंटन प्रभाव महत्वपूर्ण हैं।[note 3] जिसने क्यूसीडी के चिराल विसंगति के माध्यम से द्रव्यमान प्राप्त किया है। ध्यान दें कि कभी-कभी एक सिद्धांत में एक अतिरिक्त अंतरिक्ष आयाम के साथ एक संगत सॉलिटॉन भी होता है। इंस्टेंटन पर हालिया शोध उन्हें डी-ब्रेन्स और ब्लैक होल्स जैसे विषयों और निश्चित रूप से क्यूसीडी की वैक्यूम संरचना से जोड़ता है। उदाहरण के लिए, ओरिएंटेड स्ट्रिंग सिद्धांत में, एक डीपी ब्रैन एक गेज सिद्धान्त है जो विश्व वॉल्यूम (पी + 5) -आकार यू (एन) गेज सिद्धान्त में एन के ढेर पर है। डी(पी + 4)-ब्रेन।
आयामों की विभिन्न संख्या
इंस्टेंटन गेज सिद्धांतों के गैर-प्रतिस्पर्धी गतिशीलता में एक केंद्रीय भूमिका निभाते हैं। भौतिक उत्तेजन का प्रकार जो एक पल पैदा करता है, स्पेसटाइम के आयामों की संख्या पर निर्भर करता है, परन्तु, आश्चर्यजनक रूप से, इन तात्कालिकों से निपटने के लिए औपचारिकता अपेक्षाकृत आयाम-स्वतंत्र है।
4-आयामी गेज सिद्धांतों में, जैसा कि पिछले खंड में वर्णित है, इंस्टेंटन गेज बंडल हैं जो एक नॉनट्रिविअल विभेदक रूप | फोर-फॉर्म विशेषता वर्ग के साथ हैं। यदि गेज समरूपता एक एकात्मक समूह या विशेष एकात्मक समूह है तो यह विशेषता वर्ग दूसरा चेर्न वर्ग है, जो गेज समूह यू (1) के मामले में गायब हो जाता है। यदि गेज समरूपता एक ओर्थोगोनल समूह है तो यह वर्ग प्रथम पोंट्रेजगिन वर्ग है।
हिग्स क्षेत्र के साथ 3-आयामी गेज सिद्धांतों में, 'टी हूफ्ट-पोल्याकोव मोनोपोल्स इंस्टेंटन की भूमिका निभाते हैं। 1977 के अपने पेपर क्वार्क कन्फाइनमेंट एंड टोपोलॉजी ऑफ गेज ग्रुप्स में, अलेक्जेंडर मार्कोविच पोलाकोव ने प्रदर्शित किया कि 3-आयामी क्वांटम विद्युत् गतिविज्ञान में तत्काल प्रभाव एक स्केलर क्षेत्र से मिलकर फोटॉन के लिए द्रव्यमान का कारण बनता है। .
