कोणीय संवेग संचालक: Difference between revisions
No edit summary |
m (30 revisions imported from alpha:कोणीय_संवेग_संचालक) |
||
(24 intermediate revisions by 3 users not shown) | |||
Line 1: | Line 1: | ||
{{Short description|Quantum mechanical operator related to rotational symmetry}} | {{Short description|Quantum mechanical operator related to rotational symmetry}} | ||
{{quantum mechanics}}[[क्वांटम यांत्रिकी]] में, कोणीय संवेग संचालक शास्त्रीय कोणीय संवेग के अनुरूप विभिन्न संबंधित संचालकों (भौतिकी) में | {{quantum mechanics}}[[क्वांटम यांत्रिकी]] में, '''कोणीय संवेग संचालक''' शास्त्रीय कोणीय संवेग के अनुरूप विभिन्न संबंधित संचालकों (भौतिकी) में है। कोणीय गति संचालक परमाणु और आणविक भौतिकी के सिद्धांत और [[घूर्णी समरूपता]] से जुड़ी अन्य क्वांटम समस्याओं में केंद्रीय भूमिका निभाता है। इस प्रकार के संचालक को प्रणाली की भौतिक स्थिति के गणितीय प्रतिनिधित्व के लिए प्रस्तावित किया जाता है और यदि स्तिथि के लिए निश्चित मूल्य है तो कोणीय गति मान उत्पन्न करता है। शास्त्रीय और क्वांटम यांत्रिक दोनों प्रणालियों में, कोणीय गति (रैखिक गति और [[ऊर्जा]] के साथ) गति के तीन मूलभूत गुणों में से एक है।<ref name="Liboff">Introductory Quantum Mechanics, [[Richard L. Liboff]], 2nd Edition, {{ISBN|0-201-54715-5}}</ref> | ||
विभिन्न कोणीय संवेग संचालक हैं, कुल कोणीय संवेग ( | विभिन्न कोणीय संवेग संचालक हैं, कुल कोणीय संवेग (सामान्यतः J से चिह्नित किया जाता है), कक्षीय कोणीय संवेग (सामान्यतः L से चिह्नित किया जाता है), और स्पिन कोणीय गति (लघु के लिए स्पिन, सामान्यतः S से दर्शाया जाता है)। 'कोणीय संवेग संचालक' शब्द (भ्रामक रूप से) कुल या कक्षीय कोणीय संवेग को संदर्भित कर सकता है। कुल कोणीय संवेग सदैव संरक्षित रहता है, नोएदर की प्रमेय देखें। | ||
== | == अवलोकन == | ||
[[File:LS coupling (corrected).png|thumb| कुल कोणीय गति जे (हरा), कक्षीय एल (नीला), और स्पिन एस (लाल) के सदिश शंकु। कोणीय गति घटकों (#दृश्य व्याख्या) को मापने के मध्य | [[File:LS coupling (corrected).png|thumb| कुल कोणीय गति जे (हरा), कक्षीय एल (नीला), और स्पिन एस (लाल) के सदिश शंकु। कोणीय गति घटकों (#दृश्य व्याख्या) को मापने के मध्य [[क्वांटम अनिश्चितता]] के कारण शंकु उत्पन्न होते हैं।]]क्वांटम यांत्रिकी में, कोणीय गति तीन भिन्न-भिन्न, किन्तु संबंधित वस्तु में संदर्भित कर सकती है। | ||
===कक्षीय कोणीय संवेग=== | ===कक्षीय कोणीय संवेग=== | ||
<math>\mathbf{L} = \mathbf{r} \times \mathbf{p}</math> कोणीय संवेग है | <math>\mathbf{L} = \mathbf{r} \times \mathbf{p}</math> कोणीय संवेग है I इन वस्तुओं के क्वांटम-यांत्रिक समकक्ष समान संबंध की भागीदारी करते हैं- | ||
<math display="block">\mathbf{L} = \mathbf{r} \times \mathbf{p}</math> | <math display="block">\mathbf{L} = \mathbf{r} \times \mathbf{p}</math> | ||
जहां r क्वांटम [[स्थिति ऑपरेटर|स्थिति संचालक]] है, p क्वांटम [[पल ऑपरेटर|संवेग संचालक]] है, × [[ पार उत्पाद ]] है, और L | जहां r क्वांटम [[स्थिति ऑपरेटर|स्थिति संचालक]] है, p क्वांटम [[पल ऑपरेटर|संवेग संचालक]] है, × [[ पार उत्पाद |पार उत्पाद]] है, और L कक्षीय कोणीय संवेग संचालक है। L (p और r की भाँति) 'सदिश संचालक' है (सदिश जिसके घटक संचालक हैं), जैसे <math>\mathbf{L} = \left(L_x, L_y, L_z\right)</math> जहां ''L''<sub>x</sub>, ''L''<sub>y</sub>, ''L''<sub>z</sub> तीन भिन्न-भिन्न क्वांटम-यांत्रिक संचालक हैं। | ||
बिना विद्युत आवेश और [[स्पिन (भौतिकी)]] के एकल कण की विशेष स्तिथि | बिना विद्युत आवेश और [[स्पिन (भौतिकी)]] के एकल कण की विशेष स्तिथि में, कक्षीय कोणीय संवेग संचालक को स्थिति के आधार पर लिखा जा सकता है:<math display="block">\mathbf{L} = -i\hbar(\mathbf{r} \times \nabla)</math> | ||
जहाँ , {{math|∇}} सदिश डिफरेंशियल संचालक है। | जहाँ , {{math|∇}} सदिश डिफरेंशियल संचालक है। | ||
=== स्पिन कोणीय गति === | === स्पिन कोणीय गति === | ||
{{main| | {{main|स्पिन (भौतिकी)}} | ||
अन्य प्रकार की कोणीय गति है, जिसे स्पिन (भौतिकी) कहा जाता है (अधिक स्पिन के लिए छोटा), स्पिन संचालक द्वारा दर्शाया गया <math>\mathbf{S} = \left(S_x, S_y, S_z\right)</math>. स्पिन को अधिकांशतः कण के रूप में चित्रित किया जाता है जो अक्ष के चारों ओर घूमता है, किन्तु यह रूपक है| स्पिन कण की आंतरिक संपत्ति है, जो अंतरिक्ष में किसी भी प्रकार (अभी तक प्रयोगात्मक रूप से देखने योग्य) गति से संबंधित नहीं है। सभी [[प्राथमिक कण|प्राथमिक]] कणों में विशिष्ट चक्रण होता है, जो सामान्यतः शून्य नहीं होता है। उदाहरण के लिए, इलेक्ट्रोनो में सदैव स्पिन 1/2 होता है जबकि फोटॉन में सदैव स्पिन 1 होता है। | |||
===कुल कोणीय संवेग=== | ===कुल कोणीय संवेग=== | ||
अंत में, [[कुल कोणीय गति]] होती है <math>\mathbf{J} = \left(J_x, J_y, J_z\right)</math>, जो कण या प्रणाली के स्पिन और कक्षीय कोणीय गति दोनों को जोड़ती है: | अंत में, [[कुल कोणीय गति]] होती है <math>\mathbf{J} = \left(J_x, J_y, J_z\right)</math>, जो कण या प्रणाली के स्पिन और कक्षीय कोणीय गति दोनों को जोड़ती है: | ||
<math display="block">\mathbf{J} = \mathbf{L} + \mathbf{S}.</math> | <math display="block">\mathbf{J} = \mathbf{L} + \mathbf{S}.</math> | ||
कोणीय गति के संरक्षण में कहा गया है कि J बंद प्रणाली के लिए, या J पूरे ब्रह्मांड के लिए संरक्षित है। चूँकि, L और S | कोणीय गति के संरक्षण में कहा गया है कि J बंद प्रणाली के लिए, या J पूरे ब्रह्मांड के लिए संरक्षित है। चूँकि, L और S सामान्यतः संरक्षित नहीं होते हैं। उदाहरण के लिए, स्पिन-ऑर्बिट इंटरैक्शन कोणीय गति को L और S के मध्य आगे और पीछे स्थानांतरित करने की अनुमति देता है, कुल J शेष स्थिर रहता है। | ||
== रूपान्तरण संबंध == | == रूपान्तरण संबंध == | ||
=== घटकों के मध्य | === घटकों के मध्य रूपांतरण संबंध === | ||
कक्षीय कोणीय गति संचालक, सदिश है, जिसका अर्थ है कि इसे इसके सदिश घटकों <math>\mathbf{L} = \left(L_x, L_y, L_z\right)</math> के संदर्भ में लिखा जा सकता है| घटकों के | कक्षीय कोणीय गति संचालक, सदिश है, जिसका अर्थ है कि इसे इसके सदिश घटकों <math>\mathbf{L} = \left(L_x, L_y, L_z\right)</math> के संदर्भ में लिखा जा सकता है| घटकों के आपस में निम्नलिखित [[रूपान्तरण संबंध]] हैं-<ref>{{cite book|chapter-url=https://books.google.com/books?id=dRsvmTFpB3wC&pg=PA171|title= क्वांटम यांत्रिकी|first=G. |last=Aruldhas |page=171|chapter= formula (8.8) | isbn=978-81-203-1962-2 |date=2004-02-01}}</ref> | ||
<math display="block">\left[L_x, L_y\right] = i\hbar L_z, \;\; \left[L_y, L_z\right] = i\hbar L_x, \;\; \left[L_z, L_x\right] = i\hbar L_y,</math> | <math display="block">\left[L_x, L_y\right] = i\hbar L_z, \;\; \left[L_y, L_z\right] = i\hbar L_x, \;\; \left[L_z, L_x\right] = i\hbar L_y,</math> | ||
जहाँ {{math|[ , ]}} [[कम्यूटेटर (रिंग थ्योरी)]] को दर्शाता है | जहाँ {{math|[ , ]}} [[कम्यूटेटर (रिंग थ्योरी)]] को दर्शाता है | ||
Line 37: | Line 37: | ||
सदिश समीकरण के रूप में सघन व्यंजक भी संभव है:<ref>{{cite book |last1=Shankar| first1=R. |title=क्वांटम यांत्रिकी के सिद्धांत| url=https://archive.org/details/principlesquantu00shan_139 |url-access=limited | date=1994|publisher=Kluwer Academic / Plenum|location=New York | isbn=9780306447907 |page=[https://archive.org/details/principlesquantu00shan_139/page/n338 319]|edition=2nd}}</ref> | सदिश समीकरण के रूप में सघन व्यंजक भी संभव है:<ref>{{cite book |last1=Shankar| first1=R. |title=क्वांटम यांत्रिकी के सिद्धांत| url=https://archive.org/details/principlesquantu00shan_139 |url-access=limited | date=1994|publisher=Kluwer Academic / Plenum|location=New York | isbn=9780306447907 |page=[https://archive.org/details/principlesquantu00shan_139/page/n338 319]|edition=2nd}}</ref> | ||
<math display="block">\mathbf{L} \times \mathbf{L} = i\hbar \mathbf{L}</math> | <math display="block">\mathbf{L} \times \mathbf{L} = i\hbar \mathbf{L}</math> | ||
रूपान्तरण संबंधों को [[विहित रूपान्तरण संबंध]] | रूपान्तरण संबंधों को [[विहित रूपान्तरण संबंध|विहित रूपान्तरण संबंधों]] के प्रत्यक्ष परिणाम के रूप में सिद्ध किया जा सकता है <math>[x_l,p_m] = i \hbar \delta_{lm}</math> जहाँ {{math|''δ<sub>lm</sub>''}} [[क्रोनकर डेल्टा]] है। | ||
शास्त्रीय भौतिकी में समान संबंध है:<ref>H. Goldstein, C. P. Poole and J. Safko, ''Classical Mechanics, 3rd Edition'', Addison-Wesley 2002, pp. 388 ff.</ref> | शास्त्रीय भौतिकी में समान संबंध है:<ref>H. Goldstein, C. P. Poole and J. Safko, ''Classical Mechanics, 3rd Edition'', Addison-Wesley 2002, pp. 388 ff.</ref> | ||
Line 47: | Line 47: | ||
इन्हें 'L' के अनुरूप माना जा सकता है। वैकल्पिक रूप से, उन्हें चर्चा के रूप में प्राप्त किया जा सकता है। | इन्हें 'L' के अनुरूप माना जा सकता है। वैकल्पिक रूप से, उन्हें चर्चा के रूप में प्राप्त किया जा सकता है। | ||
