सम्मिश्र संयुग्मी: Difference between revisions
No edit summary |
No edit summary |
||
Line 1: | Line 1: | ||
{{Short description|Fundamental operation on complex numbers}} | {{Short description|Fundamental operation on complex numbers}} | ||
[[File:Complex conjugate picture.svg|thumb|ज्यामितीय प्रतिनिधित्व (आर्गन आरेख) <math>z</math> और इसके संयुग्म <math>\overline{z}</math> समष्टि विमान में।समष्टि संयुग्म प्रतिबिंब समरूपता द्वारा पाया जाता है <math>z</math> | [[File:Complex conjugate picture.svg|thumb|ज्यामितीय प्रतिनिधित्व (आर्गन आरेख) <math>z</math> और इसके संयुग्म <math>\overline{z}</math> समष्टि विमान में।समष्टि संयुग्म प्रतिबिंब समरूपता द्वारा पाया जाता है <math>z</math> वास्तविक अक्ष के पार।]]गणित में, समष्टि संख्या का समष्टि संयुग्म समान वास्तविक संख्या भाग के साथ संख्या है और परिमाण में काल्पनिक संख्या भाग है, किन्तु संकेत (गणित) में विपरीत है।वह है, (यदि <math>a</math> और <math>b</math> वास्तविक हैं, फिर) के समष्टि संयुग्म <math> a + bi</math> के सामान्तर है <math>a - bi.</math> का समष्टि संयुग्म <math>z</math> अधिकांशतः के रूप में निरूपित किया जाता है <math>\overline{z}</math> या <math>z^*</math>। | ||
ध्रुवीय समन्वय प्रणाली#समष्टि संख्याओं में, का संयुग्म <math>r e^{i \varphi}</math> है <math>r e^{-i \varphi}.</math> यह यूलर के सूत्र का उपयोग करके दिखाया जा सकता है। | ध्रुवीय समन्वय प्रणाली#समष्टि संख्याओं में, का संयुग्म <math>r e^{i \varphi}</math> है <math>r e^{-i \varphi}.</math> यह यूलर के सूत्र का उपयोग करके दिखाया जा सकता है। | ||
Line 19: | Line 19: | ||
\overline{zw} &= \overline{z} \; \overline{w}, \quad \text{and} \\ | \overline{zw} &= \overline{z} \; \overline{w}, \quad \text{and} \\ | ||
\overline{\left(\frac{z}{w}\right)} &= \frac{\overline{z}}{\overline{w}},\quad \text{if } w \neq 0. | \overline{\left(\frac{z}{w}\right)} &= \frac{\overline{z}}{\overline{w}},\quad \text{if } w \neq 0. | ||
\end{align}</math>समष्टि संख्या इसके समष्टि संयुग्म के सामान्तर है यदि इसका काल्पनिक | \end{align}</math>समष्टि संख्या इसके समष्टि संयुग्म के सामान्तर है यदि इसका काल्पनिक भाग शून्य है, अर्थात्, यदि संख्या वास्तविक है।दूसरे शब्दों में, वास्तविक संख्या संयुग्मन का एकमात्र निश्चित बिंदु (गणित) है। | ||
संयुग्मन समष्टि संख्या के मापांक को नहीं बदलता है: <math>\left| \overline{z} \right| = |z|.</math> | |||
संयुग्मन इनव्यूशन (गणित) है, अर्थात, समष्टि संख्या के संयुग्म का संयुग्म <math>z</math> है <math>z.</math> प्रतीकों में, <math>\overline{\overline{z}} = z.</math><ref name="fis" group="ref" /> | |||
