समदिग्नत कक्षा (होमोक्लिनिक ऑर्बिट): Difference between revisions
No edit summary |
No edit summary |
||
Line 2: | Line 2: | ||
[[Image:homoclinic.svg|200px|thumb|right|समदिग्नत कक्षा]] | [[Image:homoclinic.svg|200px|thumb|right|समदिग्नत कक्षा]] | ||
[[Image:oriented.png|200px|thumb|right|उन्मुख समदिग्नत कक्षा]] | [[Image:oriented.png|200px|thumb|right|उन्मुख समदिग्नत कक्षा]] | ||
[[Image:mobius.png|200px|thumb|right|मुड़ी हुई समदिग्नत कक्षा]]गतिशील प्रणालियों के अध्ययन में, '''समदिग्नत कक्षा''' [[चरण स्थान|चरण]] अव्वल के माध्यम से पथ है जो काठी [[संतुलन बिंदु]] को स्वयं से जोड़ती है। अधिक त्रुटिहीन रूप से, समदिग्नत कक्षा संतुलन के [[स्थिर अनेक गुना]] और [[अस्थिर अनेक गुना]] के प्रतिच्छेदन में स्थित होती है। यह [[हेटरोक्लिनिक कक्षा|विभिन्न-रूखी कक्षा]] होता है - | [[Image:mobius.png|200px|thumb|right|मुड़ी हुई समदिग्नत कक्षा]]गतिशील प्रणालियों के अध्ययन में, '''समदिग्नत कक्षा''' [[चरण स्थान|चरण]] अव्वल के माध्यम से पथ है जो काठी [[संतुलन बिंदु|संतुलन]] क्षेत्र को स्वयं से जोड़ती है। अधिक त्रुटिहीन रूप से, समदिग्नत कक्षा संतुलन के [[स्थिर अनेक गुना]] और [[अस्थिर अनेक गुना]] के प्रतिच्छेदन में स्थित होती है। यह [[हेटरोक्लिनिक कक्षा|विभिन्न-रूखी कक्षा]] होता है - किसी भी दो संतुलन बिंदुओं के बीच का मार्ग - जिसमें संतुलन बिंदुओं के अंतबिंदु एक ही होते हैं | ||
[[साधारण अंतर समीकरण]] द्वारा वर्णित [[सतत कार्य]] गतिशील प्रणाली पर विचार करें | मान लें कि [[साधारण अंतर समीकरण]] द्वारा वर्णित [[सतत कार्य]] गतिशील प्रणाली पर विचार करें | ||
:<math>\dot x=f(x)</math> | :<math>\dot x=f(x)</math> | ||
मान लीजिए कि वहाँ संतुलन है <math>x=x_0</math>, फिर समाधान <math>\Phi(t)</math> | मान लीजिए कि वहाँ संतुलन है <math>x=x_0</math>, फिर समाधान <math>\Phi(t)</math> समदिग्नत आक्रमण होता है यदि: | ||
:<math>\Phi(t)\rightarrow x_0\quad \mathrm{as}\quad | :<math>\Phi(t)\rightarrow x_0\quad \mathrm{as}\quad | ||
t\rightarrow\pm\infty</math> | t\rightarrow\pm\infty</math> | ||
यदि चरण अव्वल में तीन या अधिक [[आयाम]] हैं, तो सैडल | यदि चरण अव्वल में तीन या उससे अधिक [[आयाम]] में हैं, तो सैडल पॉइंट के अस्थिर नालिका की [[टोपोलॉजी|संस्थितिविज्ञान]] को ध्यान में रखना महत्वपूर्ण होता है। चित्रों में दो स्थितियाँ दिखाई गई हैं। पहले, जब स्थिर नालिका संस्थितिविज्ञान रूप से [[सिलेंडर]] होता है, और दूसरा, जब अस्थिर नालिका संस्थितिविज्ञान रूप से मोबियस स्ट्रिप होता है; इस स्थितियों में समदिग्नत कक्षा को मुड़ कहा जाता है। | ||
== असतत गतिशील प्रणाली == | == असतत गतिशील प्रणाली == | ||
