इंजीनियरिंग आपदाएँ: Difference between revisions
m (added Category:Vigyan Ready using HotCat) |
m (9 revisions imported from alpha:इंजीनियरिंग_आपदाएँ) |
(No difference)
|
Latest revision as of 22:12, 10 October 2023
इंजीनियरिंग आपदाएँ प्रायः डिज़ाइन प्रक्रिया में लघुपथ (शॉर्टकट) से उत्पन्न होती हैं। इंजीनियरिंग वह विज्ञान और प्रौद्योगिकी है जिसका उपयोग समाज की जरूरतों और मांगों को पूरा करने के लिए किया जाता है।[1] इन मांगों में भवन, विमान, समुद्री जहाज और कंप्यूटर सॉफ्टवेयर सम्मिलित हैं। समाज की मांगों को पूरा करने के लिए, नई तकनीक और बुनियादी ढांचे का निर्माण कुशलतापूर्वक और लागत प्रभावी ढंग से पूरा किया जाना चाहिए। इसे पूरा करने के लिए, प्रबंधकों और इंजीनियरों को उपस्थित निर्दिष्ट मांग के प्रति पारस्परिक दृष्टिकोण की आवश्यकता होती है। इससे निर्माण और निर्माण की लागत को निम्न करने के लिए इंजीनियरिंग डिजाइन में लघुपथ हो सकते हैं। कभी-कभी, ये लघुपथ अप्रत्याशित डिज़ाइन विफलताओं का कारण बन सकते हैं।
अवलोकन
विफलता तब होती है जब किसी संरचना या उपकरण का उपयोग डिज़ाइन की सीमा से परे किया जाता है जो उचित कार्य को बाधित करता है।[2] यदि कोई संरचना केवल एक निश्चित मात्रा में तनाव (यांत्रिकी), विरूपण (भौतिकी), या भार का समर्थन करने के लिए डिज़ाइन की गई है और उपयोगकर्ता अधिक मात्रा में लागू होता है, तो संरचना ख़राब होने लगेगी और अंततः विफल हो जाएगी। विफलता में कई कारक योगदान करते हैं जिनमें त्रुटिपूर्ण डिज़ाइन, अनुचित उपयोग, वित्तीय लागत और गलत संचार सम्मिलित हैं।
सुरक्षा
इंजीनियरिंग के क्षेत्र में सुरक्षा के महत्व पर जोर दिया जाता है। पिछली इंजीनियरिंग विफलताओं और चैलेंजर विस्फोट जैसी कुख्यात आपदाओं से सीखने से वास्तविकता का एहसास होता है कि उचित सुरक्षा सावधानियां नहीं बरतने पर क्या हो सकता है। तन्यता परीक्षण, परिमित तत्व विश्लेषण (एफईए), और विफलता सिद्धांत जैसे सुरक्षा परीक्षण डिजाइन इंजीनियरों को यह जानकारी प्रदान करने में मदद करते हैं कि किसी डिजाइन के एक निश्चित क्षेत्र में अधिकतम बल और तनाव क्या लागू किया जा सकता है। ये एहतियाती उपाय अतिभारण (ओवरलोडिंग) और विरूपण के कारण होने वाली विफलताओं को रोकने में मदद करते हैं।[3]
स्थैतिक भार
स्थैतिक भार (लोडिंग) तब होती है जब किसी वस्तु या संरचना पर धीरे-धीरे बल लगाया जाता है। स्थैतिक भार परीक्षण जैसे तन्यता परीक्षण, बंकन परीक्षण और मरोड़ परीक्षण अधिकतम भार निर्धारित करने में मदद करते हैं जो एक डिजाइन स्थायी विरूपण या विफलता के बिना झेल सकता है। तनाव-तनाव वक्र की गणना करते समय तन्यता परीक्षण साधारण है जो एक विशिष्ट परीक्षण सैम्पलकी उपज शक्ति और अंतिम शक्ति निर्धारित कर सकता है।