इसके संयुग्म के साथ समष्टि संख्या का उत्पाद संख्या के मापांक के वर्ग के सामान्तर है: <math display="block">z\overline{z} = {\left| z \right|}^2.</math> यह आयताकार निर्देशांक में दिए गए समष्टि संख्या के गुणक व्युत्क्रम की आसान गणना की अनुमति देता है: <math display="block">z^{-1} = \frac{\overline{z}}{{\left| z \right|}^2},\quad \text{ for all } z \neq 0.</math> | इसके संयुग्म के साथ समष्टि संख्या का उत्पाद संख्या के मापांक के वर्ग के सामान्तर है: <math display="block">z\overline{z} = {\left| z \right|}^2.</math> यह आयताकार निर्देशांक में दिए गए समष्टि संख्या के गुणक व्युत्क्रम की आसान गणना की अनुमति देता है: <math display="block">z^{-1} = \frac{\overline{z}}{{\left| z \right|}^2},\quad \text{ for all } z \neq 0.</math> | ||
Line 31: | Line 31: | ||
<math display="block">\overline{z^n} = \left(\overline{z}\right)^n,\quad \text{ for all } n \in \Z </math><math display="block">\exp\left(\overline{z}\right) = \overline{\exp(z)}</math><math display="block">\ln\left(\overline{z}\right) = \overline{\ln(z)} \text{ if } z \text{ is non-zero }</math>यदि <math>p</math> वास्तविक संख्या गुणांक के साथ बहुपद है और <math>p(z) = 0,</math> तब <math>p\left(\overline{z}\right) = 0</math> भी।इस प्रकार, वास्तविक बहुपद की गैर-वास्तविक जड़ें समष्टि संयुग्म जोड़े में होती हैं (समष्टि संयुग्म रूट प्रमेय देखें)। | <math display="block">\overline{z^n} = \left(\overline{z}\right)^n,\quad \text{ for all } n \in \Z </math><math display="block">\exp\left(\overline{z}\right) = \overline{\exp(z)}</math><math display="block">\ln\left(\overline{z}\right) = \overline{\ln(z)} \text{ if } z \text{ is non-zero }</math>यदि <math>p</math> वास्तविक संख्या गुणांक के साथ बहुपद है और <math>p(z) = 0,</math> तब <math>p\left(\overline{z}\right) = 0</math> भी।इस प्रकार, वास्तविक बहुपद की गैर-वास्तविक जड़ें समष्टि संयुग्म जोड़े में होती हैं (समष्टि संयुग्म रूट प्रमेय देखें)। | ||
सामान्यतः, अगर <math>\varphi</math> होलोमोर्फिक | सामान्यतः, अगर <math>\varphi</math> होलोमोर्फिक फलन है जिसका वास्तविक संख्या पर प्रतिबंध वास्तविक-मूल्य है, और <math>\varphi(z)</math> और <math>\varphi(\overline{z})</math> परिभाषित किया गया है, फिर<math display="block">\varphi\left(\overline{z}\right) = \overline{\varphi(z)}.\,\!</math>वह मानचित्र <math>\sigma(z) = \overline{z}</math> से <math>\Complex</math> को <math>\Complex</math> होमोमोर्फिज्म है (जहां टोपोलॉजी पर <math>\Complex</math> यदि कोई विचार करता है, तो मानक टोपोलॉजी के रूप में लिया जाता है) और एंटीरेखाियर <math>\Complex</math> अपने आप में समष्टि सदिश स्थान के रूप में।यदि यह अच्छी तरह से व्यवहार करने वाला कार्य प्रतीत होता है, यह होलोमोर्फिक फलन नहीं है;यह अभिविन्यास को उलट देता है जबकि होलोमोर्फिक कार्य स्थानीय रूप से अभिविन्यास को संरक्षित करता है।