समदिग्नत कक्षाओं और समदिग्नत बिंदुओं को पुनरावृत्त | समदिग्नत कक्षाओं और समदिग्नत बिंदुओं को पुनरावृत्त फलन के लिए भी उसी प्रकार से परिभाषित किया जाता है, जैसे प्रणाली के कुछ [[निश्चित बिंदु (गणित)|निश्चित क्षेत्र (गणित)]] या [[आवधिक बिंदु|आवधिक]] क्षेत्र के स्थिर नालिका और [[अस्थिर सेट|अस्थिर]] समुच्चय का प्रतिच्छेदन होता है। | ||
असतत गतिशील प्रणालियों पर विचार करते समय हमारे पास समदिग्नत कक्षा की भी धारणा है। ऐसे में यदि <math>f:M\rightarrow M</math> | असतत गतिशील प्रणालियों पर विचार करते समय हमारे पास समदिग्नत कक्षा की भी धारणा है। ऐसे में यदि | ||
<math>f:M\rightarrow M</math> | |||
कोई मैनिफ़ोल्ड <math>M</math> की [[भिन्नता]] है, तो हम कहते हैं कि <math>x</math> समदिग्नत क्षेत्र है यदि इसका अतीत और भविष्य समान है - अधिक विशेष रूप से, यदि कोई निश्चित (या आवधिक) क्षेत्र उपस्थित है <math>p</math> ऐसा है कि | |||
:<math>\lim_{n\rightarrow \pm\infty}f^n(x)=p.</math> | :<math>\lim_{n\rightarrow \pm\infty}f^n(x)=p.</math> | ||
== गुण == | == गुण == | ||
इस प्रकार समदिग्नत | इस प्रकार समदिग्नत क्षेत्र का अस्तित्व उनकी अनंत संख्या के अस्तित्व को दर्शाता है।<ref>{{cite book|last=Ott|first=Edward|title=डायनामिकल सिस्टम में अराजकता|url=https://archive.org/details/chaosindynamical0000otte|url-access=registration|year=1994|publisher=Cambridge University Press|isbn=9780521437998 }}</ref>यह इसकी परिभाषा से आता है: स्थिर और अस्थिर समुच्चय का प्रतिच्छेदन, दोनों समुच्चय परिभाषा के अनुसार [[सकारात्मक अपरिवर्तनीय सेट|धनात्मक अपरिवर्तनीय]] समुच्चय हैं, जिसका अर्थ है कि समदिग्नत क्षेत्र का आगे का पुनरावृत्ति स्थिर और अस्थिर समुच्चय दोनों पर है। N बार पुनरावृत्ति करके, नक्शा स्थिर समुच्चय द्वारा संतुलन क्षेत्र तक पहुंचता है, किन्तु प्रत्येक पुनरावृत्ति में यह अस्थिर नालिका पर भी होता है, जो इस संपत्ति को दर्शाता है। | ||
यह गुण बताता देता है कि समदिग्नत | यह गुण बताता देता है कि समदिग्नत क्षेत्र के अस्तित्व से जटिल गतिशीलता उत्पन्न होती है। वास्तव में, स्मेल (1967)<ref>{{cite book|last=Smale|first=Stephen|title=विभेदक गतिशील प्रणालियाँ|year=1967|publisher=Bull. Amer. Math. Soc.73, 747–817}}</ref> पता चला कि ये क्षेत्र गतिशीलता जैसे घोड़े की नाल के नक्शे की ओर ले जाते हैं, जो की कोलाहल से जुड़ा होती है। | ||
== [[प्रतीकात्मक गतिशीलता]] == | == [[प्रतीकात्मक गतिशीलता]] == | ||
