चिरसम्मत विद्युत चुंबकत्व और विशेष सापेक्षता: Difference between revisions

From Vigyanwiki
No edit summary
 
(3 intermediate revisions by 3 users not shown)
Line 1: Line 1:
{{Short description|Relationship between relativity and pre-quantum electromagnetism}}
 
{{Use American English|date = March 2019}}
{{electromagnetism|cTopic=Covariance}}
{{electromagnetism|cTopic=Covariance}}


[[शास्त्रीय विद्युत चुंबकत्व|उत्कृष्ट विद्युत चुंबकत्व]] के आधुनिक सिद्धांत में [[विशेष सापेक्षता]] का सिद्धांत एक महत्वपूर्ण भूमिका निभाता है। यह विद्युत चुम्बकीय वस्तुओं, विशेष रूप से [[विद्युत क्षेत्र|विद्युत]] और [[चुंबकीय क्षेत्र|चुंबकीय क्षेत्रों]] के लिए सूत्र देता है, तथा एक [[लोरेंत्ज़ परिवर्तन]] के तहत संदर्भ के एक [[जड़त्वीय फ्रेम]] से दूसरे में बदल जाता हैं। यह बिजली और चुंबकत्व के बीच संबंधों पर प्रकाश डालता है, और यह दर्शाता है कि संदर्भ का ढांचा यह निर्धारित करता है कि कोई अवलोकन स्थिरविद्युत या चुंबकीय नियमो का पालन करता है या नहीं। यह विद्युत चुंबकत्व के नियमों के लिए एक संक्षिप्त और सुविधाजनक संकेतन ,अर्थात् प्रकट रूप से सहसंयोजक प्रदिश रूप को प्रेरित करता है।
[[शास्त्रीय विद्युत चुंबकत्व|चिरसम्मत विद्युत चुंबकत्व]] के आधुनिक सिद्धांत में [[विशेष सापेक्षता]] का सिद्धांत एक महत्वपूर्ण भूमिका निभाता है। यह विद्युत चुम्बकीय वस्तुओं, विशेष रूप से [[विद्युत क्षेत्र|विद्युत]] और [[चुंबकीय क्षेत्र|चुंबकीय क्षेत्रों]] के लिए सूत्र देता है, तथा एक [[लोरेंत्ज़ परिवर्तन]] के तहत संदर्भ के एक [[जड़त्वीय फ्रेम]] से दूसरे में बदल जाता हैं। यह बिजली और चुंबकत्व के बीच संबंधों पर प्रकाश डालता है, और यह दर्शाता है कि संदर्भ का ढांचा यह निर्धारित करता है कि कोई अवलोकन स्थिरविद्युत या चुंबकीय नियमो का पालन करता है या नहीं। यह विद्युत चुंबकत्व के नियमों के लिए एक संक्षिप्त और सुविधाजनक संकेतन ,अर्थात् प्रकट रूप से सहसंयोजक प्रदिश रूप को प्रेरित करता है।