यह अंकगणितीय संचालन के साथ आचार और संगत है, और इसलिए क्षेत्र (गणित) ऑटोमोर्फिज्म है।जैसा कि यह वास्तविक संख्याओं को तय करता है, यह फील्ड एक्सटेंशन के गैलोइस समूह का तत्व है <math>\Complex/\R.</math> इस गैलोइस समूह के केवल दो तत्व हैं: <math>\sigma</math> और पहचान पर <math>\Complex.</math> इस प्रकार केवल दो क्षेत्र ऑटोमोर्फिज्म <math>\Complex</math> जो वास्तविक संख्या में निश्चित संख्या में पहचान मानचित्र और समष्टि संयुग्मन हैं। | ||
== चर के रूप में उपयोग करें == | == चर के रूप में उपयोग करें == | ||
बार समष्टि संख्या <math>z = x + yi</math> या <math>z = re^{i\theta}</math> दिया गया है, इसका संयुग्म के कुछ हिस्सों को पुन: पेश करने के लिए पर्याप्त है <math>z</math>-चर: | बार समष्टि संख्या <math>z = x + yi</math> या <math>z = re^{i\theta}</math> दिया गया है, इसका संयुग्म के कुछ हिस्सों को पुन: पेश करने के लिए पर्याप्त है <math>z</math>-चर: | ||
* | * वास्तविक भाग: <math>x = \operatorname{Re}(z) = \dfrac{z + \overline{z}}{2}</math> | ||
* काल्पनिक भाग: <math>y = \operatorname{Im}(z) = \dfrac{z - \overline{z}}{2i}</math> | * काल्पनिक भाग: <math>y = \operatorname{Im}(z) = \dfrac{z - \overline{z}}{2i}</math> | ||
* निरपेक्ष मान | मापांक (या निरपेक्ष मान): <math>r= \left| z \right| = \sqrt{z\overline{z}}</math> | * निरपेक्ष मान | मापांक (या निरपेक्ष मान): <math>r= \left| z \right| = \sqrt{z\overline{z}}</math> | ||
* तर्क (समष्टि विश्लेषण): <math>e^{i\theta} = e^{i\arg z} = \sqrt{\dfrac{z}{\overline z}},</math> इसलिए <math>\theta = \arg z = \dfrac{1}{i} \ln\sqrt{\frac{z}{\overline{z}}} = \dfrac{\ln z - \ln \overline{z}}{2i}</math> | * तर्क (समष्टि विश्लेषण): <math>e^{i\theta} = e^{i\arg z} = \sqrt{\dfrac{z}{\overline z}},</math> इसलिए <math>\theta = \arg z = \dfrac{1}{i} \ln\sqrt{\frac{z}{\overline{z}}} = \dfrac{\ln z - \ln \overline{z}}{2i}</math> | ||
आगे, <math>\overline{z}</math> विमान में | आगे, <math>\overline{z}</math> विमान में रेखाओं को निर्दिष्ट करने के लिए उपयोग किया जा सकता है: समूह | ||
<math display="block">\left\{z : z \overline{r} + \overline{z} r = 0 \right\}</math> | <math display="block">\left\{z : z \overline{r} + \overline{z} r = 0 \right\}</math> | ||
मूल और लंबवत के माध्यम से रेखा है <math>{r},</math> के | मूल और लंबवत के माध्यम से रेखा है <math>{r},</math> के वास्तविक हिस्से के पश्चात् से <math>z\cdot\overline{r}</math> शून्य तभी है जब के कोण के कोसाइन <math>z</math> और <math>{r}</math> शून्य है। इसी प्रकार, निश्चित समष्टि इकाई के लिए <math>u = e^{i b},</math> समीकरण | ||
