जैक परिवर्तन: Difference between revisions

From Vigyanwiki
No edit summary
m (6 revisions imported from alpha:जैक_परिवर्तन)
 
(One intermediate revision by one other user not shown)
Line 99: Line 99:
[[Category: Machine Translated Page]]
[[Category: Machine Translated Page]]
[[Category:Created On 14/08/2023]]
[[Category:Created On 14/08/2023]]
[[Category:Vigyan Ready]]

Latest revision as of 07:19, 17 October 2023

गणित में, जैक परिवर्तन होता है[1][2](इज़राइल गेलफैंड मैपिंग के रूप में भी जाना जाता है) जिसमे यह निश्चित ऑपरेशन है जो इनपुट के रूप में वेरिएबल का फ़ंक्शन लेता है और आउटपुट के रूप में दो वेरिएबल्स का फ़ंक्शन उत्पन्न करता है। आउटपुट फ़ंक्शन को इनपुट फ़ंक्शन का जैक परिवर्तन कहा जाता है। इस परिवर्तन को अनंत श्रृंखला के रूप में परिभाषित किया गया है जिसमें प्रत्येक पद फ़ंक्शन के पूर्णांक और घातीय फ़ंक्शन द्वारा अनुवाद (ज्यामिति) के फैलाव (एफ़िन ज्यामिति) का उत्पाद है। सिग्नल प्रोसेसिंग के लिए जैक परिवर्तन के अनुप्रयोगों में इनपुट फ़ंक्शन सिग्नल (इलेक्ट्रिकल इंजीनियरिंग) का प्रतिनिधित्व करता है और परिवर्तन सिग्नल का मिश्रित समय-आवृत्ति प्रतिनिधित्व होगा। यह संकेत वास्तविक संख्या या सम्मिश्र संख्या जो कि सम्मिश्र-मूल्यवान हो सकता है, जो निरंतर सेट (उदाहरण के लिए, वास्तविक संख्या) या अलग सेट (उदाहरण के लिए, पूर्णांक या पूर्णांक का सीमित उपसमूह) पर परिभाषित हो सकता है। जैक परिवर्तन असतत फूरियर परिवर्तन का सामान्यीकरण है।[1][2]

ज़ैक परिवर्तन की खोज विभिन्न क्षेत्रों में विभिन्न लोगों द्वारा की गई थी और इसे अलग-अलग नामों से बुलाया गया था। इसे गेलफैंड मैपिंग कहा गया था क्योंकि इज़राइल गेलफैंड ने इसे आइगेनफ़ंक्शन विस्तार पर अपने काम में प्रस्तुत किया था। इस परिवर्तन को 1967 में जोशुआ ज़क द्वारा स्वतंत्र रूप से फिर से खोजा गया था, जिन्होंने इसे k-q प्रतिनिधित्व कहा था। ऐसा प्रतीत होता है कि इस क्षेत्र के विशेषज्ञों के बीच इसे ज़ैक परिवर्तन कहने पर समान्य सहमति है, क्योंकि ज़ैक पहले व्यक्ति थे जिन्होंने अधिक सामान्य सेटिंग में उस परिवर्तन का व्यवस्थित रूप से अध्ययन किया और इसकी उपयोगिता को पहचाना था।[1][2]


निरंतर-समय जैक परिवर्तन: परिभाषा

निरंतर-समय जैक परिवर्तन को परिभाषित करने में, इनपुट फ़ंक्शन वास्तविक वेरिएबल का फ़ंक्शन है। तो, मान लीजिए कि f(t) वास्तविक वेरिएबल t का फ़ंक्शन है। जो कि f(t) का सतत-समय जैक रूपांतरण दो वास्तविक वेरिएबल का फ़ंक्शन है जिनमें से t है। अन्य वेरिएबल को w द्वारा निरूपित किया जा सकता है। जिसका निरंतर-समय जैक परिवर्तन को विभिन्न प्रकार से परिभाषित किया गया है।

परिभाषा 1

मान लीजिए कि a एक धनात्मक स्थिरांक है। ZZa[f], द्वारा निरूपित f(t) का जैक रूपांतरण, t और w द्वारा परिभाषित एक फ़ंक्शन है[1]


.