[[मार्कोव विभाजन]] का उपयोग करके, प्रतीकात्मक गतिशीलता की तकनीकों का उपयोग करके अतिशीघ्र प्रणाली के दीर्घकालिक व्यवहार का अध्ययन किया जा सकता है। इस स्थितियों में, समदिग्नत कक्षा का विशेष रूप से सरल और स्पष्ट प्रतिनिधित्व होता है। मान लें कि <math>S=\{1,2,\ldots,M\}</math> सीमित संख्यक M प्रतीकों का समुच्चय है। | [[मार्कोव विभाजन]] का उपयोग करके, प्रतीकात्मक गतिशीलता की तकनीकों का उपयोग करके अतिशीघ्र प्रणाली के दीर्घकालिक व्यवहार का अध्ययन किया जा सकता है। इस स्थितियों में, समदिग्नत कक्षा का विशेष रूप से सरल और स्पष्ट प्रतिनिधित्व होता है। मान लें कि <math>S=\{1,2,\ldots,M\}</math> सीमित संख्यक M प्रतीकों का समुच्चय है। क्षेत्र x की गतिकता फिर से प्रतीकों की [[द्वि-अनंत स्ट्रिंग]] स्वरूप की स्त्रिंग द्वारा प्रदर्शित किया जाता है | ||
:<math>\sigma =\{(\ldots,s_{-1},s_0,s_1,\ldots) : s_k \in S \; \forall k \in \mathbb{Z} \}</math> | :<math>\sigma =\{(\ldots,s_{-1},s_0,s_1,\ldots) : s_k \in S \; \forall k \in \mathbb{Z} \}</math> | ||
प्रणाली का आवृत्तिक | प्रणाली का आवृत्तिक क्षेत्र केवल आवृत्ति वाला प्रतीकों का एक दोहराने वाला सिरा होता है। विभिन्न-रूखी कक्षा तब दो विभिन्न आवधिक कक्षाओं का जुड़ना होता है। जिसे इस प्रकार लिखा जा सकता है | ||
:<math>p^\omega s_1 s_2 \cdots s_n q^\omega</math> | :<math>p^\omega s_1 s_2 \cdots s_n q^\omega</math> |
Revision as of 11:06, 29 September 2023
गतिशील प्रणालियों के अध्ययन में, समदिग्नत कक्षा चरण अव्वल के माध्यम से पथ है जो काठी संतुलन क्षेत्र को स्वयं से जोड़ती है। अधिक त्रुटिहीन रूप से, समदिग्नत कक्षा संतुलन के स्थिर अनेक गुना और अस्थिर अनेक गुना के प्रतिच्छेदन में स्थित होती है। यह विभिन्न-रूखी कक्षा होता है - किसी भी दो संतुलन बिंदुओं के बीच का मार्ग - जिसमें संतुलन बिंदुओं के अंतबिंदु एक ही होते हैं
मान लें कि साधारण अंतर समीकरण द्वारा वर्णित सतत कार्य गतिशील प्रणाली पर विचार करें
मान लीजिए कि वहाँ संतुलन है , फिर समाधान समदिग्नत आक्रमण होता है यदि:
यदि चरण अव्वल में तीन या उससे अधिक आयाम में हैं, तो सैडल पॉइंट के अस्थिर नालिका की संस्थितिविज्ञान को ध्यान में रखना महत्वपूर्ण होता है। चित्रों में दो स्थितियाँ दिखाई गई हैं। पहले, जब स्थिर नालिका संस्थितिविज्ञान रूप से सिलेंडर होता है, और दूसरा, जब अस्थिर नालिका संस्थितिविज्ञान रूप से मोबियस स्ट्रिप होता है; इस स्थितियों में समदिग्नत कक्षा को मुड़ कहा जाता है।
असतत गतिशील प्रणाली
समदिग्नत कक्षाओं और समदिग्नत बिंदुओं को पुनरावृत्त फलन के लिए भी उसी प्रकार से परिभाषित किया जाता है, जैसे प्रणाली के कुछ निश्चित क्षेत्र (गणित) या आवधिक क्षेत्र के स्थिर नालिका और अस्थिर समुच्चय का प्रतिच्छेदन होता है।
असतत गतिशील प्रणालियों पर विचार करते समय हमारे पास समदिग्नत कक्षा की भी धारणा है। ऐसे में यदि