मैक्सवेल के समीकरण, जब उन्हें पहली बार 1865 में उनके पूर्ण रूप में यह बताया गया , कि वे विशेष सापेक्षता के साथ संगत साबित होंगे।<ref>Questions remain about the treatment of accelerating charges: Haskell, "[http://www.cse.secs.oakland.edu/haskell/SpecialRelativity.htm Special relativity and Maxwell's equations.] {{Webarchive|url=https://web.archive.org/web/20080101005238/http://www.cse.secs.oakland.edu/haskell/SpecialRelativity.htm |date=2008-01-01 }}"</ref> इसके अलावा, स्पष्ट संयोग जिसमें दो अलग-अलग पर्यवेक्षकों द्वारा अलग-अलग भौतिक घटनाओं के कारण समान प्रभाव देखा गया था, विशेष सापेक्षता द्वारा कम से कम संयोग नहीं दिखाया जाएगा। वास्तव में, विशेष सापेक्षता पर आइंस्टीन के 1905 के पहले पेपर का आधा, "[[गतिशील शरीर के वैद्युतगतिकी पर]]", बताता है कि मैक्सवेल के समीकरणों को कैसे बदलना है।
मैक्सवेल के समीकरण, जब उन्हें पहली बार 1865 में उनके पूर्ण रूप में यह बताया गया , कि वे विशेष सापेक्षता के साथ संगत साबित होंगे।<ref>Questions remain about the treatment of accelerating charges: Haskell, "[http://www.cse.secs.oakland.edu/haskell/SpecialRelativity.htm Special relativity and Maxwell's equations.] {{Webarchive|url=https://web.archive.org/web/20080101005238/http://www.cse.secs.oakland.edu/haskell/SpecialRelativity.htm |date=2008-01-01 }}"</ref> इसके अलावा, स्पष्ट संयोग जिसमें दो अलग-अलग पर्यवेक्षकों द्वारा अलग-अलग भौतिक घटनाओं के कारण समान प्रभाव देखा गया था, विशेष सापेक्षता द्वारा कम से कम संयोग नहीं दिखाया जाएगा। वास्तव में, विशेष सापेक्षता पर आइंस्टीन के 1905 के पहले पेपर का आधा, "[[गतिशील शरीर के वैद्युतगतिकी पर]]", बताता है कि मैक्सवेल के समीकरणों को कैसे बदलना है।
Line 163: Line 162:
संदर्भ के विभिन्न फ्रेमों में विद्युत और चुंबकीय परिघटनाओं के परस्पर मिश्रण का एक प्रसिद्ध उदाहरण गतिमान चुंबक और चालक समस्या कहलाता है, जिसे आइंस्टीन ने विशेष सापेक्षता पर अपने 1905 के पेपर में उद्धृत किया था।
संदर्भ के विभिन्न फ्रेमों में विद्युत और चुंबकीय परिघटनाओं के परस्पर मिश्रण का एक प्रसिद्ध उदाहरण गतिमान चुंबक और चालक समस्या कहलाता है, जिसे आइंस्टीन ने विशेष सापेक्षता पर अपने 1905 के पेपर में उद्धृत किया था।


यदि एक स्थिर चुंबक के क्षेत्र के माध्यम से एक चालक निरंतर वेग के साथ चलता है, तो चालक में इलेक्ट्रॉनों पर एक चुंबकीय बल के कारण [[एड़ी धाराएं]] उत्पन्न होंगी। चालक के बाकी फ्रेम में, दूसरी ओर, चुंबक गतिमान होगा और चालक स्थिर रहेगा। उत्कृष्ट विद्युत चुम्बकीय सिद्धांत भविष्यवाणी करता है कि सटीक रूप से वही सूक्ष्म भंवर धाराएं उत्पन्न होंगी, लेकिन वे एक विद्युत बल के कारण होंगी।<ref>{{cite book
यदि एक स्थिर चुंबक के क्षेत्र के माध्यम से एक चालक निरंतर वेग के साथ चलता है, तो चालक में इलेक्ट्रॉनों पर एक चुंबकीय बल के कारण [[एड़ी धाराएं]] उत्पन्न होंगी। चालक के बाकी फ्रेम में, दूसरी ओर, चुंबक गतिमान होगा और चालक स्थिर रहेगा। चिरसम्मत विद्युत चुम्बकीय सिद्धांत भविष्यवाणी करता है कि सटीक रूप से वही सूक्ष्म भंवर धाराएं उत्पन्न होंगी, लेकिन वे एक विद्युत बल के कारण होंगी।<ref>{{cite book
|author=David J Griffiths
|author=David J Griffiths
|title=Introduction to electrodynamics
|title=Introduction to electrodynamics
Line 176: Line 175:
== निर्वात में सहपरिवर्ती सूत्रीकरण ==
== निर्वात में सहपरिवर्ती सूत्रीकरण ==