इन रूपान्तरण संबंधों का अर्थ है कि 'L' में [[झूठ बीजगणित|लाइ बीजगणित]] की गणितीय संरचना है, और {{math|''ε<sub>lmn</sub>''}} इसकी [[संरचना स्थिर|संरचना]] स्थिरांक हैं। इस स्तिथि में, भौतकीय संकेतन में SU(2) या SO(3) लाई बीजगणित है , जैसे बीजगणित तीन आयामों में घूर्णन से जुड़ा हुआ है| J और S के संभंध में भी यही | इन रूपान्तरण संबंधों का अर्थ है कि 'L' में [[झूठ बीजगणित|लाइ बीजगणित]] की गणितीय संरचना है, और {{math|''ε<sub>lmn</sub>''}} इसकी [[संरचना स्थिर|संरचना]] स्थिरांक हैं। इस स्तिथि में, भौतकीय संकेतन में SU(2) या SO(3) लाई बीजगणित है , जैसे बीजगणित तीन आयामों में घूर्णन से जुड़ा हुआ है| J और S के संभंध में भी यही सत्य है। कोणीय गति की घूर्णन के जनरेटर के रूप में चर्चा की जाती है। ये रूपांतरण संबंध माप और अनिश्चितता के लिए प्रासंगिक हैं, जैसा कि नीचे चर्चा की गई है। | ||
अणुओं में, रोविब्रॉनिक (कक्षीय) कोणीय संवेग N, इलेक्ट्रॉन प्रचक्रण कोणीय संवेग S, और नाभिकीय प्रचक्रण कोणीय संवेग I का योग कुल कोणीय संवेग F होता है। इलेक्ट्रॉनिक एकल अवस्थाओं के लिए रोविब्रॉनिक कोणीय संवेग को N के स्थान पर J से दर्शाया जाता है। जैसा कि वैन व्लेक द्वारा समझाया गया है,<ref>{{cite journal | अणुओं में, रोविब्रॉनिक (कक्षीय) कोणीय संवेग N, इलेक्ट्रॉन प्रचक्रण कोणीय संवेग S, और नाभिकीय प्रचक्रण कोणीय संवेग I का योग कुल कोणीय संवेग F होता है। इलेक्ट्रॉनिक एकल अवस्थाओं के लिए रोविब्रॉनिक कोणीय संवेग को N के स्थान पर J से दर्शाया जाता है। जैसा कि वैन व्लेक द्वारा समझाया गया है,<ref>{{cite journal | ||
Line 57: | Line 57: | ||
}}</ref> आणविक रोविब्रॉनिक कोणीय संवेग के घटकों को अणु-स्थिर कुल्हाड़ियों के रूप में संदर्भित किया जाता है, जो ऊपर दिए गए उन लोगों से भिन्न-भिन्न रूपांतरण संबंध हैं जो अंतरिक्ष-स्थिर कुल्हाड़ियों के घटकों के लिए हैं। | }}</ref> आणविक रोविब्रॉनिक कोणीय संवेग के घटकों को अणु-स्थिर कुल्हाड़ियों के रूप में संदर्भित किया जाता है, जो ऊपर दिए गए उन लोगों से भिन्न-भिन्न रूपांतरण संबंध हैं जो अंतरिक्ष-स्थिर कुल्हाड़ियों के घटकों के लिए हैं। | ||
=== रूपान्तरण संबंध जिसमें सदिश परिमाण | === रूपान्तरण संबंध जिसमें सदिश परिमाण सम्मिलित है === | ||
किसी भी सदिश के भाँति, परिमाण के वर्ग को कक्षीय कोणीय गति [[ऑपरेटर (गणित)|संचालक]] के लिए परिभाषित किया जा सकता है, | किसी भी सदिश के भाँति, परिमाण के वर्ग को कक्षीय कोणीय गति [[ऑपरेटर (गणित)|संचालक]] के लिए परिभाषित किया जा सकता है, | ||
<math display="block">L^2 \equiv L_x^2 + L_y^2 + L_z^2.</math> | <math display="block">L^2 \equiv L_x^2 + L_y^2 + L_z^2.</math> | ||
<math>L^2</math> अन्य क्वांटम [[ऑपरेटर (गणित)|संचालक (गणित)]] है। यह '''L''' के घटकों के साथ संचार करता है | <math>L^2</math> अन्य क्वांटम [[ऑपरेटर (गणित)|संचालक (गणित)]] है। यह '''L''' के घटकों के साथ संचार करता है I | ||
<math display="block">\left[L^2, L_x\right] = \left[L^2, L_y\right] = \left[L^2, L_z\right] = 0 .</math> | <math display="block">\left[L^2, L_x\right] = \left[L^2, L_y\right] = \left[L^2, L_z\right] = 0 .</math> | ||
ये संचालक कम्यूट करते हैं यह सिद्ध करने की विधि है कि | ये संचालक कम्यूट करते हैं यह सिद्ध करने की विधि है कि पूर्व अनुभाग में [Lℓ, Lm] रूपान्तरण संबंध से प्रारंभ करें| | ||
{{math proof|title=Proof of [''L''<sup>2</sup>, ''L''<sub>x</sub>] = 0, starting from the [''L''<sub>''ℓ''</sub>, ''L''<sub>''m''</sub>] commutation relations<ref>{{cite book | last=Griffiths | first = David J. | title=Introduction to Quantum Mechanics | url=https://archive.org/details/introductiontoqu00grif_200 | url-access=limited | publisher=[[Prentice Hall]] | year=1995 | page=[https://archive.org/details/introductiontoqu00grif_200/page/n159 146] }}</ref> | {{math proof|title=Proof of [''L''<sup>2</sup>, ''L''<sub>x</sub>] = 0, starting from the [''L''<sub>''ℓ''</sub>, ''L''<sub>''m''</sub>] commutation relations<ref>{{cite book | last=Griffiths | first = David J. | title=Introduction to Quantum Mechanics | url=https://archive.org/details/introductiontoqu00grif_200 | url-access=limited | publisher=[[Prentice Hall]] | year=1995 | page=[https://archive.org/details/introductiontoqu00grif_200/page/n159 146] }}</ref> | ||
Line 76: | Line 76: | ||
}} | }} | ||
गणितीय रूप से, | गणितीय रूप से, SO(3) लाई बीजगणित, '''L''' द्वारा विस्तृत किये गए [[कासिमिर अपरिवर्तनीय]] '''<math>L^2</math>''' है | ||
ऊपर | ऊपर, भौतिक में अनुरूप संबंध है: | ||
<math display="block">\left\{L^2, L_x\right\} = \left\{L^2, L_y\right\} = \left\{L^2, L_z\right\} = 0</math> | <math display="block">\left\{L^2, L_x\right\} = \left\{L^2, L_y\right\} = \left\{L^2, L_z\right\} = 0</math> | ||
जहाँ, <math>L_i</math> शास्त्रीय कोणीय गति संचालक का घटक है और <math>\{ ,\}</math> पोइसन ब्रैकेट है।<ref>Goldstein et al, p. 410</ref> | |||
क्वांटम स्तिथि | |||
क्वांटम स्तिथि में, समान परिवर्तन संबंध अन्य कोणीय गति संचालकों (स्पिन और कुल कोणीय गति) पर प्रस्तावित होते हैं, | |||
<math display="block">\begin{align} | <math display="block">\begin{align} | ||
\left[ S^2, S_i \right] &= 0, \\ | \left[ S^2, S_i \right] &= 0, \\ | ||
\left[ J^2, J_i \right] &= 0. | \left[ J^2, J_i \right] &= 0. | ||
\end{align}</math> | \end{align}</math> | ||
=== अनिश्चितता सिद्धांत === | === अनिश्चितता सिद्धांत === | ||
{{main| | {{main|अनिश्चित सिद्धांत|अनिश्चितता सिद्धांत व्युत्पन्न}} | ||
सामान्यतः, क्वांटम यांत्रिकी में, जब दो अवलोकन संचालक कम्यूट नहीं होते हैं, तो उन्हें [[पूरकता (भौतिकी)]] कहा जाता है। दो पूरक वेधशालाओं को साथ नहीं मापा जा सकता है, इसके अतिरिक्त वे अनिश्चितता सिद्धांत को पूर्ण करते हैं। अवलोकन योग्य जितना अधिक त्रुटिहीन रूप से जाना जाता है, उतना ही कम त्रुटिहीन रूप से दूसरे को जाना जा सकता है। जिस प्रकार स्थिति और संवेग के संबंध में अनिश्चितता सिद्धांत है, उसी प्रकार कोणीय संवेग के लिए अनिश्चितता सिद्धांत हैं। | |||
रॉबर्टसन-श्रोडिंगर संबंध निम्नलिखित अनिश्चितता सिद्धांत देता है: | |||
<math display="block">\sigma_{L_x} \sigma_{L_y} \geq \frac{\hbar}{2} \left| \langle L_z \rangle \right|.</math> | <math display="block">\sigma_{L_x} \sigma_{L_y} \geq \frac{\hbar}{2} \left| \langle L_z \rangle \right|.</math> | ||
जहाँ <math>\sigma_X</math>, X के मापा मूल्यों में [[मानक विचलन]] है और X के एक्सपेक्टेशन वैल्यू (क्वांटम मैकेनिक्स) को <math>\langle X \rangle</math> दर्शाता है। यह असमानता तब भी उचित होती है जब x, y, z को पुनर्व्यवस्थित किया जाता है, या यदि L को J या S से परिवर्तित कर दिया जाता है। | |||
इसलिए, कोणीय संवेग के दो लंबकोणीय घटक (उदाहरण के लिए L<sub>x</sub> और | इसलिए, कोणीय संवेग के दो लंबकोणीय घटक (उदाहरण के लिए L<sub>x</sub> और ''L''<sub>y</sub>) पूरक हैं और विशेष स्तिथियों को छोड़कर, साथ ज्ञात या मापा नहीं जा सकता है जैसे कि <math>L_x = L_y = L_z = 0</math> | ||
चूँकि, | चूँकि, ''L''<sup>2</sup> और L का कोई घटक को साथ मापना या निर्दिष्ट करना संभव है, उदाहरण के लिए, ''L''<sup>2</sup> और ''L''<sub>z</sub> | यह अधिकांशतः उपयोगी होता है, और मानों को [[अज़ीमुथल क्वांटम संख्या]] (एल) और [[चुंबकीय क्वांटम संख्या]] (एम) द्वारा चित्रित किया जाता है। इस स्तिथि में प्रणाली की क्वांटम स्थिति संचालकों ''L''<sup>2</sup> और ''L''<sub>z</sub> की साथ आइगेन स्थिति है, किन्तु L<sub>x</sub> या ''L''<sub>y</sub> की नहीं है| आइगेन मान, l और m से संबंधित हैं, जैसा कि नीचे दी गई तालिका में प्रदर्शित किया गया है। | ||
== परिमाणीकरण == | == परिमाणीकरण == | ||
{{see also| | {{see also|अज़ीमुथल क्वांटम संख्या|चुंबकीय क्वांटम संख्या}} | ||
क्वांटम यांत्रिकी में, कोणीय गति को परिमाणित किया जाता है - अर्थात, यह लगातार भिन्न नहीं हो सकता है, किन्तु | क्वांटम यांत्रिकी में, कोणीय गति को परिमाणित किया जाता है - अर्थात, यह लगातार भिन्न नहीं हो सकता है, किन्तु मात्र कुछ अनुमत मानों के मध्य क्वांटम छलांग में होता है। किसी भी प्रणाली के लिए, माप परिणामों पर निम्नलिखित प्रतिबंध प्रस्तावित होते हैं, जहाँ <math>\hbar</math> कम प्लैंक स्थिरांक है|<ref name='CondShorCh3'>{{cite book |last1=Condon |first1=E. U. |author-link1= Edward Condon |last2=Shortley |first2=G. H. |title = परमाणु स्पेक्ट्रा का क्वांटम सिद्धांत|url=https://books.google.com/books?id=hPyD-Nc_YmgC |publisher=Cambridge University Press |year=1935 |chapter=Chapter III: Angular Momentum |chapter-url= https://books.google.com/books?id=hPyD-Nc_YmgC&pg=PA45 |isbn=9780521092098}}</ref> | ||
{| class="wikitable" | {| class="wikitable" | ||
|- | |- | ||
! | ! यदि आप मापते हैं... | ||
! ... | ! ...परिणाम हो सकता है... | ||
! | ! टिप्पणियाँ | ||
|- | |- | ||
| <math>L^2</math> | | <math>L^2</math> | ||
| <math>\hbar^2 \ell (\ell + 1)</math>, | | <math>\hbar^2 \ell (\ell + 1)</math>, | ||
| <math>\ell</math> | जहाँ <math>\ell = 0, 1, 2, \ldots</math> | ||
| <math>\ell</math><nowiki> को कभी-कभी दिगंशीय क्वांटम संख्या या कक्षीय क्वांटम संख्या कहा जाता है|</nowiki> | |||
|- | |- | ||
| <math>L_z</math> | | <math>L_z</math> | ||
| <math>\hbar m_\ell</math>, | | <math>\hbar m_\ell</math>, | ||
जहाँ <math>m_\ell = -\ell, (-\ell + 1), \ldots, (\ell - 1), \ell</math> | |||
| <math>m_\ell</math> को कभी-कभी चुंबकीय क्वांटम संख्या कहा जाता है। | |||