<math display="block">\frac{z - z_0}{\overline{z} - \overline{z_0}} = u^2</math> | <math display="block">\frac{z - z_0}{\overline{z} - \overline{z_0}} = u^2</math> | ||
के माध्यम से रेखा निर्धारित करता है <math>z_0</math> 0 और के माध्यम से | के माध्यम से रेखा निर्धारित करता है <math>z_0</math> 0 और के माध्यम से रेखा के समानांतर <math>u.</math> | ||
के संयुग्म के इन उपयोगों <math>z</math> चर के रूप में फ्रैंक मॉर्ले की पुस्तक इनवर्सिव ज्यामिति (1933) में चित्रित किया गया है, जो उनके बेटे फ्रैंक वर्ल मॉर्ले के साथ लिखा गया है। | के संयुग्म के इन उपयोगों <math>z</math> चर के रूप में फ्रैंक मॉर्ले की पुस्तक इनवर्सिव ज्यामिति (1933) में चित्रित किया गया है, जो उनके बेटे फ्रैंक वर्ल मॉर्ले के साथ लिखा गया है। | ||
Line 63: | Line 64: | ||
# <math>\varphi(zv) = \overline{z} \varphi(v)</math> सबके लिए <math>v \in V, z \in \Complex,</math> और | # <math>\varphi(zv) = \overline{z} \varphi(v)</math> सबके लिए <math>v \in V, z \in \Complex,</math> और | ||
# <math>\varphi\left(v_1 + v_2\right) = \varphi\left(v_1\right) + \varphi\left(v_2\right)\,</math> सबके लिए <math>v_1 v_2, \in V,</math> | # <math>\varphi\left(v_1 + v_2\right) = \varphi\left(v_1\right) + \varphi\left(v_2\right)\,</math> सबके लिए <math>v_1 v_2, \in V,</math> | ||
कहा जाता है {{em|complex conjugation}}, या वास्तविक संरचना।अन्वेषण के रूप में <math>\varphi</math> एंटीलिनियर है, यह पहचान का | कहा जाता है {{em|complex conjugation}}, या वास्तविक संरचना।अन्वेषण के रूप में <math>\varphi</math> एंटीलिनियर है, यह पहचान का मानचित्र नहीं हो सकता है <math>V.</math> | ||
बेशक, <math display="inline">\varphi</math> है <math display="inline">\R</math>के -इनर ट्रांसफॉर्मेशन <math display="inline">V,</math> यदि कोई नोट करता है कि हर समष्टि स्थान <math>V</math> मूल स्थान में ही सदिश (गणित और भौतिकी) को लेने और अदिश को वास्तविक होने तक सीमित करने के लिए वास्तविक रूप प्राप्त किया गया है।उपरोक्त गुण वास्तव में समष्टि सदिश अंतरिक्ष पर वास्तविक संरचना को परिभाषित करते हैं <math>V.</math><ref>Budinich, P. and Trautman, A. ''The Spinorial Chessboard''. Springer-Verlag, 1988, p. 29</ref> इस धारणा का उदाहरण ऊपर परिभाषित समष्टि मैट्रिसेस का संयुग्म ट्रांसपोज़ ऑपरेशन है।चूंकि, सामान्य समष्टि सदिश रिक्त स्थान पर, कोई नहीं है {{em|[[Canonical form|canonical]]}} समष्टि संयुग्मन की धारणा। | बेशक, <math display="inline">\varphi</math> है <math display="inline">\R</math>के -इनर ट्रांसफॉर्मेशन <math display="inline">V,</math> यदि कोई नोट करता है कि हर समष्टि स्थान <math>V</math> मूल स्थान में ही सदिश (गणित और भौतिकी) को लेने और अदिश को वास्तविक होने तक सीमित करने के लिए वास्तविक रूप प्राप्त किया गया है।