उत्कृष्ट विद्युत चुंबकत्व में नियमों और गणितीय वस्तुओं को एक ऐसे रूप में लिखा जा सकता है जो [[प्रकट रूप से सहसंयोजक]] है। यहां, यह केवल निर्वात के लिए किया जाता है (या सूक्ष्म मैक्सवेल समीकरणों के लिए, [[विद्युत पारगम्यता]] जैसे सामग्रियों के मैक्रोस्कोपिक विवरण का उपयोग नहीं करते हुए), और [[एसआई इकाइयों]] का उपयोग करता है।
चिरसम्मत विद्युत चुंबकत्व में नियमों और गणितीय वस्तुओं को एक ऐसे रूप में लिखा जा सकता है जो [[प्रकट रूप से सहसंयोजक]] है। यहां, यह केवल निर्वात के लिए किया जाता है (या सूक्ष्म मैक्सवेल समीकरणों के लिए, [[विद्युत पारगम्यता]] जैसे सामग्रियों के मैक्रोस्कोपिक विवरण का उपयोग नहीं करते हुए), और [[एसआई इकाइयों]] का उपयोग करता है।


यह खंड [[आइंस्टीन संकेतन]] का उपयोग करता है, जिसमें [[आइंस्टीन योग सम्मेलन]] भी सम्मिलित है। [[प्रदिश]] सूचकांक संकेतन के सारांश के लिए [[घुंघराले पथरी|रिक्की कैलकुलस]] भी देखें, और अधिलेख और अधोलेख सूचकांक की परिभाषाओं के लिए [[सूचकांक बढ़ाना और घटाना|सूचकांक को बढ़ाना और घटाना]], और उनके बीच कैसे स्विच करना है। [[मिन्कोव्स्की मापीय]] [[टेन्सर|प्रदिश]] η के यहाँ [[मीट्रिक हस्ताक्षर|मापीय हस्ताक्षर]] (+ − − −) है।
यह खंड [[आइंस्टीन संकेतन]] का उपयोग करता है, जिसमें [[आइंस्टीन योग सम्मेलन]] भी सम्मिलित है। [[प्रदिश]] सूचकांक संकेतन के सारांश के लिए [[घुंघराले पथरी|रिक्की कैलकुलस]] भी देखें, और अधिलेख और अधोलेख सूचकांक की परिभाषाओं के लिए [[सूचकांक बढ़ाना और घटाना|सूचकांक को बढ़ाना और घटाना]], और उनके बीच कैसे स्विच करना है। [[मिन्कोव्स्की मापीय]] [[टेन्सर|प्रदिश]] η के यहाँ [[मीट्रिक हस्ताक्षर|मापीय हस्ताक्षर]] (+ − − −) है।
Line 212: Line 211:
=== प्रदिश रूप में मैक्सवेल के समीकरण ===
=== प्रदिश रूप में मैक्सवेल के समीकरण ===


{{main|उत्कृष्ट विद्युत चुंबकत्व का सहपरिवर्ती सूत्रीकरण}}
{{main|चिरसम्मत विद्युत चुंबकत्व का सहपरिवर्ती सूत्रीकरण}}


इन प्रदिशो का उपयोग करते हुए, मैक्सवेल के समीकरण कम हो जाते हैं,<ref name="Griffiths, David J. 1998 557"/>
इन प्रदिशो का उपयोग करते हुए, मैक्सवेल के समीकरण कम हो जाते हैं,<ref name="Griffiths, David J. 1998 557"/>
Line 304: Line 303:
{{DEFAULTSORT:Classical Electromagnetism And Special Relativity}}
{{DEFAULTSORT:Classical Electromagnetism And Special Relativity}}