L के किसी भी घटक के लिए यही परिमाणीकरण नियम प्रस्तावित होता है, जैसे, <math> L_x \,or\, L_y</math> | |||
इस नियम को कभी-कभी स्थानिक परिमाणीकरण कहा जाता है|<ref>''Introduction to quantum mechanics: with applications to chemistry'', by Linus Pauling, Edgar Bright Wilson, page 45, [https://books.google.com/books?id=D48aGQTkfLgC&pg=PA45&dq=spatial+quantization google books link]</ref> | |||
|- | |- | ||
| <math>S^2</math> | | <math>S^2</math> | ||
| <math>\hbar^2 s(s + 1)</math>, | | <math>\hbar^2 s(s + 1)</math>, | ||
| | जहाँ <math>s = 0, \tfrac{1}{2}, 1, \tfrac{3}{2}, \ldots</math> | ||
| s को स्पिन क्वांटम संख्या या मात्र स्पिन कहा जाता है। | |||
उदाहरण के लिए, स्पिन 1/2 कण है जहां s = 1/2 है। | |||
|- | |- | ||
| <math>S_z</math> | | <math>S_z</math> | ||
| <math>\hbar m_s</math>, | | <math>\hbar m_s</math>, | ||
जहाँ <math>m_s = -s, (-s + 1), \ldots, (s - 1), s</math> | |||
| <math>m_s</math>को कभी-कभी स्पिन प्रक्षेपण क्वांटम संख्या कहा जाता है। | |||
S के किसी भी घटक के लिए यही परिमाणीकरण नियम प्रस्तावित होता है, जैसे , <math> S_x \,or\, S_y</math> | |||
|- | |- | ||
| <math>J^2</math> | | <math>J^2</math> | ||
| <math>\hbar^2 j(j + 1)</math>, | | <math>\hbar^2 j(j + 1)</math>, | ||
| | जहाँ <math>j = 0, \tfrac{1}{2}, 1, \tfrac{3}{2}, \ldots</math> | ||
| j को कभी-कभी कुल कोणीय संवेग क्वांटम संख्या कहा जाता है। | |||
|- | |- | ||
| <math>J_z</math> | | <math>J_z</math> | ||
| <math>\hbar m_j</math>, | | <math>\hbar m_j</math>, | ||
जहाँ <math>m_j = -j, (-j + 1), \ldots, (j - 1), j</math> | |||
| <math>m_j</math> को कभी-कभी कुल कोणीय संवेग प्रक्षेपण क्वांटम संख्या कहा जाता है। | |||
J के किसी भी घटक के लिए यही परिमाणीकरण नियम प्रस्तावित होता है, जैसे, <math> J_x \,or\, J_y</math> | |||
|} | |} | ||
[[File:Circular Standing Wave.gif|thumb|right|एक वृत्ताकार डोरी पर खड़ी इस तरंग में, वृत्त ठीक 8 तरंगदैर्घ्यों में | [[File:Circular Standing Wave.gif|thumb|right|एक वृत्ताकार डोरी पर खड़ी इस तरंग में, वृत्त ठीक 8 तरंगदैर्घ्यों में विभक्त हो जाता है। इस प्रकार की स्थायी तरंग में वृत्त के चारों ओर 0, 1, 2, या [[तरंग दैर्ध्य]] की कोई भी पूर्णांक संख्या हो सकती है, किन्तु इसमें 8.3 जैसी तरंग दैर्ध्य की गैर-पूर्णांक संख्या नहीं हो सकती है। क्वांटम यांत्रिकी में, कोणीय संवेग को इसी कारण से परिमाणित किया जाता है।]] | ||
=== सीढ़ी संचालकों का उपयोग करके व्युत्पत्ति === | === सीढ़ी संचालकों का उपयोग करके व्युत्पत्ति === | ||
{{main| | {{main|सीढ़ी संचालिका#कोणीय संवेग}} | ||
उपरोक्त परिमाणीकरण नियमों को प्राप्त करने का | उपरोक्त परिमाणीकरण नियमों को प्राप्त करने का सामान्य तरीका [[सीढ़ी संचालक]]ों की विधि है।<ref name=Griffithsladder>{{cite book | author=Griffiths, David J. | title=क्वांटम यांत्रिकी का परिचय| url=https://archive.org/details/introductiontoqu00grif_200 | url-access=limited | publisher=[[Prentice Hall]] | year=1995 | pages=[https://archive.org/details/introductiontoqu00grif_200/page/n160 147]–149}}</ref> कुल कोणीय संवेग के लिए लैडर संचालक <math>\mathbf{J} = \left(J_x, J_y, J_z\right)</math> के रूप में परिभाषित किया गया है, | ||
<math display="block">\begin{align} | <math display="block">\begin{align} | ||
J_+ &\equiv J_x + i J_y, \\ | J_+ &\equiv J_x + i J_y, \\ | ||
J_- &\equiv J_x - i J_y | J_- &\equiv J_x - i J_y | ||
\end{align}</math> | \end{align}</math> | ||
कल्पना | कल्पना कीजिये, <math>J^2</math> और <math>J_z</math> का युगपत आइगेनस्टेट <math>|\psi\rangle</math> (अर्थात, <math>J^2</math> के लिए निश्चित मान और <math>J_z</math> के लिए निश्चित मूल्य) है| <math>\mathbf{J}</math> के घटकों के लिए रूपान्तरण संबंधों का उपयोग करके सिद्ध किया जा सकता है कि प्रत्येक स्तिथि <math>J_+ |\psi\rangle</math> और <math>J_-|\psi\rangle</math> या तो शून्य है या <math>J^2</math> और <math>J_z</math> आइगेनस्तिथि है , <math>J^2</math> के लिए <math>|\psi\rangle</math> के समान मान के साथ किन्तु <math>J_z</math> के लिए मूल्यों के साथ <math>\hbar</math> द्वारा बढ़ाया या घटाया जाता है। सीढ़ी संचालक का उपयोग करने पर परिणाम शून्य होगा अन्यथा <math>J_z</math> के लिए मूल्य के साथ स्तिथि में परिणाम देगा जो स्वीकार्य सीमा के अंतर्गत नहीं है। इस प्रकार सीढ़ी संचालक का उपयोग करके, संभावित मान और क्वांटम संख्याएँ <math>J^2</math> और <math>J_z</math> प्राप्त की जा सकती है। | ||
{{math proof | {{math proof | ||
| title = Derivation of the possible values and quantum numbers for <math> J_z </math> and <math> J^2 </math>.<ref name='CondShorPP46–47'>{{harvnb|Condon|Shortley|1935|pp=[https://books.google.com/books?id=hPyD-Nc_YmgC&pg=PA46 46–47]}}</ref> | | title = Derivation of the possible values and quantum numbers for <math> J_z </math> and <math> J^2 </math>.<ref name='CondShorPP46–47'>{{harvnb|Condon|Shortley|1935|pp=[https://books.google.com/books?id=hPyD-Nc_YmgC&pg=PA46 46–47]}}</ref> | ||
| proof = | | proof = | ||
Let <math>\psi ({J^2}' J_z' )</math> | Let <math>\psi ({J^2}' J_z' )</math> एक अवस्था eigenvalue हो के साथ प्रणाली के लिए कार्य करें <math>{J^2}'</math> for <math>J^2 </math> and eigenvalue <math> J_z' </math> for <math>J_z </math>.{{NoteTag|In the derivation of Condon and Shortley that the current derivation is based on, a set of observables <math>\Gamma</math> along with <math>J^2</math> and <math>J_z</math> आवागमन संबंधी अवलोकनों का एक पूरा सेट तैयार करें। इसके अतिरिक्त उन्हें इसकी आवश्यकता भी थी <math>\Gamma</math> commutes with <math>J_x</math> and <math>J_y</math>.<ref name='CondShorPP46–47'/> समुच्चय को सम्मिलित न करके वर्तमान व्युत्पत्ति को सरल बनाया गया है<math>\Gamma</math> या इसके eigenvalues का संगत सेट<math>\gamma</math>.}} | ||
From <math> J^2 = J_x^2 +J_y^2 + J_z^2 </math> is obtained, | From <math> J^2 = J_x^2 +J_y^2 + J_z^2 </math> is obtained, | ||
<math display="block"> J_x^2 +J_y^2 = J^2 - J_z^2 .</math> | <math display="block"> J_x^2 +J_y^2 = J^2 - J_z^2 .</math> | ||
उपरोक्त समीकरण के दोनों पक्षों को लागू करने पर<math>\psi ({J^2}' J_z' )</math>, | |||
<math display="block"> (J_x^2 +J_y^2) \;\psi ({J^2}' J_z' ) = ({J^2}' - J_z'^2) \;\psi ({J^2}' J_z' ).</math> | <math display="block"> (J_x^2 +J_y^2) \;\psi ({J^2}' J_z' ) = ({J^2}' - J_z'^2) \;\psi ({J^2}' J_z' ).</math> | ||
Since <math> J_x </math> and <math> J_y </math> are real observables, <math> {J^2}'-J_z'^2 </math> is not negative and <math display="inline">|J_z'| \le \sqrt{ {J^2}'} </math>. Thus <math> J_z' </math> | Since <math> J_x </math> and <math> J_y </math> are real observables, <math> {J^2}'-J_z'^2 </math> is not negative and <math display="inline">|J_z'| \le \sqrt{ {J^2}'} </math>. Thus <math> J_z' </math> एक ऊपरी और निचली सीमा होती है। | ||
के घटकों के लिए दो रूपान्तरण संबंध <math> \mathbf{J} </math> are, | |||
<math display="block">[J_y, J_z] = i\hbar J_x, \;\; [J_z, J_x] = i\hbar J_y.</math> | <math display="block">[J_y, J_z] = i\hbar J_x, \;\; [J_z, J_x] = i\hbar J_y.</math> | ||
उन्हें दो समीकरण प्राप्त करने के लिए जोड़ा जा सकता है, जिन्हें एक साथ उपयोग करके लिखा जाता है <math> \pm </math> निम्नलिखित में संकेत, | |||
<math display="block"> J_z(J_x\pm iJ_y) = (J_x\pm iJ_y)(J_z\pm \hbar) ,</math> | <math display="block"> J_z(J_x\pm iJ_y) = (J_x\pm iJ_y)(J_z\pm \hbar) ,</math> | ||
जहां समीकरणों में से एक का उपयोग किया जाता है <math> + </math> संकेत और अन्य का उपयोग करता है <math> - </math> signs. | |||
उपरोक्त के दोनों पक्षों को लागू करना<math>\psi ({J^2}' J_z' )</math>, | |||
<math display="block">\begin{align} | <math display="block">\begin{align} | ||
J_z(J_x\pm iJ_y) \;\psi ({J^2}' J_{z}' ) | J_z(J_x\pm iJ_y) \;\psi ({J^2}' J_{z}' ) | ||
Line 181: | Line 186: | ||
& = (J_z'\pm \hbar)(J_x\pm iJ_y) \;\psi ({J^2}' J_z' )\;. \\ | & = (J_z'\pm \hbar)(J_x\pm iJ_y) \;\psi ({J^2}' J_z' )\;. \\ | ||
\end{align}</math> | \end{align}</math> | ||
उपरोक्त यह दर्शाता है <math> (J_x\pm iJ_y) \;\psi ({J^2}' J_z') </math> के दो eigenfunctions हैं <math> J_z </math> संबंधित eigenvalues के साथ<math> {J_z}'\pm \hbar </math> , जब तक कि कोई एक फ़ंक्शन शून्य न हो, उस स्थिति में यह एक आइजनफ़ंक्शन नहीं है। उन कार्यों के लिए जो शून्य नहीं हैं, | |||
<math display="block"> \psi ({J^2}' J_z'\pm\hbar ) = (J_x\pm iJ_y) \;\psi ({J^2}' J_z' ) .</math> | <math display="block"> \psi ({J^2}' J_z'\pm\hbar ) = (J_x\pm iJ_y) \;\psi ({J^2}' J_z' ) .</math> | ||
आगे के eigenfunctions <math> J_z </math> and संबंधित eigenvalues को बार-बार लागू करके पाया जा सकता है <math> J_x\pm iJ_y </math> जब तक परिणामी eigenvalue का परिमाण है <math> \le \sqrt{{J^2}'} </math>. | |||
