रीमैन-स्टिल्टजेस इंटीग्रल: Difference between revisions
(Created page with "{{Use American English|date = March 2019}} {{Short description|Generalization of the Riemann integral}} गणित में, रीमैन-स्टिल्टजेस...") |
(→संदर्भ) |
||
Line 157: | Line 157: | ||
* {{cite book |last=Stroock |first=Daniel W. |year=1998 |title=A Concise Introduction to the Theory of Integration |url=https://archive.org/details/conciseintroduct0000stro_q5r9 |url-access=registration |publisher=Birkhauser |edition=3rd |isbn=0-8176-4073-8}} | * {{cite book |last=Stroock |first=Daniel W. |year=1998 |title=A Concise Introduction to the Theory of Integration |url=https://archive.org/details/conciseintroduct0000stro_q5r9 |url-access=registration |publisher=Birkhauser |edition=3rd |isbn=0-8176-4073-8}} | ||
* {{cite journal |last=Young |first=L.C. |title=An inequality of the Hölder type, connected with Stieltjes integration |journal=Acta Mathematica |volume=67 |year=1936 |issue=1 |pages=251–282 |doi=10.1007/bf02401743 |doi-access=free }} | * {{cite journal |last=Young |first=L.C. |title=An inequality of the Hölder type, connected with Stieltjes integration |journal=Acta Mathematica |volume=67 |year=1936 |issue=1 |pages=251–282 |doi=10.1007/bf02401743 |doi-access=free }} | ||
{{DEFAULTSORT:Riemann-Stieltjes integral}}[[Category: गणितीय एकीकरण की परिभाषाएँ]] [[Category: बर्नहार्ड रीमैन]] | {{DEFAULTSORT:Riemann-Stieltjes integral}}[[Category: गणितीय एकीकरण की परिभाषाएँ]] [[Category: बर्नहार्ड रीमैन]] |
Revision as of 11:08, 6 October 2023
गणित में, रीमैन-स्टिल्टजेस इंटीग्रल, रीमैन अभिन्न का एक सामान्यीकरण है, जिसका नाम बर्नहार्ड रीमैन और थॉमस जोआन्स स्टिटजेस के नाम पर रखा गया है। इस इंटीग्रल की परिभाषा पहली बार 1894 में स्टिल्टजेस द्वारा प्रकाशित की गई थी।[1] यह लेब्सग इंटीग्रल के एक शिक्षाप्रद और उपयोगी अग्रदूत के रूप में कार्य करता है, और सांख्यिकीय प्रमेयों के समतुल्य रूपों को एकीकृत करने में एक अमूल्य उपकरण है जो अलग और निरंतर संभाव्यता पर लागू होता है।
औपचारिक परिभाषा
रीमैन-स्टिल्टजेस एक वास्तविक-मूल्यवान फ़ंक्शन का अभिन्न अंग है अंतराल पर एक वास्तविक चर का किसी अन्य वास्तविक-से-वास्तविक फ़ंक्शन के संबंध में द्वारा निरूपित किया जाता है
इसकी परिभाषा एक अंतराल के विभाजन के अनुक्रम का उपयोग करती है अंतराल का
तब, अभिन्न को सीमा के रूप में परिभाषित किया जाता है, क्योंकि अंतराल का विभाजन#विभाजन का मानदंड (विभाजन के सबसे लंबे उपअंतराल की लंबाई) निकट आता है , अनुमानित राशि का
कहाँ में है -वें उपअंतराल . दो कार्य और क्रमशः इंटीग्रैंड और इंटीग्रेटर कहलाते हैं। आम तौर पर इसे मोनोटोनिक फ़ंक्शन (या कम से कम सीमित भिन्नता) और अर्ध-निरंतरता | सही-अर्धनिरंतर (हालांकि यह अंतिम अनिवार्य रूप से सम्मेलन है) के रूप में लिया जाता है। हमें विशेष रूप से इसकी आवश्यकता नहीं है निरंतर होना, जो बिंदु द्रव्यमान पदों वाले अभिन्नों की अनुमति देता है।
यहां सीमा को एक संख्या ए (रीमैन-स्टिल्टजेस इंटीग्रल का मान) के रूप में समझा जाता है, जैसे कि प्रत्येक ε > 0 के लिए, δ> 0 मौजूद होता है, जैसे कि प्रत्येक विभाजन पी के लिए मानदंड (पी) < δ, और प्रत्येक के लिए अंकों का चयन सीi में [xi, एक्सi+1],
गुण
रीमैन-स्टिल्टजेस इंटीग्रल फॉर्म में भागों द्वारा एकीकरण को स्वीकार करता है
और किसी भी अभिन्न का अस्तित्व दूसरे के अस्तित्व को दर्शाता है।[2]
दूसरी ओर, एक शास्त्रीय परिणाम[3] दिखाता है कि इंटीग्रल अच्छी तरह से परिभाषित है यदि f α-होल्डर निरंतर है और g β-होल्डर निरंतर है α + β > 1 .