[[Category: Machine Translated Page]]
[[Category:All Wikipedia articles written in American English|Classical Electromagnetism And Special Relativity]]
[[Category:Created On 24/03/2023]]
[[Category:Articles with hatnote templates targeting a nonexistent page|Classical Electromagnetism And Special Relativity]]
[[Category:Vigyan Ready]]
[[Category:Created On 24/03/2023|Classical Electromagnetism And Special Relativity]]
[[Category:Lua-based templates|Classical Electromagnetism And Special Relativity]]
[[Category:Machine Translated Page|Classical Electromagnetism And Special Relativity]]
[[Category:Pages with script errors|Classical Electromagnetism And Special Relativity]]
[[Category:Templates Translated in Hindi|Classical Electromagnetism And Special Relativity]]
[[Category:Templates Vigyan Ready|Classical Electromagnetism And Special Relativity]]
[[Category:Templates that add a tracking category|Classical Electromagnetism And Special Relativity]]
[[Category:Templates that generate short descriptions|Classical Electromagnetism And Special Relativity]]
[[Category:Templates using TemplateData|Classical Electromagnetism And Special Relativity]]
[[Category:Use American English from March 2019|Classical Electromagnetism And Special Relativity]]
[[Category:Webarchive template wayback links]]

Latest revision as of 15:54, 16 October 2023

चिरसम्मत विद्युत चुंबकत्व के आधुनिक सिद्धांत में विशेष सापेक्षता का सिद्धांत एक महत्वपूर्ण भूमिका निभाता है। यह विद्युत चुम्बकीय वस्तुओं, विशेष रूप से विद्युत और चुंबकीय क्षेत्रों के लिए सूत्र देता है, तथा एक लोरेंत्ज़ परिवर्तन के तहत संदर्भ के एक जड़त्वीय फ्रेम से दूसरे में बदल जाता हैं। यह बिजली और चुंबकत्व के बीच संबंधों पर प्रकाश डालता है, और यह दर्शाता है कि संदर्भ का ढांचा यह निर्धारित करता है कि कोई अवलोकन स्थिरविद्युत या चुंबकीय नियमो का पालन करता है या नहीं। यह विद्युत चुंबकत्व के नियमों के लिए एक संक्षिप्त और सुविधाजनक संकेतन ,अर्थात् प्रकट रूप से सहसंयोजक प्रदिश रूप को प्रेरित करता है।

मैक्सवेल के समीकरण, जब उन्हें पहली बार 1865 में उनके पूर्ण रूप में यह बताया गया , कि वे विशेष सापेक्षता के साथ संगत साबित होंगे।[1] इसके अलावा, स्पष्ट संयोग जिसमें दो अलग-अलग पर्यवेक्षकों द्वारा अलग-अलग भौतिक घटनाओं के कारण समान प्रभाव देखा गया था, विशेष सापेक्षता द्वारा कम से कम संयोग नहीं दिखाया जाएगा। वास्तव में, विशेष सापेक्षता पर आइंस्टीन के 1905 के पहले पेपर का आधा, "गतिशील शरीर के वैद्युतगतिकी पर", बताता है कि मैक्सवेल के समीकरणों को कैसे बदलना है।

जड़त्वीय फ्रेम के बीच क्षेत्रों का परिवर्तन

ई और बी क्षेत्र

लोरेंत्ज़ एक विद्युत आवेश को बढ़ावा देता है।शीर्ष, आवेश F फ्रेम में स्थिर है, इसलिए यह प्रेक्षक एक स्थिर विद्युत क्षेत्र देखता है। एक अन्य फ्रेम F' में एक प्रेक्षक, F के सापेक्ष v वेग से गति करता है, और आवेश की गति के कारण लंबाई संकुचन और एक चुंबकीय क्षेत्र B के कारण एक परिवर्तित विद्युत क्षेत्र E के साथ आवेश को वेग -v के साथ गति करता हुआ देखता है।बॉटम, समान सेटअप, आवेश के साथ F' फ्रेम में स्थिर है।

यह समीकरण दो जड़त्वीय फ्रेमों पर विचार करता है। प्राइमित फ्रेम वेग 'v' पर अनप्राइमेड फ्रेम के सापेक्ष घूम रहा है। प्राइमेड फ्रेम में परिभाषित क्षेत्रों को अभाज्य द्वारा निर्दिष्ट किया जाता है, तथा अनप्राइमेड फ्रेम में और परिभाषित क्षेत्रों में अभाज्य की कमी होती है। वेग 'v' के समानांतर क्षेत्र घटकों को और द्वारा निरूपित किया जाता है जबकि v के लम्बवत् क्षेत्र घटकों को और के रूप में दर्शाया जाता है। सापेक्ष वेग v पर चलने वाले इन दो फ़्रेमों में, E-क्षेत्र और B-क्षेत्र निम्न द्वारा संबंधित हैं,[2]