स्पेसिमेन को तनाव में धीरे-धीरे तब तक खींचा जा ता है जब तक कि वह टूट न जाए, जबकि भार और गेज की लंबाई के पार की दूरी की लगातार निगरानी की जाती है। तन्यता परीक्षण के अधीन एक स्पेसिमेन सामान्यतः बिना टूटे अपने उपज तनाव से अधिक तनाव का सामना कर सकता है। हालाँकि, एक निश्चित बिंदु पर, स्पेसिमेन दो टुकड़ों में टूट जाएगा। ऐसा इसलिए होता है क्योंकि उपज के परिणामस्वरूप होने वाली सूक्ष्म दरारें बड़े पैमाने पर फैल जाएंगी। पूर्ण टूटने के बिंदु पर तनाव को सामग्री की अंतिम तन्य शक्ति कहा जाता है।[4] परिणाम स्थैतिक भार के तहत सामग्री के व्यवहार का एक तनाव-खिंचाव वक्र है। इस तन्यता परीक्षण के माध्यम से, उपज शक्ति उस बिंदु पर पाई जाती है जहां सामग्री लागू तनाव के प्रति अधिक आसानी से उपजने लगती है, और इसकी विरूपण की दर बढ़ जाती है।[5]
थकान
जब कोई सामग्री अत्यधिक तापमान या निरंतर भार के संपर्क में आने से स्थायी विरूपण से गुजरती है, तो सामग्री की कार्यक्षमता ख़राब हो सकती है।[6][7] सामग्री के इस समय-निर्भर प्लास्टिक विरूपण को क्रीप (विरूपण) के रूप में जाना जाता है। तनाव और तापमान दोनों क्रीप की दर के प्रमुख कारक हैं। किसी डिज़ाइन को सुरक्षित माने जाने के लिए, क्रीप के कारण होने वाली विकृति उस तनाव से बहुत निम्नहोनी चाहिए जिस पर विफलता होती है। एक बार जब स्थैतिक भार के कारण स्पेसिमेन इस बिंदु से आगे निकल जाता है, तो स्पेसिमेन स्थायी, या प्लास्टिक, विरूपण प्रारम्भ कर देगा।[7]
यांत्रिक डिज़ाइन में, अधिकांश विफलताएँ समय-परिवर्तनशील या गतिशील भार के कारण होती हैं जो किसी सिस्टम पर लागू होते हैं। इस घटना को थकान विफलता के रूप में जाना जाता है। थकान (सामग्री) को उस सामग्री पर बार-बार लागू होने वाले तनाव की विविधता के कारण सामग्री में कमजोरी के रूप में जाना जाता है।[8] उदाहरण के लिए, जब रबर बैंड को बिना तोड़े एक निश्चित लंबाई तक खींचा जाता है (अर्थात रबर बैंड के उपज तनाव को पार नहीं किया जाता है) तो रबर बैंड रिलीज होने के बाद अपने मूल रूप में वापस आ जाएगा; हालाँकि, रबर बैंड को बार-बार समान मात्रा में बल से खींचने से बैंड में सूक्ष्म दरारें बन जाएंगी जिससे रबर बैंड टूट जाएगा। यही सिद्धांत धातु जैसी यांत्रिक सामग्री पर भी लागू होता है।[5]
थकान की विफलता हमेशा एक दरार से प्रारम्भ होती है जो समय के साथ या प्रयुक्त विनिर्माण प्रक्रिया के कारण बन सकती है। थकान विफलता के तीन चरण हैं:
- दरार की प्रारम्भ- जब बार-बार तनाव इस्तेमाल की जा रही सामग्री में फ्रैक्चर उत्पन्न करता हैl
- दरार प्रसार- जब तन्य तनाव के कारण सामग्री में आरंभिक दरार बड़े पैमाने पर विकसित होती है।
- अचानक फ्रैक्चर विफलता- अस्थिर दरार वृद्धि के कारण उस बिंदु तक जहां सामग्री विफल हो जाएगीl