के eigenvalues के बाद से <math> J_z </math> बंधे हुए हैं, चलो <math> J_z^0 </math> सबसे कम eigenvalue हो और <math> J_z^1 </math> सर्वोच्च हो. तब | |||
<math display="block"> (J_x-iJ_y) \;\psi ({J^2}' J_z^0 ) = 0 </math> and | <math display="block"> (J_x-iJ_y) \;\psi ({J^2}' J_z^0 ) = 0 </math> and | ||
<math display="block"> (J_x+iJ_y) \;\psi ({J^2}' J_z^1 ) = 0 ,</math> | <math display="block"> (J_x+iJ_y) \;\psi ({J^2}' J_z^1 ) = 0 ,</math> | ||
चूँकि ऐसे कोई राज्य नहीं हैं जहाँ का eigenvalue हो<math> J_z </math> is <math> <J_z^0 </math> or <math> >J_z^1 </math>.लगाने से <math> (J_x+iJ_y) </math> पहले समीकरण के लिए, <math> (J_x-iJ_y) </math> to दूसरा, और प्रयोग <math> J_x^2+J_y^2 = J^2-J_z^2 </math>, ऐसा दिखाया जा सकता है | |||
<math display="block"> {J^2}'-(J_z^0)^2+\hbar J_z^0 = 0 </math> and | <math display="block"> {J^2}'-(J_z^0)^2+\hbar J_z^0 = 0 </math> and | ||
<math display="block"> {J^2}'-(J_z^1)^2-\hbar J_z^1 = 0 .</math> | <math display="block"> {J^2}'-(J_z^1)^2-\hbar J_z^1 = 0 .</math> | ||
पहले समीकरण को दूसरे से घटाकर पुनर्व्यवस्थित करने पर, | |||
<math display="block"> (J_z^1+J_z^0)(J_z^0-J_z^1-\hbar) = 0 .</math> | <math display="block"> (J_z^1+J_z^0)(J_z^0-J_z^1-\hbar) = 0 .</math> | ||
Since <math> J_z^1 \ge J_z^0 </math>, | Since <math> J_z^1 \ge J_z^0 </math>, दूसरा कारक नकारात्मक है. तब पहला कारक शून्य होना चाहिए और इस प्रकार <math> J_z^0 = -J_z^1 </math>. | ||
के अंतर<math> J_z^1-J_z^0 </math> के क्रमिक अनुप्रयोग से आता है <math> J_x-iJ_y </math> or <math> J_x+iJ_y </math> जो कि eigenvalue को कम या बढ़ा देता है <math> J_z </math> by <math> \hbar </math> so that, | |||
<math display="block"> J_z^1-J_z^0 = 0, \hbar, 2\hbar, \dots </math> | <math display="block"> J_z^1-J_z^0 = 0, \hbar, 2\hbar, \dots </math> | ||
Let | Let | ||
Line 200: | Line 205: | ||
Then using <math> J_z^0 = -J_z^1 </math> and the above, | Then using <math> J_z^0 = -J_z^1 </math> and the above, | ||
<math display="block"> J_z^0 = -j\hbar </math> and <math display="block"> J_z^1 = j\hbar ,</math> | <math display="block"> J_z^0 = -j\hbar </math> and <math display="block"> J_z^1 = j\hbar ,</math> | ||
और के स्वीकार्य eigenvalues <math> J_z </math> are | |||
<math display="block"> J_z' = -j\hbar, -j\hbar+\hbar, -j\hbar+2\hbar, \dots, j\hbar .</math> | <math display="block"> J_z' = -j\hbar, -j\hbar+\hbar, -j\hbar+2\hbar, \dots, j\hbar .</math> | ||
जताते <math> J_z' </math> क्वांटम संख्या के संदर्भ में <math> m_j \;</math>, और प्रतिस्थापित करना <math> J_z^0=-j\hbar </math> into <math> {J^2}'-(J_z^0)^2+\hbar J_z^0=0 </math> उपर से, | |||
{{equation box 1 | {{equation box 1 | ||
|align=left | |align=left | ||
Line 215: | Line 220: | ||
}} | }} | ||
<math>\mathbf{S}</math> और <math>\mathbf{L}</math> में <math>\mathbf{J}</math> के समान रूपांतरण संबंध हैं, उनके लिए समान सीढ़ी विश्लेषण प्रस्तावित किया जा सकता है, इसके अतिरिक्त <math>\mathbf{L}</math> क्वांटम संख्याओं पर प्रतिबंध है कि वे पूर्णांक होने चाहिए। | |||
{{math proof | {{math proof | ||
| title = Traditional derivation of the restriction to integer quantum numbers for <math> L_z </math> and <math> L^2 </math>.<ref name='CondShorPP50–51'>{{harvnb|Condon|Shortley|1935|pages=[https://books.google.com/books?id=hPyD-Nc_YmgC&pg=PA50 50–51]}}</ref> | | title = Traditional derivation of the restriction to integer quantum numbers for <math> L_z </math> and <math> L^2 </math>.<ref name='CondShorPP50–51'>{{harvnb|Condon|Shortley|1935|pages=[https://books.google.com/books?id=hPyD-Nc_YmgC&pg=PA50 50–51]}}</ref> | ||
| proof = | | proof = | ||
श्रोएडिंगर प्रतिनिधित्व में, कक्षीय कोणीय गति ऑपरेटर के z घटक को व्यक्त किया जा सकता है [[गोलाकार निर्देशांक]] as,<ref name='CondShorCh3P50Eq1'>{{harvnb|Condon|Shortley|1935|p=50, Eq 1}}</ref> | |||
<math display="block">L_z = -i\hbar \frac{\partial }{\partial \phi}.</math> | <math display="block">L_z = -i\hbar \frac{\partial }{\partial \phi}.</math> | ||
For <math>L_z</math> and [[eigenfunction]] <math>\psi</math> with eigenvalue <math>L_z'</math>, | For <math>L_z</math> and [[eigenfunction]] <math>\psi</math> with eigenvalue <math>L_z'</math>, | ||
Line 235: | Line 240: | ||
From the above and the relation <math>m_\ell = -\ell, (-\ell + 1), \ldots, (\ell - 1), \ell\ \ </math>, it follows that <math>\ell</math> is also an integer. This shows that the quantum numbers <math>m_\ell</math> and <math>\ell</math> for the orbital angular momentum <math>\mathbf{L}</math> are restricted to integers, unlike the quantum numbers for the total angular momentum <math>\mathbf{J}</math> and spin <math>\mathbf{S}</math>, which can have half-integer values.<ref name='CondShorCh3P51'>{{harvnb|Condon|Shortley|1935|p=51}}</ref> | From the above and the relation <math>m_\ell = -\ell, (-\ell + 1), \ldots, (\ell - 1), \ell\ \ </math>, it follows that <math>\ell</math> is also an integer. This shows that the quantum numbers <math>m_\ell</math> and <math>\ell</math> for the orbital angular momentum <math>\mathbf{L}</math> are restricted to integers, unlike the quantum numbers for the total angular momentum <math>\mathbf{J}</math> and spin <math>\mathbf{S}</math>, which can have half-integer values.<ref name='CondShorCh3P51'>{{harvnb|Condon|Shortley|1935|p=51}}</ref> | ||
एक वैकल्पिक व्युत्पत्ति जो एकल-मूल्य तरंग कार्यों को नहीं मानती है [[वैकल्पिक-व्युत्पत्ति|अनुसरण करती है]] और लाई समूहों का उपयोग करने वाला एक अन्य तर्क है [[#SU(2), SO(3), and 360° rotations|below]]. | |||
}} | }} | ||
{{math proof | {{math proof | ||
Line 346: | Line 351: | ||
=== दृश्य व्याख्या === | === दृश्य व्याख्या === | ||
[[File:Vector model of orbital angular momentum.svg|250px|right|thumb|कक्षीय कोणीय गति के सदिश मॉडल का चित्रण।]] | [[File:Vector model of orbital angular momentum.svg|250px|right|thumb|कक्षीय कोणीय गति के सदिश मॉडल का चित्रण।]] | ||
{{main| | {{main|परमाणु का वेक्टर मॉडल}} | ||
चूँकि कोणीय संवेग क्वांटम संचालक होते हैं, उन्हें शास्त्रीय यांत्रिकी की | चूँकि कोणीय संवेग क्वांटम संचालक होते हैं, उन्हें शास्त्रीय यांत्रिकी की भाँति वैक्टर के रूप में नहीं खींचा जा सकता है। उन्हें इस प्रकार से ह्यूरिस्टिक रूप में चित्रित करना साधारण है। दाईं ओर दर्शाया गया क्वांटम संख्या की स्तिथियों का समूह है <math>\ell = 2</math>, और <math>m_\ell = -2, -1, 0, 1, 2</math> नीचे से ऊपर पाँच शंकुओं के लिए है। <math>|L| = \sqrt{L^2} = \hbar \sqrt{6}</math>, वैक्टर सभी लंबाई <math>\hbar \sqrt{6}</math> से प्रदर्शित किये जाते हैं, अंगूठियां इस तथ्य का प्रतिनिधित्व करती हैं कि <math>L_z</math> निश्चित रूप से जाना जाता है, किन्तु <math>L_x</math> और <math>L_y</math> अज्ञात हैं| इसलिए उपयुक्त लंबाई और z-घटक के साथ प्रत्येक क्लासिकल सदिश को शंकु बनाते हुए खींचा जाता है। <math> \ell</math> और <math>m_\ell</math> द्वारा विशेषता क्वांटम स्तिथि में प्रणाली के दिए गए पहनावा के लिए कोणीय गति का अपेक्षित मूल्य इस शंकु पर कहीं हो सकता है, जबकि इसे प्रणाली के लिए परिभाषित नहीं किया जा सकता है (के घटकों के पश्यात से <math>L</math> आपस में साथ यात्रा न करें)। | ||
=== मैक्रोस्कोपिक | === मैक्रोस्कोपिक प्रणाली में परिमाणीकरण === | ||
मैक्रोस्कोपिक | मैक्रोस्कोपिक प्रणाली के लिए परिमाणीकरण नियमों को व्यापक रूप से उचित माना जाता है, जैसे कताई टायर की कोणीय गति L है। चूँकि उनका कोई अवलोकनीय प्रभाव नहीं है इसलिए इसका परीक्षण नहीं किया गया है। उदाहरण के लिए, यदि <math>L_z/\hbar</math> साधारणतः 100000000 है, इससे कोई प्रभाव नहीं पड़ता है कि क्या त्रुटिहीन मान 100000000 या 100000001 जैसा पूर्णांक है, या 100000000.2 जैसा गैर-पूर्णांक है—असतत चरण वर्तमान में मापने के लिए अधिक छोटे हैं। | ||
==घूर्णन के जनरेटर के रूप में कोणीय गति == | ==घूर्णन के जनरेटर के रूप में कोणीय गति == | ||
{{see also| | {{see also|कुल कोणीय गति क्वांटम संख्या}} | ||
कोणीय गति की | कोणीय गति की सामान्य और वास्तविक परिभाषा घूर्णन के जनरेटर के रूप में है।<ref name=littlejohn>{{cite web|url=http://bohr.physics.berkeley.edu/classes/221/1011/notes/spinrot.pdf|title=क्वांटम यांत्रिकी में घूर्णन पर व्याख्यान नोट्स|first=Robert|last=Littlejohn|author-link1=Robert Grayson Littlejohn|access-date=13 Jan 2012|work=Physics 221B Spring 2011|year=2011|archive-date=26 August 2014|archive-url=https://web.archive.org/web/20140826003155/http://bohr.physics.berkeley.edu/classes/221/1011/notes/spinrot.pdf|url-status=dead}}</ref> विशेष रूप से, माना <math>R(\hat{n},\phi)</math> [[रोटेशन ऑपरेटर (क्वांटम यांत्रिकी)|रोटेशन संचालक (क्वांटम यांत्रिकी)]] है, जो किसी क्वांटम स्तिथि को <math>\hat{n}</math> अक्ष पर कोण <math>\phi</math> से घुमाता है, जैसा <math>\phi\rightarrow 0</math>, परिचालक <math>R(\hat{n},\phi)</math> [[पहचान ऑपरेटर|पहचान संचालक]] से संपर्क करता है, क्योंकि 0° का रोटेशन सभी स्तिथियों को अपने आप में मैप करता है। <math>\hat{n}</math> अक्ष पर कोणीय गति संचालक <math>J_{\hat{n}}</math> को परिभाषित किया जाता है:<ref name=littlejohn/> | ||