अगर पर सीमाबद्ध है , नीरस रूप से बढ़ता है, और रीमैन इंटीग्रेबल है, तो रीमैन-स्टिल्टजेस इंटीग्रल रीमैन इंटीग्रल से संबंधित है
संभाव्यता सिद्धांत का अनुप्रयोग
यदि g एक यादृच्छिक चर परिमित है, तो X का संभाव्यता घनत्व फलन g का व्युत्पन्न है और हमारे पास है
लेकिन यह सूत्र काम नहीं करता है यदि एक्स के पास लेबेस्ग माप के संबंध में संभाव्यता घनत्व फ़ंक्शन नहीं है। विशेष रूप से, यह काम नहीं करता है यदि पूर्ण निरंतरता (फिर से, कैंटर फ़ंक्शन इस विफलता के उदाहरण के रूप में काम कर सकता है)। लेकिन पहचान
यदि g वास्तविक रेखा पर कोई संचयी संभाव्यता वितरण फ़ंक्शन है, तो इससे कोई फर्क नहीं पड़ता कि कितना बुरा व्यवहार किया गया है। विशेष रूप से, कोई फर्क नहीं पड़ता कि यादृच्छिक चर X का संचयी वितरण फ़ंक्शन g कितना खराब व्यवहार करता है, यदि क्षण (गणित) E(Xn) मौजूद है, तो यह बराबर है
कार्यात्मक विश्लेषण के लिए आवेदन
रीमैन-स्टिल्टजेस इंटीग्रल रीज़-मार्कोव-काकुतानी प्रतिनिधित्व प्रमेय|एफ के मूल सूत्रीकरण में प्रकट होता है। रिज़्ज़ का प्रमेय जो एक अंतराल [ए,बी] में निरंतर कार्यों के बनच स्थान सी[ए,बी] के दोहरे स्थान का प्रतिनिधित्व करता है, जैसा कि रीमैन-स्टिल्टजेस बंधे हुए भिन्नता के कार्यों के खिलाफ अभिन्न होता है। बाद में, उस प्रमेय को उपायों के संदर्भ में दोबारा तैयार किया गया।
रीमैन-स्टिल्टजेस इंटीग्रल हिल्बर्ट स्पेस में (गैर-कॉम्पैक्ट) स्व-सहायक (या अधिक सामान्यतः, सामान्य) ऑपरेटरों के लिए वर्णक्रमीय प्रमेय के निर्माण में भी दिखाई देता है। इस प्रमेय में, अनुमानों के वर्णक्रमीय परिवार के संबंध में अभिन्न पर विचार किया जाता है।[4]
अभिन्न का अस्तित्व
सर्वोत्तम सरल अस्तित्व प्रमेय में कहा गया है कि यदि एफ निरंतर है और जी [ए, बी] पर सीमित भिन्नता का है, तो अभिन्न अस्तित्व मौजूद है।[5][6][7] एक फ़ंक्शन g सीमित भिन्नता वाला होता है यदि और केवल यदि यह दो (सीमाबद्ध) मोनोटोन फ़ंक्शन के बीच का अंतर है। यदि g सीमित भिन्नता का नहीं है, तो ऐसे निरंतर कार्य होंगे जिन्हें g के संबंध में एकीकृत नहीं किया जा सकता है। सामान्य तौर पर, अभिन्न को अच्छी तरह से परिभाषित नहीं किया जाता है यदि एफ और जी असंततता (गणित) के किसी भी बिंदु को साझा करते हैं, लेकिन अन्य मामले भी हैं।
ज्यामितीय व्याख्या
एक 3डी प्लॉट, के साथ , , और सभी ओर्थोगोनल अक्षों के साथ, रीमैन-स्टिल्टजेस इंटीग्रल की एक ज्यामितीय व्याख्या की ओर ले जाता है।[8]