ध्यान दें कि थकान का मतलब यह नहीं है कि विफलता के बाद सामग्री की ताकत निम्नहो जाती है। इस धारणा को मूल रूप से चक्रीय भार के बाद थकने वाली सामग्री के रूप में संदर्भित किया गया था।[5]
गलतसंचार
इंजीनियरिंग एक सटीक अनुशासन है, जिसमें परियोजना डेवलपर्स के बीच संचार की आवश्यकता होती है। कई प्रकार के ग़लत संचार से डिज़ाइन में त्रुटि हो सकती है। सिविल, इलेक्ट्रिकल, मैकेनिकल, औद्योगिक, रसायन, जैविक और पर्यावरण इंजीनियरिंग सहित इंजीनियरिंग के विभिन्न क्षेत्रों को आपस में जुड़ना चाहिए। उदाहरण के लिए, एक आधुनिक ऑटोमोबाइल डिज़ाइन के लिए उपभोक्ताओं के लिए ईंधन-कुशल, टिकाऊ उत्पाद तैयार करने के लिए इलेक्ट्रिकल इंजीनियरों, मैकेनिकल इंजीनियरों और पर्यावरण इंजीनियरों को एक साथ काम करने की आवश्यकता होती है। यदि इंजीनियर एक-दूसरे के बीच पर्याप्त रूप से संवाद नहीं करते हैं, तो संभावित डिज़ाइन में खामियां हो सकती हैं और उपभोक्ता खरीद के लिए असुरक्षित हो सकता है। इंजीनियरिंग आपदाएँ इस तरह के गलत संचार का परिणाम हो सकती हैं, जिसमें 2005 में तूफान कैटरीना के दौरान ग्रेटर न्यू ऑरलियन्स, लुइसियाना में लेवी विफलता, अंतरिक्ष शटल कोलंबिया आपदा और हयात रीजेंसी वॉकवे ढह गया सम्मिलित हैं।[9][10][11]
इसका एक असाधारण उदाहरण मंगल जलवायु ऑर्बिटर है। ऑर्बिटर की हिंसक समाप्ति का प्राथमिक कारण यह था कि लॉकहीड मार्टिन द्वारा आपूर्ति किए गए ग्राउंड सॉफ़्टवेयर के एक टुकड़े ने संयुक्त राज्य अमेरिका की पारंपरिक इकाई में परिणाम दिए, जो इसके सॉफ़्टवेयर इंटरफ़ेस विशिष्टता (एसआईएस) के विपरीत था, जबकि नासा द्वारा आपूर्ति की गई दूसरी प्रणाली ने उन परिणामों की अपेक्षा की थी। एसआईएस के अनुसार, एसआई इकाइयों में होना। लॉकहीड मार्टिन और मुख्य ठेकेदार संवाद करने में आश्चर्यजनक रूप से विफल रहे।
सॉफ़्टवेयर
सॉफ़्टवेयर ने कई हाई-प्रोफ़ाइल आपदाओं में भूमिका निभाई है:
- एरियन 5 फ्लाइट 501
- मंगल जलवायु ऑर्बिटर
- टॉरस (शेयर ट्रेडिंग) - यूके शेयर सेटलमेंट (वित्त) प्रणाली और डिमटेरियलाइज्ड सेंट्रल शेयर डिपॉजिटरी
- थेरैक-25 - एक विकिरण चिकित्सा मशीन जो दोषपूर्ण सॉफ्टवेयर के कारण छह ओवरडोज़ के लिए जिम्मेदार है
- पैट्रियट मिसाइल धहरान में विफलता - पैट्रियट मिसाइल घड़ी मुद्दा
सिस्टम इंजीनियरिंग
- लायन एयर फ्लाइट 610 और इथियोपियाई एयरलाइंस की उड़ान 302 - दोषपूर्ण बोइंग 737 मैक्स ग्राउंडिंग पैंतरेबाज़ी लक्षण वृद्धि प्रणाली बोइंग 737 मैक्स पर एमसीएएस प्रणाली[12]
उदाहरण
जब बुनियादी ढांचे और हवाई जहाज जैसी बड़ी परियोजनाएं विफल हो जाती हैं, तो कई लोग प्रभावित हो सकते हैं, जिससे इंजीनियरिंग आपदा हो सकती है। आपदा को ऐसी आपदा के रूप में परिभाषित किया जाता है जिसके परिणामस्वरूप महत्वपूर्ण क्षति होती है जिसमें जीवन की हानि भी सम्मिलित हो सकती है।[13] इसी तरह की आपदाओं को होने से रोकने में मदद के लिए गहन अवलोकन और आपदा-पश्चात विश्लेषण को काफी हद तक प्रलेखित किया गया है।