जहां

को लोरेंत्ज़ गुणक कहा जाता है और c मुक्त स्थान में प्रकाश की गति है। उपरोक्त समीकरण इकाइयों की अंतर्राष्ट्रीय प्रणाली में हैं। सीजीएस में , को छोड़कर , को से और को से बदलकर इन समीकरणों को प्राप्त किया जा सकता है। लोरेंत्ज़ गुणक () दोनों प्रणालियों में समान है। v → −v.

को छोड़कर व्युत्क्रम परिवर्तन समान हैं।

एक समतुल्य, वैकल्पिक अभिव्यक्ति है,[3]

जहां वेग इकाई सदिश है। पिछले अंकन के साथ, वास्तव में और होते है।

एक्स-अक्ष के साथ सापेक्ष गति के लिए घटक दर घटक , यह निम्नलिखित के रूप में काम करता है,

यदि संदर्भ के एक फ्रेम में कोई एक क्षेत्र शून्य है, तो इसका मतलब यह नहीं है कि यह संदर्भ के अन्य सभी फ्रेम में शून्य है। उदाहरण के लिए, प्राथमिक विद्युत क्षेत्र में रूपांतरण में अप्रमाणित विद्युत क्षेत्र को शून्य बनाकर इसे देखा जा सकता है। इस स्थिति में, चुंबकीय क्षेत्र के उन्मुखीकरण के आधार पर, प्राथमिक प्रणाली एक विद्युत क्षेत्र देख सकती है, भले ही अप्रकाशित प्रणाली में कोई भी न हो।

इसका मतलब यह नहीं है कि दो फ़्रेमों में घटनाओं के दो पूरी तरह से अलग सेट दिखाई दे रहे हैं, लेकिन यह कि घटनाओं का एक ही क्रम दो अलग-अलग तरीकों से वर्णित है (नीचे गतिशील चुंबक और चालक समस्या देखें)।

यदि आवेश q का एक कण फ्रेम s के संबंध में वेग u के साथ चलता है, तो फ्रेम s में लोरेंत्ज़ बल है,

फ्रेम S' में, लोरेंत्ज़ बल है,

विशिष्ट स्थिति u = 0 के लिए लोरेंत्ज़ बल के रूपांतरण के लिए एक व्युत्पत्ति यहाँ दी गई है।[4] एक अधिक सामान्य स्थिति को यहां देखा जा सकता है।[5]

विद्युत चुम्बकीय प्रदिश (नीचे परिभाषित) को पेश करके इस रूप में परिवर्तनों को और अधिक कॉम्पैक्ट बनाया जा सकता है, जो एक सहसंयोजक प्रदिश है।

D और H क्षेत्र

विद्युत विस्थापन D और चुंबकीय तीव्रता H के लिए, संवैधानिक संबंधों और c2 के परिणाम का उपयोग करके,

प्राप्त किया जा सकता है ,

E और B के अनुरूप, D और H विद्युत चुम्बकीय विस्थापन प्रदिश बनाते हैं।

φ और A क्षेत्र

ईएम क्षेत्र का एक वैकल्पिक सरल परिवर्तन विद्युत चुम्बकीय क्षमता ,- विद्युत क्षमता φ और चुंबकीय क्षमता A का उपयोग करता है,[6]

जहां फ्रेम v के बीच सापेक्ष वेग की दिशा में A का समानांतर घटक है, और लंबवत घटक है। ये पारदर्शी रूप से अन्य लोरेंत्ज़ परिवर्तनों (जैसे समय-स्थिति और ऊर्जा-संवेग) के विशिष्ट रूप से मिलते-जुलते हैं, जबकि ऊपर E और B के परिवर्तन थोड़े अधिक जटिल हैं। घटकों को एक साथ एकत्र किया जा सकता है,