यदि - समतल क्षैतिज है और -दिशा ऊपर की ओर इशारा कर रही है, तो विचार की जाने वाली सतह एक घुमावदार बाड़ की तरह है। बाड़ द्वारा अनुरेखित वक्र का अनुसरण करती है , और बाड़ की ऊंचाई दी गई है . बाड़ का खंड है -शीट (यानी, वक्र के साथ विस्तारित अक्ष) जो के बीच घिरा है - विमान और -चादर। रीमैन-स्टिल्टजेस इंटीग्रल इस बाड़ के प्रक्षेपण का क्षेत्र है - समतल - वास्तव में, इसकी छाया।
की ढलान प्रक्षेपण के क्षेत्र को भारित करता है। के मूल्य जिसके लिए सबसे तीव्र ढलान है correspond to regions of the fence with the greater projection and thereby carry the most weight in the integral.
कब एक चरणीय कार्य है
बाड़ में एक आयताकार गेट है जिसकी चौड़ाई 1 और ऊंचाई बराबर है . इस प्रकार गेट और उसके प्रक्षेपण का क्षेत्रफल बराबर है , the value of the Riemann-Stieljes integral.
सामान्यीकरण
एक महत्वपूर्ण सामान्यीकरण लेब्सेग-स्टिल्टजेस इंटीग्रल है, जो रीमैन-स्टिल्टजेस इंटीग्रल को एक तरह से सामान्यीकृत करता है, जिस तरह से लेबेस्ग इंटीग्रल रीमैन इंटीग्रल को सामान्य बनाता है। यदि अनुचित इंटीग्रल रीमैन-स्टिल्टजेस इंटीग्रल की अनुमति है, तो लेबेस्ग इंटीग्रल रीमैन-स्टिल्टजेस इंटीग्रल की तुलना में सख्ती से अधिक सामान्य नहीं है।
रीमैन-स्टिल्टजेस इंटीग्रल भी सामान्यीकरण करता है[citation needed] उस स्थिति में जब या तो इंटीग्रैंड ˒ या इंटीग्रेटर जी बनच स्पेस में मान लेते हैं। अगर g : [a,b] → X बैनाच स्पेस एक्स में मान लेता है, तो यह मान लेना स्वाभाविक है कि यह 'दृढ़ता से सीमित भिन्नता' का है, जिसका अर्थ है कि
सर्वोच्च को सभी परिमित विभाजनों पर ले लिया जा रहा है
अंतराल का [ए,बी]। यह सामान्यीकरण लाप्लास-स्टिल्टजेस परिवर्तन के माध्यम से c0-अर्धसमूह के अध्ययन में एक भूमिका निभाता है।
इटो कैलकुलस|इटो इंटीग्रल, इंटीग्रैंड्स और इंटीग्रेटर्स को शामिल करने के लिए रीमैन-स्टीटजेस इंटीग्रल का विस्तार करता है जो सरल कार्यों के बजाय स्टोकेस्टिक प्रक्रियाएं हैं; स्टोकेस्टिक कैलकुलस भी देखें।
सामान्यीकृत रीमैन-स्टिल्टजेस इंटीग्रल
थोड़ा सा सामान्यीकरण[9] उपरोक्त परिभाषा में विभाजन P पर विचार करना है जो दूसरे विभाजन P को परिष्कृत करता हैε, जिसका अर्थ है कि P, P से उत्पन्न होता हैε महीन जाली वाले विभाजन के बजाय, बिंदुओं को जोड़कर। विशेष रूप से, जी के संबंध में एफ का सामान्यीकृत रीमैन-स्टिल्टजेस इंटीग्रल एक संख्या ए है जैसे कि प्रत्येक ε > 0 के लिए एक विभाजन पी मौजूद हैε ऐसा कि प्रत्येक विभाजन P के लिए जो P को परिष्कृत करता हैε,
अंकों के प्रत्येक विकल्प के लिए ci में [xi, एक्सi+1].