कोई मैनिफ़ोल्ड की भिन्नता है, तो हम कहते हैं कि समदिग्नत क्षेत्र है यदि इसका अतीत और भविष्य समान है - अधिक विशेष रूप से, यदि कोई निश्चित (या आवधिक) क्षेत्र उपस्थित है ऐसा है कि
गुण
इस प्रकार समदिग्नत क्षेत्र का अस्तित्व उनकी अनंत संख्या के अस्तित्व को दर्शाता है।[1]यह इसकी परिभाषा से आता है: स्थिर और अस्थिर समुच्चय का प्रतिच्छेदन, दोनों समुच्चय परिभाषा के अनुसार धनात्मक अपरिवर्तनीय समुच्चय हैं, जिसका अर्थ है कि समदिग्नत क्षेत्र का आगे का पुनरावृत्ति स्थिर और अस्थिर समुच्चय दोनों पर है। N बार पुनरावृत्ति करके, नक्शा स्थिर समुच्चय द्वारा संतुलन क्षेत्र तक पहुंचता है, किन्तु प्रत्येक पुनरावृत्ति में यह अस्थिर नालिका पर भी होता है, जो इस संपत्ति को दर्शाता है।
यह गुण बताता देता है कि समदिग्नत क्षेत्र के अस्तित्व से जटिल गतिशीलता उत्पन्न होती है। वास्तव में, स्मेल (1967)[2] पता चला कि ये क्षेत्र गतिशीलता जैसे घोड़े की नाल के नक्शे की ओर ले जाते हैं, जो की कोलाहल से जुड़ा होती है।
प्रतीकात्मक गतिशीलता
मार्कोव विभाजन का उपयोग करके, प्रतीकात्मक गतिशीलता की तकनीकों का उपयोग करके अतिशीघ्र प्रणाली के दीर्घकालिक व्यवहार का अध्ययन किया जा सकता है। इस स्थितियों में, समदिग्नत कक्षा का विशेष रूप से सरल और स्पष्ट प्रतिनिधित्व होता है। मान लें कि सीमित संख्यक M प्रतीकों का समुच्चय है। क्षेत्र x की गतिकता फिर से प्रतीकों की द्वि-अनंत स्ट्रिंग स्वरूप की स्त्रिंग द्वारा प्रदर्शित किया जाता है
प्रणाली का आवृत्तिक क्षेत्र केवल आवृत्ति वाला प्रतीकों का एक दोहराने वाला सिरा होता है। विभिन्न-रूखी कक्षा तब दो विभिन्न आवधिक कक्षाओं का जुड़ना होता है। जिसे इस प्रकार लिखा जा सकता है
यहाँ लंबाई k के प्रतीकों की आवृत्तिक क्रम है (स्वभावसंख्या में, ), और लंबाई m के प्रतीकों का और क्रम है (इसी प्रकार, ). संकेतन बस अनंत बार p की पुनरावृत्ति को दर्शाता है। इस प्रकार, विभिन्न-रूखी कक्षा को आवधिक कक्षा से दूसरे में संक्रमण के रूप में समझा जा सकता है। इसके विपरीत, समदिग्नत कक्षा को इस प्रकार लिखा जा सकता है
जहां आंतरिक क्रम संख्यमूलक होता है और अवश्य, p नहीं होता है, बस कक्षा होती है ।
यह भी देखें
- विभिन्न-रूखी कक्षा
- समदिग्नत द्विभाजन
संदर्भ
- ↑ Ott, Edward (1994). डायनामिकल सिस्टम में अराजकता. Cambridge University Press. ISBN 9780521437998.
- ↑ Smale, Stephen (1967). विभेदक गतिशील प्रणालियाँ. Bull. Amer. Math. Soc.73, 747–817.
- John Guckenheimer and Philip Holmes, Nonlinear Oscillations, Dynamical Systems, and Bifurcations of Vector Fields (Applied Mathematical Sciences Vol. 42), Springer
बाहरी संबंध
- Homoclinic orbits in Henon map with Java applets and comments