<math display="block">J_\hat{n} \equiv i\hbar \lim_{\phi \rightarrow 0} \frac{R\left(\hat{n}, \phi\right) - 1}{\phi} = \left. i\hbar \frac{\partial R\left(\hat{n}, \phi\right)}{\partial\phi} \right|_{\phi = 0}</math> | <math display="block">J_\hat{n} \equiv i\hbar \lim_{\phi \rightarrow 0} \frac{R\left(\hat{n}, \phi\right) - 1}{\phi} = \left. i\hbar \frac{\partial R\left(\hat{n}, \phi\right)}{\partial\phi} \right|_{\phi = 0}</math> | ||
जहां 1 पहचान संचालक है। यह भी ध्यान दें कि R एक योज्य आकारिकी है: <math>R\left(\hat{n}, \phi_1 + \phi_2\right) = R\left(\hat{n}, \phi_1\right)R\left(\hat{n}, \phi_2\right)</math> ; एक परिणाम के रूप में<ref name=littlejohn/> | जहां 1 पहचान संचालक है। यह भी ध्यान दें कि R एक योज्य आकारिकी है: <math>R\left(\hat{n}, \phi_1 + \phi_2\right) = R\left(\hat{n}, \phi_1\right)R\left(\hat{n}, \phi_2\right)</math> ; एक परिणाम के रूप में<ref name=littlejohn/> | ||
<math display="block">R\left(\hat{n}, \phi\right) = \exp\left(-\frac{i \phi J_\hat{n}}{\hbar}\right)</math> | <math display="block">R\left(\hat{n}, \phi\right) = \exp\left(-\frac{i \phi J_\hat{n}}{\hbar}\right)</math> | ||
जहां ऍक्स्प [[ मैट्रिक्स घातीय ]] है। | जहां ऍक्स्प [[ मैट्रिक्स घातीय |मैट्रिक्स घातीय]] है। | ||
सरल शब्दों में, | सरल शब्दों में, कुल कोणीय गति संचालक यह दर्शाता है कि जब क्वांटम प्रणाली को घुमाया जाता है तो उसे कैसे परिवर्तित किया जा सकता है। कोणीय गति संचालकों और रोटेशन संचालकों के मध्य संबंध वही है जो गणित में लाई बीजगणित और लाई समूहों के मध्य संबंध है, जैसा कि नीचे चर्चा की गई है। | ||
[[File:RotationOperators.svg|thumb|300px|विभिन्न प्रकार के रोटेशन संचालक (क्वांटम यांत्रिकी)। शीर्ष बॉक्स दो कणों को दिखाता है, जिसमें स्पिन | [[File:RotationOperators.svg|thumb|300px|विभिन्न प्रकार के रोटेशन संचालक (क्वांटम यांत्रिकी)। शीर्ष बॉक्स दो कणों को दिखाता है, जिसमें स्पिन स्तिथियों को तीरों द्वारा योजनाबद्ध रूप से दर्शाया गया है। | ||
{{ordered list | {{ordered list | ||
| list-style-type = | | list-style-type = ऊपरी अल्फा | ||
| | |परिचालक ''R'', '''J'''' से संबंधित, पूरे सिस्टम को घुमाता है। | ||
| | |परिचालक ''R''<sub>spatial</sub>, संदर्भ के '''L''', कणों की आंतरिक स्पिन अवस्थाओं को बदले बिना उनकी स्थिति को घुमाता है। | ||
| | | परिचालक ''R''<sub>internal</sub>, related to '''S''', कणों की स्थिति बदले बिना उनकी आंतरिक स्पिन अवस्था को घुमाता है। | ||
}}]]जैसे जे रोटेशन संचालक (क्वांटम यांत्रिकी) के लिए जनरेटर है, एल और एस संशोधित आंशिक रोटेशन संचालकों के लिए जनरेटर हैं। परिचालक | }}]]जैसे जे रोटेशन संचालक (क्वांटम यांत्रिकी) के लिए जनरेटर है, एल और एस संशोधित आंशिक रोटेशन संचालकों के लिए जनरेटर हैं। परिचालक | ||
<math display="block">R_\text{spatial}\left(\hat{n}, \phi\right) = \exp\left(-\frac{i \phi L_\hat{n}}{\hbar}\right),</math> | <math display="block">R_\text{spatial}\left(\hat{n}, \phi\right) = \exp\left(-\frac{i \phi L_\hat{n}}{\hbar}\right),</math> | ||
किसी भी कण की आंतरिक (स्पिन) स्थिति को घुमाए बिना, सभी कणों और क्षेत्रों की स्थिति (अंतरिक्ष में) को घुमाता है। इसी प्रकार | किसी भी कण की आंतरिक (स्पिन) स्थिति को घुमाए बिना, सभी कणों और क्षेत्रों की स्थिति (अंतरिक्ष में) को घुमाता है। इसी प्रकार संचालक | ||
<math display="block">R_\text{internal}\left(\hat{n}, \phi\right) = \exp\left(-\frac{i \phi S_\hat{n}}{\hbar}\right),</math> | <math display="block">R_\text{internal}\left(\hat{n}, \phi\right) = \exp\left(-\frac{i \phi S_\hat{n}}{\hbar}\right),</math> | ||
अंतरिक्ष में किसी भी कण या क्षेत्र को स्थानांतरित किए बिना, सभी कणों की आंतरिक (स्पिन) स्थिति को घुमाता है। | अंतरिक्ष में किसी भी कण या क्षेत्र को स्थानांतरित किए बिना, सभी कणों की आंतरिक (स्पिन) स्थिति को घुमाता है। J = L + S संबंध, | ||
<math display="block">R\left(\hat{n}, \phi\right) = R_\text{internal}\left(\hat{n}, \phi\right) R_\text{spatial}\left(\hat{n}, \phi\right)</math> | <math display="block">R\left(\hat{n}, \phi\right) = R_\text{internal}\left(\hat{n}, \phi\right) R_\text{spatial}\left(\hat{n}, \phi\right)</math>से आता है | ||
अर्थात, यदि पदों को घुमाया जाता है और तत्पश्च्यात आंतरिक स्तिथियों को घुमाया जाता है, तो कुल मिलाकर पूरी प्रणाली घूम गयी है। | |||
=== | ===SU(2), SO(3), और 360 डिग्री रोटेशन === | ||
{{main|Spin (physics)}} | {{main|Spin (physics)}} | ||
चूँकि | चूँकि <math>R\left(\hat{n}, 360^\circ\right) = 1</math> (360° का घूर्णन पहचान संचालक है), यह क्वांटम यांत्रिकी में नहीं माना जाता है, और यह अधिकांशतः सत्य नहीं होता है| जब कुल कोणीय गति क्वांटम संख्या, आधा पूर्णांक है- (1/2, 3/2) , वगैरह।), <math>R\left(\hat{n}, 360^\circ\right) = -1</math>, और जब यह पूर्णांक है- <math>R\left(\hat{n}, 360^\circ\right) = +1</math><ref name=littlejohn/> गणितीय रूप से, ब्रह्मांड में घूर्णन की संरचना [[SO(3)]] नहीं है, शास्त्रीय यांत्रिकी में त्रि-आयामी घुमावों का लाइ समूह है। इसके अतिरिक्त, यह [[SU(2)]] है, जो छोटे घुमावों के लिए SO(3) के समान है, किन्तु जहां 360° घुमाव को गणितीय रूप से 0° के घूर्णन से भिन्न किया जाता है। (चूँकि, 720° का घूर्णन 0° के घूर्णन के समान है।)<ref name=littlejohn/> | ||
वहीं दूसरी ओर, <math>R_\text{spatial}\left(\hat{n}, 360^\circ\right) = +1</math> सभी परिस्थितियों में, | वहीं दूसरी ओर, <math>R_\text{spatial}\left(\hat{n}, 360^\circ\right) = +1</math> सभी परिस्थितियों में, स्थानिक विन्यास का 360° घूर्णन न करने के समान है। (यह कण की आंतरिक (स्पिन) स्थिति के 360° घूर्णन से भिन्न है, जो घूर्णन न होने के समान हो भी सकता है और नहीं भी।) दूसरे शब्दों में, <math>R_\text{spatial}</math> संचालक SO(3) की संरचना हैं, जबकि <math>R</math> और <math>R_\text{internal}</math> संचालक SU(2) की संरचना हैं। | ||
समीकरण से <math>+1 = R_\text{spatial}\left(\hat{z}, 360^\circ\right) = \exp\left(-2\pi i L_z / \hbar\right)</math>, | समीकरण से <math>+1 = R_\text{spatial}\left(\hat{z}, 360^\circ\right) = \exp\left(-2\pi i L_z / \hbar\right)</math>, आइगेनस्टेट चुनता है <math>L_z |\psi\rangle = m\hbar |\psi\rangle</math> और बनाता है | ||
<math display="block">e^{-2\pi i m} = 1</math> | <math display="block">e^{-2\pi i m} = 1</math> | ||
जिसका | जिसका कथन है कि कक्षीय कोणीय गति क्वांटम संख्या मात्र पूर्णांक हो सकती है, अर्ध-पूर्णांक नहीं हो सकती है। | ||
=== प्रतिनिधित्व सिद्धांत से संबंध === | === प्रतिनिधित्व सिद्धांत से संबंध === | ||
{{main| | {{main|कण भौतिकी और प्रतिनिधित्व सिद्धांत|SU(2) का प्रतिनिधित्व सिद्धांत|रोटेशन ग्रुप एसओ(3)#ए नोट ऑन लाई बीजगणित}} | ||
निश्चित क्वांटम अवस्था <math>|\psi_0\rangle</math> से प्रारम्भ, प्रत्येक संभव <math>\hat{n}</math> और <math>\phi</math> के लिए <math>R\left(\hat{n}, \phi\right) \left|\psi_0\right\rangle</math> स्तिथियों के समूह पर विचार करें, अर्थात प्रत्येक संभव प्रकार से प्रारंभिक अवस्था को घुमाने से प्राप्त स्तिथियों का समूह है| समुच्चय की रैखिक अवधि सदिश स्थान है, और इसलिए जिस प्रकार से रोटेशन संचालक स्तिथि को दूसरे पर मैप करते हैं, वह रोटेशन संचालकों के समूह का [[समूह प्रतिनिधित्व|प्रतिनिधित्व]] है। | |||
: जब रोटेशन संचालक क्वांटम | : जब रोटेशन संचालक क्वांटम स्तिथियों पर कार्य करते हैं, तो यह लाइ समूह SU(2) (''R और R<sub>internal</sub>'' के लिए) अथवा SO(3) (''R<sub>spatial</sub>'' के लिए) का प्रतिनिधित्व करता है| | ||
' | 'J' और रोटेशन संचालकों के मध्य संबंध से, | ||
: जब कोणीय संवेग संचालक क्वांटम अवस्थाओं पर कार्य करते हैं, तो यह लाई बीजगणित का | : जब कोणीय संवेग संचालक क्वांटम अवस्थाओं पर कार्य करते हैं, तो यह लाई बीजगणित का समूह प्रतिनिधित्व बनाता है <math>\mathfrak{su}(2)</math> या <math>\mathfrak{so}(3)</math> | ||
(SU(2) और SO(3) का | (SU(2) और SO(3) का लाई बीजगणित समान हैं।) | ||
उपरोक्त | उपरोक्त सीढ़ी संचालक की व्युत्पत्ति लाई बीजगणित SU(2) के अभ्यावेदन को वर्गीकृत करने की विधि है। | ||
=== रूपान्तरण संबंधों से कनेक्शन === | === रूपान्तरण संबंधों से कनेक्शन === | ||
घुमाव साथ नहीं चलते हैं: उदाहरण के लिए, x-अक्ष पर 1° के पश्च्यात y-अक्ष के पर 1° घुमाने से y-अक्ष पर 1° के पश्च्यात x-अक्ष पर 1° घूमने की तुलना में भिन्न समग्र घुमाव मिलता है। इस गैर-अनुक्रमणीयता का ध्यानपूर्वक विश्लेषण करके, कोणीय संवेग संचालकों के रूपान्तरण संबंध प्राप्त किए जा सकते हैं।<ref name=littlejohn/> | |||
(यह वही गणनात्मक प्रक्रिया गणितीय प्रश्न | (यह वही गणनात्मक प्रक्रिया गणितीय प्रश्न (लाई समूह SO(3) या SU(2)? का लाई बीजगणित क्या है?) का उत्तर देने का प्रकार है|) | ||
== कोणीय गति का संरक्षण == | == कोणीय गति का संरक्षण == | ||