परिभाषा 2

a = 1 लेकर प्राप्त परिभाषा 1 के विशेष स्थिति को कभी-कभी जैक परिवर्तन की परिभाषा के रूप में लिया जाता है।[2] इस विशेष स्थिति में, f(t) का जैक रूपांतरण Z[f] द्वारा दर्शाया गया है।

.

परिभाषा 3

अंकन Z[f] का उपयोग जैक परिवर्तन के दूसरे रूप को दर्शाने के लिए किया जाता है। इस रूप में, f(t) के जैक रूपांतरण को इस प्रकार परिभाषित किया गया है:

.

परिभाषा 4

माना T एक धनात्मक स्थिरांक है। जो कि ZT[f] द्वारा निरूपित f(t) का जैक रूपांतरण, [2] द्वारा परिभाषित t और w का एक फ़ंक्शन है[2]


.

यहां t और w को 0 ≤ t ≤ T और 0 ≤ w ≤ 1/T की नियमों को पूरा करने वाला माना गया है।

उदाहरण

फ़ंक्शन का जैक रूपांतरण

द्वारा दिया गया है

जहाँ सबसे छोटे पूर्णांक को दर्शाता है जो (सील फ़ंक्शन) से कम नहीं हो।

ज़क परिवर्तन के गुण

निम्नलिखित में यह माना जाएगा कि जैक परिवर्तन परिभाषा 2 में दिया गया है।

1. रैखिकता

मान लीजिए a और b कोई वास्तविक या सम्मिश्र संख्याएँ हैं। तब

2. आवधिकता

3. अर्ध-आवधिकता

4. संयुग्मन

5. समरूपता

यदि f(t) तब भी है
यदि f(t) विषम है तो

6. कनवल्शन

होने देना वेरिएबल t के संबंध में कनवल्शन को निरूपित करें।


विपरीत सूत्र

किसी फ़ंक्शन के जैक रूपांतरण को देखते हुए, फ़ंक्शन को निम्नलिखित सूत्र का उपयोग करके पुनर्निर्मित किया जा सकता है:


असतत जैक परिवर्तन: परिभाषा

मान लीजिए एक पूर्णांक वेरिएबल (एक अनुक्रम) का एक फलन है । जो कि का असतत जैक रूपांतरण दो वास्तविक वेरिएबल का एक फलन है, जिनमें से एक पूर्णांक वेरिएबल है। अन्य वेरिएबल एक वास्तविक वेरिएबल है जिसे द्वारा दर्शाया जा सकता है। असतत जैक परिवर्तन को भी विभिन्न प्रकार से परिभाषित किया गया है। चूँकि, नीचे केवल एक परिभाषा दी गई है।

परिभाषा

फ़ंक्शन का असतत जैक रूपांतरण जहां एक पूर्णांक वेरिएबल है, जिसे द्वारा दर्शाया गया है, द्वारा परिभाषित किया गया है


विपरीत सूत्र

किसी फ़ंक्शन के असतत परिवर्तन को देखते हुए, फ़ंक्शन को निम्नलिखित सूत्र का उपयोग करके पुनर्निर्मित किया जा सकता है:


अनुप्रयोग

ज़ैक परिवर्तन का भौतिकी में क्वांटम क्षेत्र सिद्धांत में सफलतापूर्वक उपयोग किया गया है,[3] यह इलेक्ट्रिकल इंजीनियरिंग में सिग्नलों के समय-आवृत्ति प्रतिनिधित्व और डिजिटल डेटा ट्रांसमिशन में। जैक परिवर्तन का गणित में भी अनुप्रयोग है। उदाहरण के लिए, इसका उपयोग गैबोर प्रतिनिधित्व समस्या में किया गया है।

संदर्भ

  1. 1.0 1.1 1.2 1.3 "जैक परिवर्तन". Encyclopedia of Mathematics. Retrieved 15 December 2014.
  2. 2.0 2.1 2.2 2.3 2.4 Alexander D. Poularikas, ed. (2010). परिवर्तन और अनुप्रयोग पुस्तिका (3rd ed.). CRC Press. pp. 16.1–16.21. ISBN 978-1-4200-6652-4.
  3. J. Klauder, B.S. Skagerstam (1985). सुसंगत राज्य. World Scientific.