2-आयामी एबेलियन गेज सिद्धांतों में वर्ल्डशीट इंस्टेंटन चुंबकीय भंवर हैं। वे स्ट्रिंग सिद्धान्त में कई गैर-प्रतिस्पर्धी प्रभावों के लिए जिम्मेदार हैं, दर्पण समरूपता (स्ट्रिंग सिद्धान्त) में एक केंद्रीय भूमिका निभा रहे हैं।
1-आयामी क्वांटम यांत्रिकी में, इंस्टेंटन्स क्वांटम सुरंग का वर्णन करते हैं, जो गड़बड़ी सिद्धांत में अदृश्य है।
4डी अति सममित गेज सिद्धांत
अति सममित गेज सिद्धांत सामान्यतः सुपरसिमेट्री नॉनरेनॉर्मलाइजेशन प्रमेय का पालन करते हैं, जो क्वांटम सुधारों के प्रकारों को प्रतिबंधित करते हैं, जो स्वरूपों के क्वांटम सुधारों को प्रतिबंधित करती हैं,एवं जो अनुमोदन विज्ञान में होते हैं। इन सद्धांतो में से कई केवल क्षोभ सिद्धांत में गणनीय सुधारों पर ही लागू होती हैं, इसलिए इनस्टैंटन, जो क्षोभ सिद्धांत में नहीं देखे जाते हैं, इन मात्राओं को सुधारने के लिए एकमात्र संभावना हैं।।
1980 के दशक में कई लेखकों द्वारा अति सममित सिद्धांतों में तत्काल गणना के लिए क्षेत्र सैद्धांतिक तकनीकों का व्यापक अध्ययन किया गया था। चूंकि सुपरसिममेट्री तत्काल पृष्ठभूमि में फर्मियोनिक बनाम बोसोनिक गैर-शून्य मोड को रद्द करने की आश्वासन देती है, इसलिए तत्काल सैडल बिंदु की सम्मिलित 'टी हूफ्ट गणना शून्य मोड पर एकीकरण को कम कर देती है।
एन = 1 अति सममित गेज सिद्धांत में इंस्टेंटॉन सुपरपोटेंशियल को संशोधित कर सकते हैं, कभी-कभी सभी वैकुआ को उठा सकते हैं। 1984 में, इयान एफ्लेक, माइकल डाइन और नाथन सीबर्ग ने अपने पेपर डायनेमिकल अति सममित विभंजन इन अति सममित क्यूसीडी में अति सामर्थ्यवान में तत्काल सुधार की गणना की। अधिक सटीक रूप से, वे केवल गणना करने में सक्षम थे, जब सिद्धांत में विशेष एकात्मक गेज समूह में रंगों की संख्या की तुलना में चिरल सुपरफील्ड का एक कम गंध होता है, क्योंकि कम गंधों की उपस्थिति में एक अखंड नॉनबेलियन गेज समरूपता एक अवरक्त विचलन की ओर जाता है, और अधिक जायके के मामले में योगदान शून्य के सामान है। चिरल पदार्थ की इस विशेष पसंद के लिए, दुर्बल युग्मन पर गेज समरूपता को पूरी प्रकारसे तोड़ने के लिए स्केलर क्षेत्र के निर्वात अपेक्षा मूल्यों को चुना जा सकता है, जिससे एक विश्वसनीय अर्ध-पारम्परिक काठी बिंदु गणना आगे बढ़ सकती है। तब तक विभिन्न सामूहिक शब्दों से गड़बड़ी पर विचार करते हुए वे रंगों और गंधों की मनमानी संख्या की उपस्थिति में महाशक्ति की गणना करने में सक्षम थे, तब भी मान्य जब सिद्धांत अब दुर्बल रूप से युग्मित नहीं है।
एन = 2 अति सममित गेज सिद्धांत में उच्च सामर्थ्य को क्वांटम सुधारों का कोई प्रभाव नहीं पड़ता। यद्यपि, वैकुअमों के प्रारूपों अंतर्वस्तु की मीट्रिक को इंस्टेंटन से क्वांटम संसोधनो का एक श्रृंखला के रूप में गणना की गई। पहले, एक इंस्टेंटन सुधार को नेथन सीबर्ग द्वारा "सुपरसिमेट्री और नॉनपर्टर्बेटिव बीटा फलन " गणित में किया गया था। सर्वप्रथम, नेथन साइबर्ग ने 'सुपरसिमेट्री एवं नॉन-पर्टर्बेटिव बीटा फलन' में एक इन्स्टेंटन की सुधार की गणना की थी। एसयू (2) यांग-मिल्स सिद्धांत के लिए पूर्ण सुधार का समुच्चय नेथन साइबर्ग और एडवर्ड विट्टेन ने 'विद्युत्कीय -चुंबकीय द्वंद्व, मोनोपोल कंडेंसेशन, एवं कन्फाइनमेंट इन एन=2 सुपरसिमेट्री यांग-मिल्स सिद्धांत' में गणना की। इस प्रक्रिया में साइबर्ग-विट्टेन सिद्धांत के नाम से एक विषय बना था।। उन्होंने मोनोपोल्स, द्वैत