[[हैमिल्टनियन (क्वांटम यांत्रिकी)]] | [[हैमिल्टनियन (क्वांटम यांत्रिकी)]] H प्रणाली की ऊर्जा और गतिशीलता का प्रतिनिधित्व करता है। गोलाकार सममित स्थिति में, हैमिल्टनियन घूर्णन के अंतर्गत अपरिवर्तनीय है: | ||
<math display="block">RHR^{-1} = H</math> | <math display="block">RHR^{-1} = H</math> | ||
जहाँ R | जहाँ R रोटेशन संचालक (क्वांटम यांत्रिकी) है। परिणामस्वरूप, <math>[H, R] = 0</math>, और <math>[H,\mathbf{J}]=\mathbf 0</math>, J और ''R'' के मध्य संबंध के कारण है। एरेनफेस्ट प्रमेय द्वारा J संरक्षित है। | ||
संक्षेप में, यदि ''H'' घूर्णी-अपरिवर्तनीय (गोलाकार सममित) है, तो कुल कोणीय गति J संरक्षित है। यह नोएदर के प्रमेय का | संक्षेप में, यदि ''H'' घूर्णी-अपरिवर्तनीय (गोलाकार सममित) है, तो कुल कोणीय गति J संरक्षित है। यह नोएदर के प्रमेय का उदाहरण है। | ||
यदि ''H'' | यदि ''H'' कण के लिए मात्र हैमिल्टनियन है, तो उस कण का कुल कोणीय संवेग तब संरक्षित होता है जब कण [[केंद्रीय क्षमता]] में होता है (अर्थात, जब संभावित ऊर्जा कार्य मात्र <math>\left|\mathbf{r}\right|</math> पर निर्भर करता है). वैकल्पिक रूप से, H ब्रह्मांड में सभी कणों और क्षेत्रों का हैमिल्टनियन हो सकता है,और तब H सदैव घूर्णनशील-अपरिवर्तनीय होता है, क्योंकि ब्रह्मांड के भौतिकी के वास्तविक नियम अभिविन्यास के अतिरिक्त समान होते हैं। इस कथन का आधार है कि कोणीय संवेग का संरक्षण भौतिकी का सामान्य सिद्धांत है। | ||
स्पिन के बिना | स्पिन के बिना कण के लिए, 'J' = 'L', इसलिए समान परिस्थितियों में कक्षीय कोणीय संवेग संरक्षित रहता है। जब स्पिन शून्य नहीं होता है, तो स्पिन-ऑर्बिट इंटरैक्शन कोणीय गति को 'L' से 'S' में स्थानांतरित करने की अनुमति देता है। इसलिए, 'L' अपने आप में संरक्षित नहीं है। | ||
== कोणीय गति युग्मन == | == कोणीय गति युग्मन == | ||
{{main| | {{main|कोणीय गति युग्मन|क्लेबश-गॉर्डन गुणांक}} | ||
अधिकांशतः, दो या दो से अधिक प्रकार के कोणीय संवेग साथ में परस्पर क्रिया करते हैं, जिससे कोणीय संवेग आपस में स्थानांतरित हो सके। उदाहरण के लिए, स्पिन-कक्षा युग्मन में, कोणीय गति L और S के मध्य स्थानांतरित हो सकती है, किन्तु मात्र कुल J = L+S संरक्षित है। दूसरे उदाहरण में, दो इलेक्ट्रॉनों के परमाणु में, प्रत्येक का अपना कोणीय संवेग J<sub>1</sub> और J<sub>2</sub> होता है, किन्तु मात्र कुल J = J<sub>1</sub> + J<sub>2</sub> संरक्षित है। | |||
इन स्थितियों में | इन स्थितियों में, जहां <math>\left(J_1\right)_z, \left(J_1\right)^2, \left(J_2\right)_z, \left(J_2\right)^2</math> सभी के निश्चित मूल्य हैं, और दूसरी ओर, जहाँ है <math>\left(J_1\right)^2, \left(J_2\right)^2, J^2, J_z</math> सभी के निश्चित मूल्य हैं, स्तिथियों के मध्य के संबंध को जानना अधिकांशतः उपयोगी होता है, पश्च्यात के चार सामान्यतः संरक्षित (गति के स्थिरांक) हैं। इन आधारों (रैखिक बीजगणित) के मध्य आगे और पीछे जाने की प्रक्रिया क्लेब्स-गॉर्डन गुणांक का उपयोग करना है। | ||
इस क्षेत्र में | इस क्षेत्र में महत्वपूर्ण परिणाम यह है कि क्वांटम संख्याओं के मध्य संबंध <math>\left(J_1\right)^2, \left(J_2\right)^2, J^2</math>: | ||
<math display="block">j \in \left\{ \left|j_1 - j_2\right|, \left(\left|j_1 - j_2\right| + 1\right), \ldots, \left(j_1 + j_2\right) \right\} .</math> | <math display="block">j \in \left\{ \left|j_1 - j_2\right|, \left(\left|j_1 - j_2\right| + 1\right), \ldots, \left(j_1 + j_2\right) \right\} .</math> | ||
J = L + S के साथ परमाणु या अणु के लिए, शब्द प्रतीक संचालकों से जुड़े क्वांटम नंबर <math>L^2, S^2, J^2</math> देता है I | |||
== [[गोलाकार निर्देशांक]] में कक्षीय कोणीय गति == | == [[गोलाकार निर्देशांक]] में कक्षीय कोणीय गति == | ||
निर्देशांक में [[गोलाकार समरूपता]] के साथ समस्या को हल करते समय सामान्यतः कोणीय गति संचालक होते हैं। स्थानिक प्रतिनिधित्व में कोणीय गति है<ref>{{Cite book | |||
| publisher = Springer Berlin Heidelberg | | publisher = Springer Berlin Heidelberg | ||
| last = Bes | | last = Bes | ||
Line 455: | Line 460: | ||
गोलाकार निर्देशांक में लाप्लास संकारक के कोणीय भाग को कोणीय संवेग द्वारा व्यक्त किया जा सकता है। यह संबंध की ओर जाता है | गोलाकार निर्देशांक में लाप्लास संकारक के कोणीय भाग को कोणीय संवेग द्वारा व्यक्त किया जा सकता है। यह संबंध की ओर जाता है | ||
<math display="block">\Delta = \frac{1}{r^2} \frac{\partial}{\partial r} \left(r^2\, \frac{\partial}{\partial r}\right) - \frac{L^2}{\hbar^{2} r^2}.</math> | <math display="block">\Delta = \frac{1}{r^2} \frac{\partial}{\partial r} \left(r^2\, \frac{\partial}{\partial r}\right) - \frac{L^2}{\hbar^{2} r^2}.</math> | ||
संचालक के आइजनस्टेट्स का शोध करते समय, हम निम्नलिखित प्राप्त करते हैं | |||
<math display="block">\begin{align} | <math display="block">\begin{align} | ||
L^2 | l, m \rangle &= \hbar^2 l(l + 1) | l, m \rangle \\ | L^2 | l, m \rangle &= \hbar^2 l(l + 1) | l, m \rangle \\ | ||
L_z | l, m \rangle &= \hbar m | l, m \rangle | L_z | l, m \rangle &= \hbar m | l, m \rangle | ||
\end{align}</math> | \end{align}</math> | ||
जहाँ | |||
<math display="block">\left\langle \theta, \phi | l, m \right\rangle = Y_{l,m}(\theta, \phi)</math> | <math display="block">\left\langle \theta, \phi | l, m \right\rangle = Y_{l,m}(\theta, \phi)</math> | ||
[[गोलाकार हार्मोनिक]] | [[गोलाकार हार्मोनिक]] हैं।<ref>Sakurai, JJ & Napolitano, J (2010), ''[[Modern Quantum Mechanics]] (2nd edition)'' (Pearson) {{isbn|978-0805382914}}</ref> | ||
== यह भी देखें == | == यह भी देखें == | ||
{{colbegin}} | {{colbegin}} | ||
Line 474: | Line 477: | ||
*कोणीय संवेग आरेख (क्वांटम यांत्रिकी) | *कोणीय संवेग आरेख (क्वांटम यांत्रिकी) | ||
* [[गोलाकार आधार]] | * [[गोलाकार आधार]] | ||
* [[टेंसर | * [[टेंसर संचालक]] | ||
* [[कक्षीय चुंबकीयकरण]] | * [[कक्षीय चुंबकीयकरण]] | ||
* [[मुक्त इलेक्ट्रॉनों की कक्षीय कोणीय गति]] | * [[मुक्त इलेक्ट्रॉनों की कक्षीय कोणीय गति]] | ||
Line 504: | Line 507: | ||
[[Category: Machine Translated Page]] | [[Category: Machine Translated Page]] | ||
[[Category:Created On 05/04/2023]] | [[Category:Created On 05/04/2023]] | ||
[[Category:Vigyan Ready]] |
Latest revision as of 07:27, 13 October 2023
के बारे में लेखों की एक श्रृंखला का हिस्सा |
क्वांटम यांत्रिकी |
---|
क्वांटम यांत्रिकी में, कोणीय संवेग संचालक शास्त्रीय कोणीय संवेग के अनुरूप विभिन्न संबंधित संचालकों (भौतिकी) में है। कोणीय गति संचालक परमाणु और आणविक भौतिकी के सिद्धांत और घूर्णी समरूपता से जुड़ी अन्य क्वांटम समस्याओं में केंद्रीय भूमिका निभाता है। इस प्रकार के संचालक को प्रणाली की भौतिक स्थिति के गणितीय प्रतिनिधित्व के लिए प्रस्तावित किया जाता है और यदि स्तिथि के लिए निश्चित मूल्य है तो कोणीय गति मान उत्पन्न करता है। शास्त्रीय और क्वांटम यांत्रिक दोनों प्रणालियों में, कोणीय गति (रैखिक गति और ऊर्जा के साथ) गति के तीन मूलभूत गुणों में से एक है।[1]
विभिन्न कोणीय संवेग संचालक हैं, कुल कोणीय संवेग (सामान्यतः J से चिह्नित किया जाता है), कक्षीय कोणीय संवेग (सामान्यतः L से चिह्नित किया जाता है), और स्पिन कोणीय गति (लघु के लिए स्पिन, सामान्यतः S से दर्शाया जाता है)। 'कोणीय संवेग संचालक' शब्द (भ्रामक रूप से) कुल या कक्षीय कोणीय संवेग को संदर्भित कर सकता है। कुल कोणीय संवेग सदैव संरक्षित रहता है, नोएदर की प्रमेय देखें।
अवलोकन
क्वांटम यांत्रिकी में, कोणीय गति तीन भिन्न-भिन्न, किन्तु संबंधित वस्तु में संदर्भित कर सकती है।
कक्षीय कोणीय संवेग
कोणीय संवेग है I इन वस्तुओं के क्वांटम-यांत्रिक समकक्ष समान संबंध की भागीदारी करते हैं-
बिना विद्युत आवेश और स्पिन (भौतिकी) के एकल कण की विशेष स्तिथि में, कक्षीय कोणीय संवेग संचालक को स्थिति के आधार पर लिखा जा सकता है:
स्पिन कोणीय गति
अन्य प्रकार की कोणीय गति है, जिसे स्पिन (भौतिकी) कहा जाता है (अधिक स्पिन के लिए छोटा), स्पिन संचालक द्वारा दर्शाया गया . स्पिन को अधिकांशतः कण के रूप में चित्रित किया जाता है जो अक्ष के चारों ओर घूमता है, किन्तु यह रूपक है| स्पिन कण की आंतरिक संपत्ति है, जो अंतरिक्ष में किसी भी प्रकार (अभी तक प्रयोगात्मक रूप से देखने योग्य) गति से संबंधित नहीं है। सभी प्राथमिक कणों में विशिष्ट चक्रण होता है, जो सामान्यतः शून्य नहीं होता है। उदाहरण के लिए, इलेक्ट्रोनो में सदैव स्पिन 1/2 होता है जबकि फोटॉन में सदैव स्पिन 1 होता है।
कुल कोणीय संवेग
अंत में, कुल कोणीय गति होती है , जो कण या प्रणाली के स्पिन और कक्षीय कोणीय गति दोनों को जोड़ती है:
रूपान्तरण संबंध
घटकों के मध्य रूपांतरण संबंध
कक्षीय कोणीय गति संचालक, सदिश है, जिसका अर्थ है कि इसे इसके सदिश घटकों के संदर्भ में लिखा जा सकता है| घटकों के आपस में निम्नलिखित रूपान्तरण संबंध हैं-[2]
सदिश समीकरण के रूप में सघन व्यंजक भी संभव है:[3]
शास्त्रीय भौतिकी में समान संबंध है:[4]
अन्य कोणीय गति संचालकों (स्पिन और कुल कोणीय गति) के लिए समान परिवर्तन संबंध प्रस्तावित होते हैं:[5]
इन रूपान्तरण संबंधों का अर्थ है कि 'L' में लाइ बीजगणित की गणितीय संरचना है, और εlmn इसकी संरचना स्थिरांक हैं। इस स्तिथि में, भौतकीय संकेतन में SU(2) या SO(3) लाई बीजगणित है , जैसे बीजगणित तीन आयामों में घूर्णन से जुड़ा हुआ है| J और S के संभंध में भी यही सत्य है। कोणीय गति की घूर्णन के जनरेटर के रूप में चर्चा की जाती है। ये रूपांतरण संबंध माप और अनिश्चितता के लिए प्रासंगिक हैं, जैसा कि नीचे चर्चा की गई है।
