प्राथमिक अंकगणित: Difference between revisions

From Vigyanwiki
No edit summary
 
(19 intermediate revisions by 4 users not shown)
Line 1: Line 1:
{{Short description|Numbers and the basic operations on them}}
{{multiple issues|
{{tone|date=मार्च 2012}}
{{More footnotes|date=मई 2010}}
}}
[[File:Arithmetic symbols.svg|thumb|प्रारंभिक स्तर के गणित संचालन के लिए प्रतीक। ऊपर से बायाँ मुड़ते हुए, जोड़, घटाव, गुणा, और भाग के लिए हम हिंदी में निम्नलिखित लिख सकते हैं,जोड़ (+) घटाव (-) गुणा (×) भाग (/)]]'''प्राथमिक [[ अंकगणित |अंकगणित]]'''गणित की एक शाखा है जो बुनियादी संख्यात्मक संचालन जैसे [[जोड़]], [[ घटाव | घटाव]], [[ गुणा |गुणा]] और [[भाग]] (गणित) से संबंधित है। अपने निम्न स्तर के अमूर्तन, अनुप्रयोग की विस्तृत श्रृंखला और सभी गणित की मूलभूत नींव होने के कारण, प्रारंभिक अंकगणित गणित की सबसे अधिक पढ़ाई जाने वाली शाखा है।
[[File:Arithmetic symbols.svg|thumb|प्रारंभिक स्तर के गणित संचालन के लिए प्रतीक। ऊपर से बायाँ मुड़ते हुए, जोड़, घटाव, गुणा, और भाग के लिए हम हिंदी में निम्नलिखित लिख सकते हैं,जोड़ (+) घटाव (-) गुणा (×) भाग (/)]]'''प्राथमिक [[ अंकगणित |अंकगणित]]'''गणित की एक शाखा है जो बुनियादी संख्यात्मक संचालन जैसे [[जोड़]], [[ घटाव | घटाव]], [[ गुणा |गुणा]] और [[भाग]] (गणित) से संबंधित है। अपने निम्न स्तर के अमूर्तन, अनुप्रयोग की विस्तृत श्रृंखला और सभी गणित की मूलभूत नींव होने के कारण, प्रारंभिक अंकगणित गणित की सबसे अधिक पढ़ाई जाने वाली शाखा है।


Line 19: Line 14:
{{Main|गणना#गणित में गणना}}
{{Main|गणना#गणित में गणना}}


गिनती में सेट में प्रत्येक ऑब्जेक्ट को एक प्राकृतिक संख्या निर्दिष्ट करना, पहली ऑब्जेक्ट के लिए एक से शुरू करना और प्रत्येक बाद की ऑब्जेक्ट के लिए एक से बढ़ाना शामिल है। गिनती प्रारंभिक अंकगणित में एक मौलिक अवधारणा है जिसमें एक सेट में प्रत्येक वस्तु को एक प्राकृतिक संख्या निर्दिष्ट करना शामिल है, पहली वस्तु के लिए 1 से शुरू होता है और प्रत्येक बाद की वस्तु के लिए 1 से बढ़ता है। गिनती की प्रक्रिया सेट में प्रत्येक वस्तु को एक अद्वितीय प्राकृतिक संख्या प्रदान करती है, शून्य के अपवाद के साथ जो किसी भी वस्तु को नहीं दिया जाता है। सेट में वस्तुओं की संख्या को गिनती के रूप में जाना जाता है और सेट में किसी वस्तु को निर्दिष्ट उच्चतम प्राकृतिक संख्या के बराबर होता है।
गिनती में सेट में उपस्थित प्रत्येक वस्तु को एक प्राकृतिक संख्या से निर्दिष्ट करना तथा पहली वस्तु के लिए एक से शुरू होकर और प्रत्येक बाद की वस्तु के लिए एक से बढ़ना सम्मिलित होता है। सेट में वस्तु की संख्या गिनती है और [[सेट]] में किसी वस्तु को निर्दिष्ट उच्चतम प्राकृतिक संख्या के बराबर जाना जाता है। इस गिनती को सेट की [[गणनांक]] के रूप में भी जाना जाता है।  


गिनती को मिलान चिह्नों का उपयोग करके मिलान करने की प्रक्रिया के रूप में भी सोचा जा सकता है, जिसमें एक सेट में प्रत्येक वस्तु के लिए एक चिह्न बनाना शामिल है। इस पद्धति का उपयोग अक्सर बड़ी मात्रा में वस्तुओं को जल्दी से गिनने के लिए किया जाता है।
गिनती [[मिलान चिह्नों]] का उपयोग करके मिलान करने, सेट में प्रत्येक वस्तु के लिए एक चिह्न बनाने की प्रक्रिया भी हो सकती है।


एक बुनियादी गणितीय कौशल होने के अलावा, गिनती का उपयोग विभिन्न प्रकार की वास्तविक दुनिया की स्थितियों में किया जाता है जैसे कि पैसे गिनना, रेसिपी में सामग्री को मापना और इन्वेंट्री का ट्रैक रखना। गणित में सफलता के लिए समझना और गिनने में सक्षम होना आवश्यक है और प्रारंभिक अंकगणित का एक महत्वपूर्ण हिस्सा है।
अधिक उन्नत गणित में, गिनती की प्रक्रिया को एक सेट के तत्वों और सेट {1, ..., n} के बीच [[एकैक फलन पत्राचार]] (या [[आक्षेप]]) के निर्माण के रूप में सोचा जा सकता है, जहां n एक है प्राकृतिक संख्या, और समुच्चय का आकार n है।