ρ और J क्षेत्र

आवेश घनत्व ρ और धारा घनत्व J के अनुरूप,[6]

घटकों को एक साथ एकत्रित करना,

गैर-सापेक्ष अनुमान

गति v ≪ c के लिए, आपेक्षिक गुणक γ ≈ 1, जो देता है,

ताकि मैक्सवेल के समीकरणों में स्थानिक और लौकिक निर्देशांकों के बीच अंतर करने की कोई आवश्यकता न हो।

बिजली और चुंबकत्व के बीच संबंध

गतिमान आवेशों के बीच बल के एक भाग को हम चुंबकीय बल कहते हैं। यह वास्तव में विद्युत प्रभाव का एक पहलू है।

— रिचर्ड फेनमैन[7]

स्थिरवैद्युतिकी से चुंबकत्व प्राप्त करना

चुना गया संदर्भ फ्रेम यह निर्धारित करता है कि विद्युत चुम्बकीय घटना को विद्युत चुम्बकीय या चुंबकत्व या दोनों के संयोजन के प्रभाव के रूप में देखा जाता है या नहीं। लेखक आमतौर पर विद्युत चुम्बकीय से चुंबकत्व प्राप्त करते हैं जब विशेष सापेक्षता और आवेश निश्चिरता को ध्यान में रखा जाता है। भौतिक विज्ञान पर फेनमैन लेक्चर्स (खंड 2, अध्याय 13-6) इस विधि का उपयोग धारावाही तार के पास में गतिमान आवेश पर "चुंबकीय" बल प्राप्त करने के लिए करता है। हास्केल [8] और लेन्डौ भी देखे।[9]

क्षेत्र अलग-अलग फ़्रेमों में मिश्रित होते हैं

उपरोक्त परिवर्तन नियम दिखाते हैं कि एक फ्रेम में विद्युत क्षेत्र इसके विपरीत दूसरे फ्रेम में चुंबकीय क्षेत्र में योगदान देता है।[10] यह अक्सर यह कहकर वर्णित किया जाता है कि विद्युत क्षेत्र और चुंबकीय क्षेत्र एक ही वस्तु के दो परस्पर संबंधित पहलू हैं, जिन्हें विद्युत चुम्बकीय क्षेत्र कहा जाता है। वास्तव में, पूरे विद्युत चुम्बकीय क्षेत्र को एकल रैंक-2 प्रदिश में प्रदर्शित किया जा सकता है जिसे विद्युत चुम्बकीय प्रदिश कहा जाता है, नीचे देखें।

गतिमान चुंबक और चालक समस्या

संदर्भ के विभिन्न फ्रेमों में विद्युत और चुंबकीय परिघटनाओं के परस्पर मिश्रण का एक प्रसिद्ध उदाहरण गतिमान चुंबक और चालक समस्या कहलाता है, जिसे आइंस्टीन ने विशेष सापेक्षता पर अपने 1905 के पेपर में उद्धृत किया था।

यदि एक स्थिर चुंबक के क्षेत्र के माध्यम से एक चालक निरंतर वेग के साथ चलता है, तो चालक में इलेक्ट्रॉनों पर एक चुंबकीय बल के कारण एड़ी धाराएं उत्पन्न होंगी। चालक के बाकी फ्रेम में, दूसरी ओर, चुंबक गतिमान होगा और चालक स्थिर रहेगा। चिरसम्मत विद्युत चुम्बकीय सिद्धांत भविष्यवाणी करता है कि सटीक रूप से वही सूक्ष्म भंवर धाराएं उत्पन्न होंगी, लेकिन वे एक विद्युत बल के कारण होंगी।[11]

निर्वात में सहपरिवर्ती सूत्रीकरण

चिरसम्मत विद्युत चुंबकत्व में नियमों और गणितीय वस्तुओं को एक ऐसे रूप में लिखा जा सकता है जो प्रकट रूप से सहसंयोजक है। यहां, यह केवल निर्वात के लिए किया जाता है (या सूक्ष्म मैक्सवेल समीकरणों के लिए, विद्युत पारगम्यता जैसे सामग्रियों के मैक्रोस्कोपिक विवरण का उपयोग नहीं करते हुए), और एसआई इकाइयों का उपयोग करता है।