अणुओं में, रोविब्रॉनिक (कक्षीय) कोणीय संवेग N, इलेक्ट्रॉन प्रचक्रण कोणीय संवेग S, और नाभिकीय प्रचक्रण कोणीय संवेग I का योग कुल कोणीय संवेग F होता है। इलेक्ट्रॉनिक एकल अवस्थाओं के लिए रोविब्रॉनिक कोणीय संवेग को N के स्थान पर J से दर्शाया जाता है। जैसा कि वैन व्लेक द्वारा समझाया गया है,[6] आणविक रोविब्रॉनिक कोणीय संवेग के घटकों को अणु-स्थिर कुल्हाड़ियों के रूप में संदर्भित किया जाता है, जो ऊपर दिए गए उन लोगों से भिन्न-भिन्न रूपांतरण संबंध हैं जो अंतरिक्ष-स्थिर कुल्हाड़ियों के घटकों के लिए हैं।
रूपान्तरण संबंध जिसमें सदिश परिमाण सम्मिलित है
किसी भी सदिश के भाँति, परिमाण के वर्ग को कक्षीय कोणीय गति संचालक के लिए परिभाषित किया जा सकता है,
अन्य क्वांटम संचालक (गणित) है। यह L के घटकों के साथ संचार करता है I
गणितीय रूप से, SO(3) लाई बीजगणित, L द्वारा विस्तृत किये गए कासिमिर अपरिवर्तनीय है
ऊपर, भौतिक में अनुरूप संबंध है:
क्वांटम स्तिथि में, समान परिवर्तन संबंध अन्य कोणीय गति संचालकों (स्पिन और कुल कोणीय गति) पर प्रस्तावित होते हैं,
अनिश्चितता सिद्धांत
सामान्यतः, क्वांटम यांत्रिकी में, जब दो अवलोकन संचालक कम्यूट नहीं होते हैं, तो उन्हें पूरकता (भौतिकी) कहा जाता है। दो पूरक वेधशालाओं को साथ नहीं मापा जा सकता है, इसके अतिरिक्त वे अनिश्चितता सिद्धांत को पूर्ण करते हैं। अवलोकन योग्य जितना अधिक त्रुटिहीन रूप से जाना जाता है, उतना ही कम त्रुटिहीन रूप से दूसरे को जाना जा सकता है। जिस प्रकार स्थिति और संवेग के संबंध में अनिश्चितता सिद्धांत है, उसी प्रकार कोणीय संवेग के लिए अनिश्चितता सिद्धांत हैं।
रॉबर्टसन-श्रोडिंगर संबंध निम्नलिखित अनिश्चितता सिद्धांत देता है:
इसलिए, कोणीय संवेग के दो लंबकोणीय घटक (उदाहरण के लिए Lx और Ly) पूरक हैं और विशेष स्तिथियों को छोड़कर, साथ ज्ञात या मापा नहीं जा सकता है जैसे कि
चूँकि, L2 और L का कोई घटक को साथ मापना या निर्दिष्ट करना संभव है, उदाहरण के लिए, L2 और Lz | यह अधिकांशतः उपयोगी होता है, और मानों को अज़ीमुथल क्वांटम संख्या (एल) और चुंबकीय क्वांटम संख्या (एम) द्वारा चित्रित किया जाता है। इस स्तिथि में प्रणाली की क्वांटम स्थिति संचालकों L2 और Lz की साथ आइगेन स्थिति है, किन्तु Lx या Ly की नहीं है| आइगेन मान, l और m से संबंधित हैं, जैसा कि नीचे दी गई तालिका में प्रदर्शित किया गया है।
परिमाणीकरण
क्वांटम यांत्रिकी में, कोणीय गति को परिमाणित किया जाता है - अर्थात, यह लगातार भिन्न नहीं हो सकता है, किन्तु मात्र कुछ अनुमत मानों के मध्य क्वांटम छलांग में होता है। किसी भी प्रणाली के लिए, माप परिणामों पर निम्नलिखित प्रतिबंध प्रस्तावित होते हैं, जहाँ कम प्लैंक स्थिरांक है|[9]
यदि आप मापते हैं... | ...परिणाम हो सकता है... | टिप्पणियाँ |
---|---|---|
,
जहाँ |
को कभी-कभी दिगंशीय क्वांटम संख्या या कक्षीय क्वांटम संख्या कहा जाता है| | |
,
जहाँ |
को कभी-कभी चुंबकीय क्वांटम संख्या कहा जाता है।
L के किसी भी घटक के लिए यही परिमाणीकरण नियम प्रस्तावित होता है, जैसे, इस नियम को कभी-कभी स्थानिक परिमाणीकरण कहा जाता है|[10] | |
,
जहाँ |
s को स्पिन क्वांटम संख्या या मात्र स्पिन कहा जाता है।
उदाहरण के लिए, स्पिन 1/2 कण है जहां s = 1/2 है। | |
,
जहाँ |
को कभी-कभी स्पिन प्रक्षेपण क्वांटम संख्या कहा जाता है।
S के किसी भी घटक के लिए यही परिमाणीकरण नियम प्रस्तावित होता है, जैसे , | |
,
जहाँ |
j को कभी-कभी कुल कोणीय संवेग क्वांटम संख्या कहा जाता है। | |
,
जहाँ |
को कभी-कभी कुल कोणीय संवेग प्रक्षेपण क्वांटम संख्या कहा जाता है।
J के किसी भी घटक के लिए यही परिमाणीकरण नियम प्रस्तावित होता है, जैसे, |
सीढ़ी संचालकों का उपयोग करके व्युत्पत्ति
उपरोक्त परिमाणीकरण नियमों को प्राप्त करने का सामान्य तरीका सीढ़ी संचालकों की विधि है।[11] कुल कोणीय संवेग के लिए लैडर संचालक के रूप में परिभाषित किया गया है,
Let एक अवस्था eigenvalue हो के साथ प्रणाली के लिए कार्य करें for and eigenvalue for .[note 1]
From is obtained,
के घटकों के लिए दो रूपान्तरण संबंध are,
के अंतर के क्रमिक अनुप्रयोग से आता है or जो कि eigenvalue को कम या बढ़ा देता है by so that,
और में के समान रूपांतरण संबंध हैं, उनके लिए समान सीढ़ी विश्लेषण प्रस्तावित किया जा सकता है, इसके अतिरिक्त क्वांटम संख्याओं पर प्रतिबंध है कि वे पूर्णांक होने चाहिए।
श्रोएडिंगर प्रतिनिधित्व में, कक्षीय कोणीय गति ऑपरेटर के z घटक को व्यक्त किया जा सकता है गोलाकार निर्देशांक as,[14]
एक वैकल्पिक व्युत्पत्ति जो एकल-मूल्य तरंग कार्यों को नहीं मानती है अनुसरण करती है और लाई समूहों का उपयोग करने वाला एक अन्य तर्क है below.
A key part of the traditional derivation above is that the wave function must be single-valued. This is now recognised by many as not being completely correct: a wave function is not observable and only the probability density is required to be single-valued. The possible double-valued half-integer wave functions have a single-valued probability density.[17] This was recognised by Pauli in 1939 (cited by Japaridze et al[18])
... there is no a priori convincing argument stating that the wave functions which describe some physical states must be single valued functions. For physical quantities, which are expressed by squares of wave functions, to be single valued it is quite sufficient that after moving around a closed contour these functions gain a factor exp(iα)
Double-valued wave functions have been found, such as and .[19][20] These do not behave well under the ladder operators, but have been found to be useful in describing rigid quantum particles[21]
Ballentine[22] gives an argument based solely on the operator formalism and which does not rely on the wave function being single-valued. The azimuthal angular momentum is defined as
For commuting Hermitian operators a complete set of basis vectors can be chosen that are eigenvectors for all four operators. (The argument by Glorioso[23] can easily be generalised to any number of commuting operators.)
For any of these eigenvectors with
A more complex version of this argument using the ladder operators of the quantum harmonic oscillator has been given by Buchdahl.[24]
दृश्य व्याख्या
चूँकि कोणीय संवेग क्वांटम संचालक होते हैं, उन्हें शास्त्रीय यांत्रिकी की भाँति वैक्टर के रूप में नहीं खींचा जा सकता है। उन्हें इस प्रकार से ह्यूरिस्टिक रूप में चित्रित करना साधारण है। दाईं ओर दर्शाया गया क्वांटम संख्या की स्तिथियों का समूह है , और नीचे से ऊपर पाँच शंकुओं के लिए है। , वैक्टर सभी लंबाई से प्रदर्शित किये जाते हैं, अंगूठियां इस तथ्य का प्रतिनिधित्व करती हैं कि निश्चित रूप से जाना जाता है, किन्तु और अज्ञात हैं| इसलिए उपयुक्त लंबाई और z-घटक के साथ प्रत्येक क्लासिकल सदिश को शंकु बनाते हुए खींचा जाता है। और द्वारा विशेषता क्वांटम स्तिथि में प्रणाली के दिए गए पहनावा के लिए कोणीय गति का अपेक्षित मूल्य इस शंकु पर कहीं हो सकता है, जबकि इसे प्रणाली के लिए परिभाषित नहीं किया जा सकता है (के घटकों के पश्यात से आपस में साथ यात्रा न करें)।
मैक्रोस्कोपिक प्रणाली में परिमाणीकरण
मैक्रोस्कोपिक प्रणाली के लिए परिमाणीकरण नियमों को व्यापक रूप से उचित माना जाता है, जैसे कताई टायर की कोणीय गति L है। चूँकि उनका कोई अवलोकनीय प्रभाव नहीं है इसलिए इसका परीक्षण नहीं किया गया है। उदाहरण के लिए, यदि साधारणतः 100000000 है, इससे कोई प्रभाव नहीं पड़ता है कि क्या त्रुटिहीन मान 100000000 या 100000001 जैसा पूर्णांक है, या 100000000.2 जैसा गैर-पूर्णांक है—असतत चरण वर्तमान में मापने के लिए अधिक छोटे हैं।
घूर्णन के जनरेटर के रूप में कोणीय गति
कोणीय गति की सामान्य और वास्तविक परिभाषा घूर्णन के जनरेटर के रूप में है।[5] विशेष रूप से, माना रोटेशन संचालक (क्वांटम यांत्रिकी) है, जो किसी क्वांटम स्तिथि को अक्ष पर कोण से घुमाता है, जैसा , परिचालक पहचान संचालक से संपर्क करता है, क्योंकि 0° का रोटेशन सभी स्तिथियों को अपने आप में मैप करता है। अक्ष पर कोणीय गति संचालक को परिभाषित किया जाता है:[5]
सरल शब्दों में, कुल कोणीय गति संचालक यह दर्शाता है कि जब क्वांटम प्रणाली को घुमाया जाता है तो उसे कैसे परिवर्तित किया जा सकता है। कोणीय गति संचालकों और रोटेशन संचालकों के मध्य संबंध वही है जो गणित में लाई बीजगणित और लाई समूहों के मध्य संबंध है, जैसा कि नीचे चर्चा की गई है।
जैसे जे रोटेशन संचालक (क्वांटम यांत्रिकी) के लिए जनरेटर है, एल और एस संशोधित आंशिक रोटेशन संचालकों के लिए जनरेटर हैं। परिचालक
SU(2), SO(3), और 360 डिग्री रोटेशन
चूँकि (360° का घूर्णन पहचान संचालक है), यह क्वांटम यांत्रिकी में नहीं माना जाता है, और यह अधिकांशतः सत्य नहीं होता है| जब कुल कोणीय गति क्वांटम संख्या, आधा पूर्णांक है- (1/2, 3/2) , वगैरह।), , और जब यह पूर्णांक है- [5] गणितीय रूप से, ब्रह्मांड में घूर्णन की संरचना SO(3) नहीं है, शास्त्रीय यांत्रिकी में त्रि-आयामी घुमावों का लाइ समूह है। इसके अतिरिक्त, यह SU(2) है, जो छोटे घुमावों के लिए SO(3) के समान है, किन्तु जहां 360° घुमाव को गणितीय रूप से 0° के घूर्णन से भिन्न किया जाता है। (चूँकि, 720° का घूर्णन 0° के घूर्णन के समान है।)[5]