उपरोक्त गुण वास्तव में समष्टि सदिश अंतरिक्ष पर वास्तविक संरचना को परिभाषित करते हैं <math>V.</math><ref>Budinich, P. and Trautman, A. ''The Spinorial Chessboard''. Springer-Verlag, 1988, p. 29</ref> इस धारणा का उदाहरण ऊपर परिभाषित समष्टि मैट्रिसेस का संयुग्म ट्रांसपोज़ ऑपरेशन है।चूंकि, सामान्य समष्टि सदिश रिक्त स्थान पर, कोई नहीं है {{em|[[Canonical form|canonical]]}} समष्टि संयुग्मन की धारणा। | ||
Revision as of 07:54, 5 October 2023
गणित में, समष्टि संख्या का समष्टि संयुग्म समान वास्तविक संख्या भाग के साथ संख्या है और परिमाण में काल्पनिक संख्या भाग है, किन्तु संकेत (गणित) में विपरीत है।वह है, (यदि और वास्तविक हैं, फिर) के समष्टि संयुग्म के सामान्तर है का समष्टि संयुग्म अधिकांशतः के रूप में निरूपित किया जाता है या ।
ध्रुवीय समन्वय प्रणाली#समष्टि संख्याओं में, का संयुग्म है यह यूलर के सूत्र का उपयोग करके दिखाया जा सकता है।
समष्टि संख्या और इसके संयुग्म का उत्पाद वास्तविक संख्या है: & nbsp; (या & nbsp; ध्रुवीय समन्वय प्रणाली में)।
यदि वास्तविक गुणांक के साथ अविभाजित बहुपद की जड़ समष्टि है, तो इसका समष्टि संयुग्म जड़ प्रमेय है।
संकेतन
समष्टि संख्या का समष्टि संयुग्म के रूप में लिखा है या पहला संकेतन, विनकुलम (प्रतीक), मैट्रिक्स (गणित) के संयुग्मन ट्रांसपोज़ के लिए संकेतन के साथ भ्रम से बचता है, जिसे समष्टि संयुग्म के सामान्यीकरण के रूप में सोचा जा सकता है।दूसरे को भौतिकी में पसंद किया जाता है, जहां डैगर (मार्क) (†) का उपयोग संयुग्म ट्रांसपोज़, साथ ही इलेक्ट्रिकल इंजीनियरिंग और कंप्यूटर इंजीनियरिंग के लिए किया जाता है, जहां बार नोटेशन तार्किक ऋणात्मकता (नहीं) बूलियन बीजगणित प्रतीक के लिए भ्रमित हो सकता है, जबकिशुद्ध गणित में बार संकेतन अधिक सामान्य है।यदि समष्टि संख्या समष्टि संख्या है मैट्रिक्स समष्टि संख्याओं का प्रतिनिधित्व | के रूप में प्रतिनिधित्व किया मैट्रिक्स, सूचनाएं समान हैं।
गुण
निम्नलिखित गुण सभी समष्टि संख्याओं के लिए क्रियान्वित होते हैं और जब तक अन्यथा नहीं कहा जाता है, और लेखन द्वारा सिद्ध किया जा सकता है और प्रपत्र में किसी भी दो समष्टि संख्याओं के लिए, संयुग्मन अतिरिक्त, घटाव, गुणन और विभाजन पर वितरण योग्य संपत्ति है:[ref 1]
संयुग्मन समष्टि संख्या के मापांक को नहीं बदलता है:
संयुग्मन इनव्यूशन (गणित) है, अर्थात, समष्टि संख्या के संयुग्म का संयुग्म है प्रतीकों में, [ref 1]
इसके संयुग्म के साथ समष्टि संख्या का उत्पाद संख्या के मापांक के वर्ग के सामान्तर है:
सामान्यतः, अगर होलोमोर्फिक फलन है जिसका वास्तविक संख्या पर प्रतिबंध वास्तविक-मूल्य है, और और परिभाषित किया गया है, फिर
चर के रूप में उपयोग करें
बार समष्टि संख्या या दिया गया है, इसका संयुग्म के कुछ हिस्सों को पुन: पेश करने के लिए पर्याप्त है -चर:
- वास्तविक भाग:
- काल्पनिक भाग:
- निरपेक्ष मान | मापांक (या निरपेक्ष मान):
- तर्क (समष्टि विश्लेषण): इसलिए
आगे, विमान में रेखाओं को निर्दिष्ट करने के लिए उपयोग किया जा सकता है: समूह
के संयुग्म के इन उपयोगों चर के रूप में फ्रैंक मॉर्ले की पुस्तक इनवर्सिव ज्यामिति (1933) में चित्रित किया गया है, जो उनके बेटे फ्रैंक वर्ल मॉर्ले के साथ लिखा गया है।
सामान्यीकरण
अन्य प्लानर रियल यूनिटल बीजगणित, दोहरी संख्या और विभाजन-समष्टि संख्याओं का भी समष्टि संयुग्मन का उपयोग करके विश्लेषण किया जाता है।
समष्टि संख्याओं के मैट्रिस के लिए, कहां के तत्व-दर-तत्व संयुग्मन का प्रतिनिधित्व करता है [ref 2] संपत्ति के विपरीत कहां के संयुग्मन ट्रांसपोज़ का प्रतिनिधित्व करता है समष्टि मैट्रिक्स (गणित) का संयुग्म ट्रांसपोज़ (या आसन्न) लेना समष्टि संयुग्मन को सामान्य करता है।इससे भी अधिक सामान्य ऑपरेटरों के लिए आसन्न ऑपरेटर की अवधारणा है (संभवतः अनंत-आयामी) समष्टि हिल्बर्ट रिक्त स्थान।यह सब C *-Algebras के *-ऑपरेशन द्वारा प्रस्तुत किया गया है।
भी चतुर्भुज और विभाजन-क्वाटेरन के लिए संयुग्मन को परिभाषित कर सकता है: का संयुग्म है ये सभी सामान्यीकरण केवल तभी गुणक होते हैं जब कारक उलट होते हैं:
सदिश रिक्त स्थान के लिए संयुग्मन की अमूर्त धारणा भी है समष्टि संख्याओं पर।इस संदर्भ में, किसी भी एंटिलिनियर मानचित्र वह संतुष्ट है
- कहां और पहचान मानचित्र पर है
- सबके लिए और
- सबके लिए
कहा जाता है complex conjugation, या वास्तविक संरचना।अन्वेषण के रूप में एंटीलिनियर है, यह पहचान का मानचित्र नहीं हो सकता है बेशक, है के -इनर ट्रांसफॉर्मेशन यदि कोई नोट करता है कि हर समष्टि स्थान मूल स्थान में ही सदिश (गणित और भौतिकी) को लेने और अदिश को वास्तविक होने तक सीमित करने के लिए वास्तविक रूप प्राप्त किया गया है।उपरोक्त गुण वास्तव में समष्टि सदिश अंतरिक्ष पर वास्तविक संरचना को परिभाषित करते हैं [1] इस धारणा का उदाहरण ऊपर परिभाषित समष्टि मैट्रिसेस का संयुग्म ट्रांसपोज़ ऑपरेशन है।चूंकि, सामान्य समष्टि सदिश रिक्त स्थान पर, कोई नहीं है canonical समष्टि संयुग्मन की धारणा।
यह भी देखें
- Absolute square
- Complex conjugate line
- Complex conjugate representation
- Complex conjugate vector space
- Composition algebra
- Conjugate (square roots)
- Hermitian function
- Wirtinger derivatives
संदर्भ
- ↑ 1.0 1.1 Friedberg, Stephen; Insel, Arnold; Spence, Lawrence (2018), Linear Algebra (5 ed.), ISBN 978-0134860244, Appendix D
- ↑ Arfken, Mathematical Methods for Physicists, 1985, pg. 201
नोट
इस पृष्ठ में गुम आंतरिक लिंक की सूची
ग्रन्थसूची
- Budinich, P. and Trautman, A. The Spinorial Chessboard. Springer-Verlag, 1988. ISBN 0-387-19078-3. (antilinear maps are discussed in section 3.3).
- ↑ Budinich, P. and Trautman, A. The Spinorial Chessboard. Springer-Verlag, 1988, p. 29