यह खंड आइंस्टीन संकेतन का उपयोग करता है, जिसमें आइंस्टीन योग सम्मेलन भी सम्मिलित है। प्रदिश सूचकांक संकेतन के सारांश के लिए रिक्की कैलकुलस भी देखें, और अधिलेख और अधोलेख सूचकांक की परिभाषाओं के लिए सूचकांक को बढ़ाना और घटाना, और उनके बीच कैसे स्विच करना है। मिन्कोव्स्की मापीय प्रदिश η के यहाँ मापीय हस्ताक्षर (+ − − −) है।

क्षेत्र प्रदिश और 4-धारा

उपरोक्त आपेक्षिक परिवर्तनों से पता चलता है कि, एक प्रतिसममित प्रदिश सेकेंड-रैंक प्रदिश, या एक द्विभाजक ,विद्युत और चुंबकीय क्षेत्र एक साथ मिलकर 6 घटकों के साथ एक गणितीय वस्तु में एक साथ जुड़े हुए हैं। इसे विद्युत चुम्बकीय क्षेत्र प्रदिश कहा जाता है, जिसे आमतौर पर आव्यूह रूप में, Fuv लिखा जाता है।[12]

जहाँ c प्रकाश की गति - प्राकृतिक इकाइयों में c = 1 है।

दोहरे प्रदिश Guv को प्राप्त करने के लिए 'E'/c → 'B' और 'B' → - 'E'/c को प्रतिस्थापित करके विद्युत और चुंबकीय क्षेत्रों को एक प्रतिसममित प्रदिश में विलय करने का एक और तरीका है।

विशेष आपेक्षिकता के संदर्भ में, ये दोनों

,

के अनुसार लोरेंत्ज़ रूपांतरण के अनुसार रूपांतरित होते हैं, जहां Λaν एक संदर्भ फ्रेम से दूसरे संदर्भ फ्रेम में परिवर्तन के लिए लोरेंत्ज़ रूपांतरण प्रदिश है। योग में एक ही प्रदिश का दो बार प्रयोग किया जाता है।

आवेश और धारा घनत्व, क्षेत्रों के स्रोत, भी चार-सदिश

में जुड़ते हैं जिसे चतुर्धारा कहा जाता है।

प्रदिश रूप में मैक्सवेल के समीकरण

इन प्रदिशो का उपयोग करते हुए, मैक्सवेल के समीकरण कम हो जाते हैं,[12]

Maxwell's equations (covariant formulation)

जहां आंशिक अवकलज विभिन्न तरीकों से लिखा जा सकता है, 4 प्रवणता देखें। ऊपर सूचीबद्ध पहला समीकरण गॉस के नियम (β = 0 के लिए) और एम्पीयर-मैक्सवेल नियम (β = 1, 2, 3 के लिए) दोनों से मेल खाता है। दूसरा समीकरण इन दो शेष समीकरणों से मेल खाता है, चुंबकत्व के लिए गॉस का नियम (β = 0 के लिए) और फैराडे का नियम (β = 1, 2, 3 के लिए)।

ये प्रदिश समीकरण प्रकट रूप से सहपरिवर्ती हैं, जिसका अर्थ है कि सूचकांक स्थितियों द्वारा समीकरणों को सहसंयोजक के रूप में देखा जा सकता है। मैक्सवेल के समीकरणों को लिखने का यह संक्षिप्त रूप कुछ भौतिकविदों के बीच साझा किए गए एक विचार को दर्शाता है, अर्थात् भौतिकी के नियम प्रदिश का उपयोग करते हुए लिखे जाने पर एक सरल रूप धारण कर लेते हैं।

Fαβ प्राप्त करने के लिए Fαβ पर सूचकांकों को कम करके ,

दूसरे समीकरण को Fαβ के रूप में लिखा जा सकता है,

कहाँ प्रतिपरिवर्ती लेवी-सीविटा प्रतीक है। इस समीकरण में सूचकांकों के चक्रीय क्रमपरिवर्तन पर ध्यान दें,