बुनियादी ढांचा
अष्टबुला नदी पुल आपदा (1876)
अष्टबुला नदी रेलमार्ग दुर्घटना 29 दिसंबर, 1876 को हुई जब अष्टबुला, ओहियो के पास अष्टबुला नदी पर एक पुल टूट गया क्योंकि लेक शोर और मिशिगन दक्षिणी रेलवे ट्रेन इसके ऊपर से गुजर गई, जिसमें कम से कम 92 लोग मारे गए। आधुनिक विश्लेषण इसके लिए एंगल ब्लॉक लग की विफलता, थ्रस्ट स्ट्रेस और निम्न तापमान को जिम्मेदार मानते हैं।
टे ब्रिज आपदा (1879)
28 दिसंबर, 1879 को, टे ब्रिज आपदा तब हुई जब एडिनबर्ग से एबरडीन लाइन पर उत्तर ब्रिटिश रेलवे यात्री ट्रेन के गुजरने के दौरान पहला टे रेल ब्रिज ढह गया, जिसमें कम से कम 59 लोग मारे गए। इसका मुख्य कारण पवन भार की अनुमति न देना था।
जॉनस्टाउन बाढ़ (1889)
जॉन्सटाउन बाढ़ 31 मई, 1889 को हुई थी, जब पेंसिल्वेनिया के जॉन्सटाउन शहर के ऊपरी हिस्से में लिटिल कॉनमॉफ़ नदी पर स्थित साउथ फोर्क बांध कई दिनों की भारी बारिश के बाद विफल हो गया था, जिसमें कम से कम 2,209 लोग मारे गए थे। 2016 के हाइड्रोलिक विश्लेषण ने पुष्टि की कि बांध में किए गए बदलावों ने बड़े तूफानों को झेलने की इसकी क्षमता को गंभीर रूप से निम्न कर दिया है।
क्यूबेक ब्रिज ढहना (1907)
कनाडा के क्यूबेक में सड़क, रेल और पैदल यात्री क्यूबेक ब्रिज, निर्माण के दौरान दो बार, 1907 और 1916 में, 88 लोगों की जान की कीमत पर विफल हो गया था। पहली विफलता तारों का अनुचित डिज़ाइन था। दूसरी विफलता तब हुई जब केंद्रीय स्पैन को स्थिति में उठाया जा रहा था और नदी में गिर गया था।
सेंट. फ़्रांसिस बांध ढहना (1928)
सेंट फ्रांसिस बांध कैलिफोर्निया के [[लॉस एंजिल्स काउंटी]] में सैन फ़्रांसिस्किटो घाटी में स्थित एकठोस गुरुत्वाकर्षण बांध था, जिसे लॉस एंजिल्स की बढ़ती पानी की जरूरतों को पूरा करने के लिए 1924 से 1926 तक बनाया गया था। 1928 में दोषपूर्ण मिट्टी की नींव और डिजाइन की खामियों के कारण यह विफल हो गया, जिससे बाढ़ आ गई और कम से कम 431 लोगों की जान चली गई।
टैकोमा नैरो ब्रिज ढहना (1940)
पहला टैकोमा नैरो ब्रिज वाशिंगटन) में एक सस्पेंशन पुल था जो प्यूगेट ध्वनि के टैकोमा नैरो जलडमरूमध्य तक फैला था। यह 7 नवंबर, 1940 को नाटकीय रूप से संरचनात्मक अखंडता और विफलता थी। इसका निकटतम कारण मध्यम हवाएं थीं, जिसने एयरोइलास्टिसिटी स्पंदन का उत्पादन किया जो नमी के विपरीत, आत्म-रोमांचक और असीमित था।
हयात रीजेंसी होटल वॉकवे ढहना (1981)
17 जुलाई, 1981 को, कैनसस सिटी, मिसौरी के क्राउन सेंटर में शेरेटन कैनसस सिटी होटल में पार्टी करने वालों से भरे दो ओवरहेड वॉकवे ढह गए। कंक्रीट और कांच के मंच लॉबी में एक चाय नृत्य पर गिर गए, जिससे 114 लोगों की मौत हो गई और 216 घायल हो गए। जांच से निष्कर्ष निकला कि संशोधित डिजाइन के कारण उस रात पैदल मार्ग एक तिहाई वजन के नीचे विफल हो गया होगा।