वहीं दूसरी ओर, सभी परिस्थितियों में, स्थानिक विन्यास का 360° घूर्णन न करने के समान है। (यह कण की आंतरिक (स्पिन) स्थिति के 360° घूर्णन से भिन्न है, जो घूर्णन न होने के समान हो भी सकता है और नहीं भी।) दूसरे शब्दों में, संचालक SO(3) की संरचना हैं, जबकि और संचालक SU(2) की संरचना हैं।
समीकरण से , आइगेनस्टेट चुनता है और बनाता है
प्रतिनिधित्व सिद्धांत से संबंध
निश्चित क्वांटम अवस्था से प्रारम्भ, प्रत्येक संभव और के लिए स्तिथियों के समूह पर विचार करें, अर्थात प्रत्येक संभव प्रकार से प्रारंभिक अवस्था को घुमाने से प्राप्त स्तिथियों का समूह है| समुच्चय की रैखिक अवधि सदिश स्थान है, और इसलिए जिस प्रकार से रोटेशन संचालक स्तिथि को दूसरे पर मैप करते हैं, वह रोटेशन संचालकों के समूह का प्रतिनिधित्व है।
- जब रोटेशन संचालक क्वांटम स्तिथियों पर कार्य करते हैं, तो यह लाइ समूह SU(2) (R और Rinternal के लिए) अथवा SO(3) (Rspatial के लिए) का प्रतिनिधित्व करता है|
'J' और रोटेशन संचालकों के मध्य संबंध से,
- जब कोणीय संवेग संचालक क्वांटम अवस्थाओं पर कार्य करते हैं, तो यह लाई बीजगणित का समूह प्रतिनिधित्व बनाता है या
(SU(2) और SO(3) का लाई बीजगणित समान हैं।)
उपरोक्त सीढ़ी संचालक की व्युत्पत्ति लाई बीजगणित SU(2) के अभ्यावेदन को वर्गीकृत करने की विधि है।
रूपान्तरण संबंधों से कनेक्शन
घुमाव साथ नहीं चलते हैं: उदाहरण के लिए, x-अक्ष पर 1° के पश्च्यात y-अक्ष के पर 1° घुमाने से y-अक्ष पर 1° के पश्च्यात x-अक्ष पर 1° घूमने की तुलना में भिन्न समग्र घुमाव मिलता है। इस गैर-अनुक्रमणीयता का ध्यानपूर्वक विश्लेषण करके, कोणीय संवेग संचालकों के रूपान्तरण संबंध प्राप्त किए जा सकते हैं।[5]
(यह वही गणनात्मक प्रक्रिया गणितीय प्रश्न (लाई समूह SO(3) या SU(2)? का लाई बीजगणित क्या है?) का उत्तर देने का प्रकार है|)
कोणीय गति का संरक्षण
हैमिल्टनियन (क्वांटम यांत्रिकी) H प्रणाली की ऊर्जा और गतिशीलता का प्रतिनिधित्व करता है। गोलाकार सममित स्थिति में, हैमिल्टनियन घूर्णन के अंतर्गत अपरिवर्तनीय है:
संक्षेप में, यदि H घूर्णी-अपरिवर्तनीय (गोलाकार सममित) है, तो कुल कोणीय गति J संरक्षित है। यह नोएदर के प्रमेय का उदाहरण है।
यदि H कण के लिए मात्र हैमिल्टनियन है, तो उस कण का कुल कोणीय संवेग तब संरक्षित होता है जब कण केंद्रीय क्षमता में होता है (अर्थात, जब संभावित ऊर्जा कार्य मात्र पर निर्भर करता है). वैकल्पिक रूप से, H ब्रह्मांड में सभी कणों और क्षेत्रों का हैमिल्टनियन हो सकता है,और तब H सदैव घूर्णनशील-अपरिवर्तनीय होता है, क्योंकि ब्रह्मांड के भौतिकी के वास्तविक नियम अभिविन्यास के अतिरिक्त समान होते हैं। इस कथन का आधार है कि कोणीय संवेग का संरक्षण भौतिकी का सामान्य सिद्धांत है।
स्पिन के बिना कण के लिए, 'J' = 'L', इसलिए समान परिस्थितियों में कक्षीय कोणीय संवेग संरक्षित रहता है। जब स्पिन शून्य नहीं होता है, तो स्पिन-ऑर्बिट इंटरैक्शन कोणीय गति को 'L' से 'S' में स्थानांतरित करने की अनुमति देता है। इसलिए, 'L' अपने आप में संरक्षित नहीं है।
कोणीय गति युग्मन
अधिकांशतः, दो या दो से अधिक प्रकार के कोणीय संवेग साथ में परस्पर क्रिया करते हैं, जिससे कोणीय संवेग आपस में स्थानांतरित हो सके। उदाहरण के लिए, स्पिन-कक्षा युग्मन में, कोणीय गति L और S के मध्य स्थानांतरित हो सकती है, किन्तु मात्र कुल J = L+S संरक्षित है। दूसरे उदाहरण में, दो इलेक्ट्रॉनों के परमाणु में, प्रत्येक का अपना कोणीय संवेग J1 और J2 होता है, किन्तु मात्र कुल J = J1 + J2 संरक्षित है।
इन स्थितियों में, जहां सभी के निश्चित मूल्य हैं, और दूसरी ओर, जहाँ है सभी के निश्चित मूल्य हैं, स्तिथियों के मध्य के संबंध को जानना अधिकांशतः उपयोगी होता है, पश्च्यात के चार सामान्यतः संरक्षित (गति के स्थिरांक) हैं। इन आधारों (रैखिक बीजगणित) के मध्य आगे और पीछे जाने की प्रक्रिया क्लेब्स-गॉर्डन गुणांक का उपयोग करना है।
इस क्षेत्र में महत्वपूर्ण परिणाम यह है कि क्वांटम संख्याओं के मध्य संबंध :
गोलाकार निर्देशांक में कक्षीय कोणीय गति
निर्देशांक में गोलाकार समरूपता के साथ समस्या को हल करते समय सामान्यतः कोणीय गति संचालक होते हैं। स्थानिक प्रतिनिधित्व में कोणीय गति है[25][26]
यह भी देखें
- रन्ज-लेनज़ वेक्टर (कक्षा में निकायों के आकार और अभिविन्यास का वर्णन करने के लिए प्रयुक्त)
- होल्स्टीन-प्राइमाकॉफ़ परिवर्तन
- जॉर्डन मानचित्र (कोणीय संवेग का जूलियन श्विंगर का बोसोनिक मॉडल[28])
- परमाणु का वेक्टर मॉडल
- पाउली-लुबांस्की स्यूडोवेक्टर
- कोणीय संवेग आरेख (क्वांटम यांत्रिकी)
- गोलाकार आधार
- टेंसर संचालक
- कक्षीय चुंबकीयकरण
- मुक्त इलेक्ट्रॉनों की कक्षीय कोणीय गति
- प्रकाश की कक्षीय कोणीय गति
टिप्पणियाँ
- ↑ In the derivation of Condon and Shortley that the current derivation is based on, a set of observables along with and आवागमन संबंधी अवलोकनों का एक पूरा सेट तैयार करें। इसके अतिरिक्त उन्हें इसकी आवश्यकता भी थी commutes with and .[12] समुच्चय को सम्मिलित न करके वर्तमान व्युत्पत्ति को सरल बनाया गया है या इसके eigenvalues का संगत सेट.
संदर्भ
- ↑ Introductory Quantum Mechanics, Richard L. Liboff, 2nd Edition, ISBN 0-201-54715-5
- ↑ Aruldhas, G. (2004-02-01). "formula (8.8)". क्वांटम यांत्रिकी. p. 171. ISBN 978-81-203-1962-2.
- ↑ Shankar, R. (1994). क्वांटम यांत्रिकी के सिद्धांत (2nd ed.). New York: Kluwer Academic / Plenum. p. 319. ISBN 9780306447907.
- ↑ H. Goldstein, C. P. Poole and J. Safko, Classical Mechanics, 3rd Edition, Addison-Wesley 2002, pp. 388 ff.
- ↑ 5.0 5.1 5.2 5.3 5.4 5.5 5.6 Littlejohn, Robert (2011). "क्वांटम यांत्रिकी में घूर्णन पर व्याख्यान नोट्स" (PDF). Physics 221B Spring 2011. Archived from the original (PDF) on 26 August 2014. Retrieved 13 Jan 2012.
- ↑ J. H. Van Vleck (1951). "The Coupling of Angular Momentum Vectors in Molecules". Reviews of Modern Physics. 23 (3): 213. Bibcode:1951RvMP...23..213V. doi:10.1103/RevModPhys.23.213.
- ↑ Griffiths, David J. (1995). Introduction to Quantum Mechanics. Prentice Hall. p. 146.
- ↑ Goldstein et al, p. 410
- ↑ Condon, E. U.; Shortley, G. H. (1935). "Chapter III: Angular Momentum". परमाणु स्पेक्ट्रा का क्वांटम सिद्धांत. Cambridge University Press. ISBN 9780521092098.
- ↑ Introduction to quantum mechanics: with applications to chemistry, by Linus Pauling, Edgar Bright Wilson, page 45, google books link
- ↑ Griffiths, David J. (1995). क्वांटम यांत्रिकी का परिचय. Prentice Hall. pp. 147–149.
- ↑ 12.0 12.1 Condon & Shortley 1935, pp. 46–47
- ↑ Condon & Shortley 1935, pp. 50–51
- ↑ Condon & Shortley 1935, p. 50, Eq 1
- ↑ Condon & Shortley 1935, p. 50, Eq 3
- ↑ Condon & Shortley 1935, p. 51
- ↑ Ballentine, L. E. (1998). Quantum Mechanics: A Modern Development. World Scientific Publishing. p. 169.
- ↑ Japaridze, G; et al. (2020). "Critical comments on the quantization of the angular momentum: II. Analysis based on the requirement that the eigenfunction of the third component of the operator of the angular momentum must be a single valued periodic function". arXiv:1912.08042 [physics.gen-ph].
- ↑ Hunter, G.; et al. (1999). "Fermion quasi-spherical harmonics". Journal of Physics A. 32 (5): 795–803. arXiv:math-ph/9810001. doi:10.1088/0305-4470/32/5/011. S2CID 119721724.
- ↑ Hunter, G.; I., Schlifer (2008). "Explicit Spin Coordinates".
{{cite journal}}
: Cite journal requires|journal=
(help) - ↑ Pavšič, M (2007). "Rigid Particle and its Spin Revisited". Foundations of Physics. 37 (1): 40–79. arXiv:hep-th/0412324. doi:10.1007/s10701-006-9094-4. S2CID 119648904.
- ↑ Ballentine, L. E. (1998). Quantum Mechanics: A Modern Development. World Scientific Publishing. pp. 169–171.
- ↑ Glorioso, P. "On common eigenbases of commuting operators" (PDF). Retrieved 14 August 2021.
- ↑ Buchdahl, H. A. (1962). "Remark Concerning the Eigenvalues of Orbital Angular Momentum". American Journal of Physics. 30 (11): 829–831. doi:10.1119/1.1941817.
- ↑ Bes, Daniel R. (2007). Quantum Mechanics. Advanced Texts in Physics. Berlin, Heidelberg: Springer Berlin Heidelberg. p. 70. Bibcode:2007qume.book.....B. doi:10.1007/978-3-540-46216-3. ISBN 978-3-540-46215-6.
- ↑ Compare and contrast with the contragredient classical L.
- ↑ Sakurai, JJ & Napolitano, J (2010), Modern Quantum Mechanics (2nd edition) (Pearson) ISBN 978-0805382914
- ↑ Schwinger, Julian (1952). कोणीय गति पर (PDF). U.S. Atomic Energy Commission.
अग्रिम पठन
- Quantum Mechanics Demystified, D. McMahon, Mc Graw Hill (USA), 2006, ISBN 0-07-145546 9
- Quantum mechanics, E. Zaarur, Y. Peleg, R. Pnini, Schaum's Easy Outlines Crash Course, Mc Graw Hill (USA), 2006, ISBN 007-145533-7 ISBN 978-007-145533-6
- Quantum Physics of Atoms, Molecules, Solids, Nuclei, and Particles (2nd Edition), R. Eisberg, R. Resnick, John Wiley & Sons, 1985, ISBN 978-0-471-87373-0
- Quantum Mechanics, E. Abers, Pearson Ed., Addison Wesley, Prentice Hall Inc, 2004, ISBN 978-0-13-146100-0
- Physics of Atoms and Molecules, B.H. Bransden, C.J.Joachain, Longman, 1983, ISBN 0-582-44401-2
- Angular Momentum. Understanding Spatial Aspects in Chemistry and Physics, R. N. Zare, Wiley-Interscience, 1991,ISBN 978-0-47-1858928