यह सामान्यीकरण [ए, बी] के विभाजन के निर्देशित सेट पर मूर-स्मिथ सीमा के रूप में रीमैन-स्टिल्टजेस अभिन्न अंग को प्रदर्शित करता है।[10][11] एक परिणाम यह है कि इस परिभाषा के साथ, अभिन्न अभी भी उन मामलों में परिभाषित किया जा सकता है जहां एफ और जी में असंततता का बिंदु समान है।
डारबौक्स योग
रीमैन-स्टिल्टजेस इंटीग्रल को डार्बौक्स रकम के उचित सामान्यीकरण का उपयोग करके कुशलतापूर्वक नियंत्रित किया जा सकता है। एक विभाजन पी और एक गैर-घटते फ़ंक्शन जी के लिए [ए, बी] पर जी के संबंध में एफ के ऊपरी डार्बौक्स योग को परिभाषित करें
और कम राशि द्वारा
फिर g के संबंध में f का सामान्यीकृत रीमैन-स्टिल्टजेस मौजूद है यदि और केवल यदि, प्रत्येक ε > 0 के लिए, एक विभाजन P मौजूद है जैसे कि
इसके अलावा, एफ रीमैन-स्टिल्टजेस जी के संबंध में पूर्णांक है (शास्त्रीय अर्थ में) यदि
उदाहरण और विशेष मामले
अवकलनीय g(x)
दिया गया ए जो लगातार भिन्न कार्य करता है यह दिखाया जा सकता है कि समानता है
जहां दाहिनी ओर का इंटीग्रल मानक रीमैन इंटीग्रल है, यह मानते हुए रीमैन-स्टिल्टजेस इंटीग्रल द्वारा एकीकृत किया जा सकता है।
अधिक आम तौर पर, रीमैन इंटीग्रल, रीमैन-स्टिल्टजेस इंटीग्रल के बराबर होता है इसके व्युत्पन्न का लेब्सग इंटीग्रल है; इस मामले में कहा जाता है कि यह बिल्कुल निरंतर है।
ऐसा भी हो सकता है जम्प असंततताएं हैं, या निरंतर और बढ़ते हुए भी लगभग हर जगह व्युत्पन्न शून्य हो सकता है (उदाहरण के लिए, कैंटर फ़ंक्शन या "शैतान की सीढ़ी") हो सकता है, इनमें से किसी भी मामले में रीमैन-स्टिल्टजेस इंटीग्रल को जी के डेरिवेटिव से जुड़े किसी भी अभिव्यक्ति द्वारा कैप्चर नहीं किया गया है।
रीमैन इंटीग्रल
मानक रीमैन इंटीग्रल, रीमैन-स्टिल्टजेस इंटीग्रल का एक विशेष मामला है .
दिष्टकारी
फ़ंक्शन पर विचार करें तंत्रिका नेटवर्क के अध्ययन में उपयोग किया जाता है, जिसे रेक्टिफायर (तंत्रिका नेटवर्क) | रेक्टिफाइड लीनियर यूनिट (ReLU) कहा जाता है। तब रीमैन-स्टिल्टजेस का मूल्यांकन इस प्रकार किया जा सकता है
जहां दाहिनी ओर का इंटीग्रल मानक रीमैन इंटीग्रल है।
कैवेलियरी एकीकरण
फ़ाइल: रीमैन-Stieltjes integral.png|thumb|right|434x434px|फ़ंक्शन के लिए कैवलियरे इंटीग्रल का विज़ुअलाइज़ेशन कैवलियरी के सिद्धांत का उपयोग रीमैन-स्टिल्टजेस इंटीग्रल्स का उपयोग करके वक्रों से घिरे क्षेत्रों की गणना करने के लिए किया जा सकता है।[13] रीमैन एकीकरण की एकीकरण स्ट्रिप्स को उन स्ट्रिप्स से बदल दिया गया है जो आकार में गैर-आयताकार हैं। विधि एक परिवर्तन के साथ कैवलियरे क्षेत्र को बदलने की है , या उपयोग करने के लिए इंटीग्रैंड के रूप में।
किसी दिए गए फ़ंक्शन के लिए एक अंतराल पर , एक अनुवादात्मक कार्य प्रतिच्छेद करना चाहिए अंतराल में किसी भी बदलाव के लिए ठीक एक बार। फिर एक कैवलियरे क्षेत्र से घिरा है , द -अक्ष, और . क्षेत्र का क्षेत्रफल तब है
कहाँ और हैं -मूल्य कहाँ और इंटरसेक्ट .