और चिराल समरूपता एन = 2 अति सममित क्यूसीडी में टूटने में मौलिक पदार्थ के साथ एसयू (2) गेज सिद्धांतों के लिए अपनी गणना का विस्तार किया। इन परिणामों को बाद में विभिन्न गेज समूहों और सामग्री सामग्री के लिए बढ़ाया गया था, और प्रत्यक्ष गेज सिद्धांत व्युत्पत्ति भी ज्यादातर विषयों में प्राप्त की गई थी। गेज समूह यू (एन) के साथ गेज सिद्धांतों के लिए साइबर्ग-विटन ज्यामिति 2003 में निकिता नेक्रासोव और एंड्री ओकोनकोव द्वारा और स्वतंत्र रूप से नाकाजिमा खोलें और कोटा योशीओका द्वारा नेकरासोव विभाजन कार्यों का उपयोग करके गेज सिद्धांत से प्राप्त की गई है।
एन = 4 अति सममित गेज सिद्धांतों में इंस्टैंटॉन वैकुआ के मोडुली स्थान पर मीट्रिक के लिए क्वांटम संसोधन नहीं करते हैं।
यह भी देखें
- इंस्टेंटन द्रव
- कैलोरोन
- सिडनी कोलमैन
- होल्स्टीन-हेरिंग विधि
- गुरुत्वीय इंस्टेंटन – Four-dimensional complete Riemannian manifold satisfying the vacuum Einstein equations
- सेमीक्लास्सिकल संक्रमण अवस्था सिद्धांत
- यांग-मिल्स समीकरण
- गेज सिद्धांत (गणित)
संदर्भ और नोट्स
- Notes
- ↑ Because this projection is conformal, the curves intersect each other orthogonally (in the yellow points) as in 4D. All curves are circles: the curves that intersect <0,0,0,1> have infinite radius (= straight line).
- ↑ See also: Non-abelian gauge theory
- ↑ See also: Pseudo-Goldstone boson
- Citations
- ↑ H.J.W. Müller-Kirsten, Introduction to Quantum Mechanics: Schrödinger Equation and Path Integral, 2nd ed. (World Scientific, 2012), ISBN 978-981-4397-73-5; formula (18.175b), p. 525.
- ↑ Harald J.W. Müller-Kirsten, Introduction to Quantum Mechanics: Schrödinger Equation and Path Integral, 2nd ed., World Scientific (Singapore, 2012).
- ↑ Bender, Carl M.; Wu, Tai Tsun (1973-03-15). "अनहार्मोनिक ऑसिलेटर। द्वितीय। बड़े क्रम में गड़बड़ी सिद्धांत का एक अध्ययन". Physical Review D. American Physical Society (APS). 7 (6): 1620–1636. Bibcode:1973PhRvD...7.1620B. doi:10.1103/physrevd.7.1620. ISSN 0556-2821.
- ↑ Amoroso, Simone; Kar, Deepak; Schott, Matthias (2021). "एलएचसी पर क्यूसीडी इंस्टैंटन्स की खोज कैसे करें". The European Physical Journal C. 81 (7): 624. arXiv:2012.09120. Bibcode:2021EPJC...81..624A. doi:10.1140/epjc/s10052-021-09412-1. S2CID 229220708.
- General
- Instantons in Gauge Theories, a compilation of articles on instantons, edited by Mikhail A. Shifman, doi:10.1142/2281
- Solitons and Instantons, R. Rajaraman (Amsterdam: North Holland, 1987), ISBN 0-444-87047-4
- The Uses of Instantons, by Sidney Coleman in Proc. Int. School of Subnuclear Physics, (Erice, 1977); and in Aspects of Symmetry p. 265, Sidney Coleman, Cambridge University Press, 1985, ISBN 0-521-31827-0; and in Instantons in Gauge Theories
- Solitons, Instantons and Twistors. M. Dunajski, Oxford University Press. ISBN 978-0-19-857063-9.
- The Geometry of Four-Manifolds, S.K. Donaldson, P.B. Kronheimer, Oxford University Press, 1990, ISBN 0-19-853553-8.
बाहरी संबंध
The dictionary definition of instanton at Wiktionary