न्यू ऑरलियन्स में संघीय तटबंध विफलताएं (2005)
तूफान कैटरीना के गुजरने के बाद 29 अगस्त 2005 को न्यू ऑरलियन्स, लुइसियाना और उसके उपनगरों की रक्षा करने वाली तटबंध और बाढ़ दीवारें 50 स्थानों पर विफल हो गईं, जिससे 1,577 लोग मारे गए। सभी चार प्रमुख जांचों में इस बात पर सहमति व्यक्त की गई कि बाढ़ का प्राथमिक कारण सेना के इंजीनियरों द्वारा अपर्याप्त डिजाइन और निर्माण था।
मोरंडी पुल ढहना (2018)
पोंटे मोरांडी जेनोआ, लिगुरिया, इटली में एक सड़क पुल था। 14 अगस्त, 2018 को, तूफान के दौरान पुल का एक हिस्सा ढह गया, जिसमें तैंतालीस लोगों की मौत हो गई। मूल पुल के अवशेष अगस्त 2019 में ध्वस्त कर दिए गए थे।
सर्फ़साइड कॉन्डोमिनियम इमारत ढहना (2021)
24 जून, 2021 को 1:22 बजे, फ्लोरिडा के सर्फ़साइड के मियामी उपनगर में एक 12-मंजिला समुद्र तट सम्मिलित, चैम्पलेन टावर्स साउथ, आंशिक रूप से संरचनात्मक अखंडता और विफलता के कारण 98 लोगों की मौत हो गई। फिलहाल जांच जारी है.
वैमानिकी
अंतरिक्ष शटल चैलेंजर आपदा (1986)
स्पेस शटल चैलेंजर दुर्घटना 28 जनवरी, 1986 को हुई, जब नासा अंतरिक्ष शटल ऑर्बिटर स्पेस शटल चैलेंजर; चैलेंजर (OV-099) (मिशन एसटीएस-51-एल) अपनी उड़ान में 73 सेकंड के अंतराल पर टूट गया, जिससे उसकी मृत्यु हो गई। सात चालक दल के सदस्य वाहन का विघटन तब प्रारम्भ हुआ जब इसके दाहिने स्पेस शटल सॉलिड रॉकेट बूस्टर (एसआरबी) में O-रिंग सील लिफ्टऑफ़ में विफल हो गई।
अंतरिक्ष शटल कोलंबिया आपदा (2003)
अंतरिक्ष शटल कोलंबिया (ओ.वी-102) दुर्घटना 1 फरवरी 2003 को एसटीएस-107 के अंतिम चरण के दौरान हुई। लुइसियाना और टेक्सास के ऊपर पृथ्वी के वायुमंडल में पुनः प्रवेश करते समय शटल अप्रत्याशित रूप से विघटित हो गया, जिसके परिणामस्वरूप उसमें सवार सभी सात अंतरिक्ष यात्रियों की मृत्यु हो गई। इसका कारण 16 जनवरी के लॉन्च के दौरान बाहरी टैंक से फोम इन्सुलेशन के गिरने वाले टुकड़े के प्रभाव से थर्मल शील्डिंग टाइल्स को नुकसान था।
जहाज
द्वितीय विश्वयुद्ध में लिबर्टी जहाज
प्रारंभिक लिबर्टी जहाज़ों को लिबर्टी जहाज हल में दरारों का सामना करना पड़ा, और कुछ ऐसे संरचनात्मक दोषों के कारण नष्ट हो गए। द्वितीय विश्व युद्ध के दौरान, महत्वपूर्ण भंगुर फ्रैक्चर के लगभग 1,500 उदाहरण थे। निर्मित 2,710 लिबर्टीज़ में से तीन बिना किसी चेतावनी के आधे हिस्से में टूट गईं। शीत ताप में स्टील के पतवार टूट गए, जिसके परिणामस्वरूप बाद में जहाजों का निर्माण अधिक उपयुक्त स्टील का उपयोग करके किया गया।
स्टीमबोट सुल्ताना (1865)
26 अप्रैल, 1865 की रात को मिसिसिपी नदी पर यात्री स्टीमबोट सुल्ताना में विस्फोट हो गया। seven miles (11 km) मेम्फिस, टेनेसी के उत्तर में। विस्फोट के परिणामस्वरूप 1,547 लोगों की जान चली गई। ऐसा माना जाता है कि इसका कारण गलत तरीके से मरम्मत किए गए बॉयलर का विस्फोट था, जिसके कारण तीन अन्य बॉयलरों में से दो में विस्फोट हुआ।