एक अन्य सहसंयोजक विद्युत चुम्बकीय वस्तु विद्युत चुम्बकीय तनाव-ऊर्जा प्रदिश है, एक सहसंयोजक रैंक -2 प्रदिश जिसमें पॉयंटिंग सदिश, मैक्सवेल तनाव प्रदिश और विद्युत चुम्बकीय ऊर्जा घनत्व सम्मिलित हैं।

4-विभव

ईएम क्षेत्र प्रदिश को [13]

भी लिखा जा सकता है जहाँ

चार विभव है और

चार-स्थिति है।

लॉरेंज गेज में 4-विभव का उपयोग करते हुए, एक वैकल्पिक प्रकट रूप से सहसंयोजक सूत्रीकरण एकल समीकरण (अर्नोल्ड सोमरफेल्ड द्वारा बर्नहार्ड रीमैन के कारण एक समीकरण का सामान्यीकरण, जिसे रीमैन-सोमरफेल्ड समीकरण के रूप में जाना जाता है,[14] या मैक्सवेल समीकरणों का सहसंयोजक रूप जाना जाता है[15] ) में पाया जा सकता है।

Maxwell's equations (covariant Lorenz gauge formulation)

जहां डी'अलेम्बर्टियन संगुणक है, या चार-लाप्लासियन है।

यह भी देखें

फुटनोट्स

  1. Questions remain about the treatment of accelerating charges: Haskell, "Special relativity and Maxwell's equations. Archived 2008-01-01 at the Wayback Machine"
  2. Tai L. Chow (2006). Electromagnetic theory. Sudbury MA: Jones and Bartlett. p. Chapter 10.21; p. 402–403 ff. ISBN 0-7637-3827-1.
  3. Daniel, Herbert (1997), "4.5.1", Physik: Elektrodynamik, relativistische Physik, Walter de Gruyter, pp. 360–361, ISBN 3-11-015777-2, Extract of pages 360-361
  4. Force Laws and Maxwell's Equations http://www.mathpages.com/rr/s2-02/2-02.htm at MathPages
  5. "संग्रहीत प्रति" (PDF). Archived from the original (PDF) on 2009-02-26. Retrieved 2008-11-06.
  6. 6.0 6.1 The Cambridge Handbook of Physics Formulas, G. Woan, Cambridge University Press, 2010, ISBN 978-0-521-57507-2.
  7. Feynman Lectures Vol. II Ch. 1: Electromagnetism
  8. "New Page 2". Archived from the original on 2008-01-01. Retrieved 2008-04-10.
  9. L D Landau; E M Lifshitz (1980). The classical theory of fields. Course of Theoretical Physics. Vol. 2 (Fourth ed.). Oxford UK: Butterworth-Heinemann. ISBN 0-7506-2768-9.
  10. Tai L. Chow (2006). Electromagnetic theory. Sudbury MA: Jones and Bartlett. p. 395. ISBN 0-7637-3827-1.
  11. David J Griffiths (1999). Introduction to electrodynamics (Third ed.). Prentice Hall. pp. 478–9. ISBN 0-13-805326-X.
  12. 12.0 12.1 Griffiths, David J. (1998). इलेक्ट्रोडायनामिक्स का परिचय (3rd ed.). Prentice Hall. p. 557. ISBN 0-13-805326-X.
  13. DJ Griffiths (1999). इलेक्ट्रोडायनामिक्स का परिचय. Saddle River NJ: Pearson/Addison-Wesley. p. 541. ISBN 0-13-805326-X.
  14. Carver A. Mead (2002-08-07). Collective Electrodynamics: Quantum Foundations of Electromagnetism. MIT Press. pp. 37–38. ISBN 978-0-262-63260-7.
  15. Frederic V. Hartemann (2002). High-field electrodynamics. CRC Press. p. 102. ISBN 978-0-8493-2378-2.