टिप्पणियाँ
- ↑ Stieltjes (1894), pp. 68–71.
- ↑ Hille & Phillips (1974), §3.3.
- ↑ Young (1936).
- ↑ See Riesz & Sz. Nagy (1990) for details.
- ↑ Johnsonbaugh & Pfaffenberger (2010), p. 219.
- ↑ Rudin (1964), pp. 121–122.
- ↑ Kolmogorov & Fomin (1975), p. 368.
- ↑ Bullock (1988)
- ↑ Introduced by Pollard (1920) and now standard in analysis.
- ↑ McShane (1952).
- ↑ Hildebrandt (1938) calls it the Pollard–Moore–Stieltjes integral.
- ↑ Graves (1946), Chap. XII, §3.
- ↑ T. L. Grobler, E. R. Ackermann, A. J. van Zyl & J. C. Olivier Cavaliere integration from Council for Scientific and Industrial Research
संदर्भ
- Bullock, Gregory L. (May 1988). "A Geometric Interpretation of the Riemann-Stieltjes Integral". The American Mathematical Monthly. Mathematical Association of America. 95 (5): 448–455. doi:10.1080/00029890.1988.11972030. JSTOR 2322483.
{{cite journal}}
: CS1 maint: date and year (link) - Graves, Lawrence (1946). The Theory of Functions of Real Variables. International series in pure and applied mathematics. McGraw-Hill. via HathiTrust
- Hildebrandt, T.H. (1938). "Definitions of Stieltjes integrals of the Riemann type". The American Mathematical Monthly. 45 (5): 265–278. doi:10.1080/00029890.1938.11990804. ISSN 0002-9890. JSTOR 2302540. MR 1524276.
- Hille, Einar; Phillips, Ralph S. (1974). Functional analysis and semi-groups. Providence, RI: American Mathematical Society. MR 0423094.
- Johnsonbaugh, Richard F.; Pfaffenberger, William Elmer (2010). Foundations of mathematical analysis. Mineola, NY: Dover Publications. ISBN 978-0-486-47766-4.
- Kolmogorov, Andrey; Fomin, Sergei V. (1975) [1970]. Introductory Real Analysis. Translated by Silverman, Richard A. (Revised English ed.). Dover Press. ISBN 0-486-61226-0.
- McShane, E. J. (1952). "Partial orderings & Moore-Smith limit" (PDF). The American Mathematical Monthly. 59: 1–11. doi:10.2307/2307181. JSTOR 2307181. Retrieved 2 November 2010.
- Pollard, Henry (1920). "The Stieltjes integral and its generalizations". The Quarterly Journal of Pure and Applied Mathematics. 49.
- Riesz, F.; Sz. Nagy, B. (1990). Functional Analysis. Dover Publications. ISBN 0-486-66289-6.
- Rudin, Walter (1964). Principles of mathematical analysis (Second ed.). New York, NY: McGraw-Hill.
- Shilov, G. E.; Gurevich, B. L. (1978). Integral, Measure, and Derivative: A unified approach. Translated by Silverman, Richard A. Dover Publications. Bibcode:1966imdu.book.....S. ISBN 0-486-63519-8.
- Stieltjes, Thomas Jan (1894). "Recherches sur les fractions continues". Ann. Fac. Sci. Toulouse. VIII: 1–122. MR 1344720.
- Stroock, Daniel W. (1998). A Concise Introduction to the Theory of Integration (3rd ed.). Birkhauser. ISBN 0-8176-4073-8.
- Young, L.C. (1936). "An inequality of the Hölder type, connected with Stieltjes integration". Acta Mathematica. 67 (1): 251–282. doi:10.1007/bf02401743.