टाइटन सबमर्सिबल
18 जून 2023 को, टाइटैनिक के मलबे के अभियान के दौरान सबमर्सिबल टाइटन फट गया, जिससे उसमें सवार सभी पांच लोगों की मौत हो गई। सबमर्सिबल और विशेष रूप से कार्बन फाइबर प्रेशर पतवार के डिज़ाइन में खामियों को विस्फोट के संभावित कारण के रूप में चर्चा की गई थी, टाइटन के ऑपरेटर ओशनगेट ने दुर्घटनाओं की संभावना के बारे में पिछली कई चेतावनियों को नजरअंदाज कर दिया था।
यह भी देखें
- औद्योगिक आपदाएँ
- समुद्री आपदाओं की सूची
- अंतरिक्ष उड़ान संबंधी दुर्घटनाओं और घटनाओं की सूची
- संरचनात्मक विफलताओं और पतन की सूची
- विचलन का सामान्यीकरण
- परमाणु एवं विकिरण दुर्घटनाएँ
- संरचनात्मक विफलता
संदर्भ
- ↑ "अभियांत्रिकी". Oxford Dictionaries (British & World English). 22 February 2013.
- ↑ "Failure." Definition of in Oxford Dictionaries (British & World English). N.p., n.d. Web. 23 Feb. 2013.
- ↑ Dax, Mark (December 1997). "विफलता विश्लेषण आपदा की पुनरावृत्ति को रोकता है". R&D Magazine. pp. 30–31.
- ↑ Doehring, James; Fritsky, Lauren. "What Is a Static Load?". WiseGeek. Retrieved October 3, 2020.
- ↑ 5.0 5.1 5.2 Norton, Robert L. (2011). Machine Design: An Integrated Approach. Boston: Prentice Hall.
- ↑ "CreepAbout Our Definitions: All Forms of a Word (noun, Verb, Etc.) Are Now Displayed on One Page." Merriam-Webster. Merriam-Webster, n.d. Web. 23 Feb. 2013.
- ↑ 7.0 7.1 Hibbeler, R. C. (2011). सामग्री के यांत्रिकी. Boston: Prentice Hall.
- ↑ "Fatigue." Definition of in Oxford Dictionaries (British & World English). N.p., n.d. Web. 21 Feb. 2013
- ↑ Marshall, Richard D. (1982). "कैनसस सिटी हयात रीजेंसी वॉकवे पतन की जांच". U.S. Dept. Of Commerce, National Bureau of Standards. Washington, D.C.
- ↑ Strock, Carl. "Defense.gov News Transcript: Defense Department Special Briefing on Efforts to Mitigate Infrastructure Damage from Hurricane Katrina". United States Department of Defense. Archived from the original on 2012-12-31. Retrieved 22 Feb 2013.
- ↑ Dunbar, R. L. M.; R., Garud (2009). "Distributed Knowledge and Indeterminate Meaning: The Case of the Columbia Shuttle Flight". Organization Studies. 30 (4): 397–421. doi:10.1177/0170840608101142. S2CID 145524035.
- ↑ "Boeing 737 Max MCAS system explained". BBC News.
- ↑ "Disaster." Definition of in Oxford Dictionaries (British & World English). N.p., n.d. Web. 22 Feb. 2013.