=== उदाहरण ===
== जोड़ ==
7 सेबों की गिनती करने के लिए, हम पहले सेब को नंबर 1 निर्दिष्ट करके शुरू कर सकते हैं, और फिर बाद के प्रत्येक सेब के लिए 1 की वृद्धि कर सकते हैं। सभी सेबों की गिनती करते समय पहुंची अंतिम संख्या गिनती, या सेट में वस्तुओं की संख्या है। इस गिनती को सेट की कार्डिनालिटी के रूप में भी जाना जाता है।
{{Main|जोड़}}
 
गिनती करते समय, यह ध्यान रखना आवश्यक नहीं है कि कौन सा संख्यात्मक लेबल किस वस्तु से मेल खाता है। इसके बजाय, हम उन वस्तुओं के सबसेट पर ध्यान केंद्रित कर सकते हैं जिन्हें पहले ही लेबल किया जा चुका है और उस जानकारी का उपयोग बिना लेबल वाली वस्तुओं की पहचान करने के लिए कर सकते हैं। हालांकि, अगर हम व्यक्तियों की गिनती कर रहे हैं, तो यह उन्हें व्यवस्थित करने और प्रत्येक व्यक्ति को सौंपे गए संख्यात्मक लेबल को ट्रैक करने में मददगार हो सकता है। यह हमें संख्यात्मक लेबल बढ़ाने के क्रम में व्यक्तियों को पंक्तिबद्ध करने की अनुमति देता है। ऐसा करने के लिए, जो प्रतिभागी लाइन में अपनी स्थिति के बारे में अनिश्चित हैं, वे एक दूसरे से उनकी संख्या पूछ सकते हैं और फिर उसी के अनुसार खुद को पुनर्व्यवस्थित कर सकते हैं।
 
उच्च गणित में, गिनती की प्रक्रिया को एक से एक पत्राचार के निर्माण के रूप में माना जा सकता है | एक-से-एक पत्राचार, या आपत्ति, एक सेट के तत्वों और सेट {1, ..., एन} के बीच, जहां n एक प्राकृतिक संख्या है। यह सेट के आकार को n के रूप में स्थापित करता है।


== जोड़ ==
जोड़ एक गणितीय संक्रिया है जो दो या दो से अधिक संख्याओं को जोड़ती है,जिन्हें जोड़ या सारांश कहा जाता है, जिससे अंतिम संख्या उत्पन्न होती है, जिसे योग कहा जाता है। दो संख्याओं का योग धन चिह्न "+" का उपयोग करके व्यक्त किया जाता है इसे निम्नलिखित नियमों के अनुसार किया जाता है,
{{Main|Addition}}
जोड़ एक गणितीय संक्रिया है जो दो संख्याओं को जोड़ती है, जिन्हें जोड़ या जोड़ कहते हैं, एक तीसरी संख्या उत्पन्न करने के लिए, जिसे योग कहा जाता है। यह एक मूलभूत संक्रिया है जो प्रारंभिक स्तर पर सिखाई जाती है और अधिक जटिल गणितीय गणना करने के लिए आवश्यक है। जोड़ अक्सर धन चिह्न + का उपयोग करके लिखा जाता है और निम्नलिखित नियमों के अनुसार किया जाता है:


* दो संख्याओं का योग उनके अलग-अलग मूल्यों को जोड़कर प्राप्त संख्या के बराबर है। उदाहरण के लिए, 3 और 4 का योग 7 है, क्योंकि 3 और 4 का जोड़ 7 है।
* दो संख्याओं का योग उनके व्यक्तिगत मानों को जोड़ने पर प्राप्त संख्या के बराबर होता है।
* जिस क्रम में जोड़ जोड़े जाते हैं वह योग को प्रभावित नहीं करता है। यह संपत्ति, जिसे जोड़ की क्रमविनिमेय संपत्ति के रूप में जाना जाता है, बताती है कि 3 और 4 का योग 4 और 3 के योग के बराबर है।
* जिस क्रम में जोड़ जोड़े जाते हैं वह योग को प्रभावित नहीं करता है। इस गुण को जोड़ के [[क्रमविनिमेय गुण]] के रूप में जाना जाता है।
* दो संख्याओं का योग अद्वितीय है, जिसका अर्थ है कि संख्याओं के किसी भी जोड़े के योग के लिए केवल एक ही सही उत्तर है।
* दो संख्याओं का योग अद्वितीय होता है, जिसका अर्थ है कि संख्याओं के किसी भी जोड़े के योग के लिए केवल एक ही सही उत्तर होता है।
* जोड़ की एक व्युत्क्रम संक्रिया होती है, जिसे घटाव कहते हैं, जिसका उपयोग दो संख्याओं के बीच का अंतर ज्ञात करने के लिए किया जा सकता है। उदाहरण के लिए, 7 और 3 के बीच का अंतर 4 है, क्योंकि 7 घटा 3 बराबर 4 है।
* जोड़ में एक व्युत्क्रम संचालन होता है, जिसे घटाव कहा जाता है, जिसका उपयोग दो संख्याओं के बीच अंतर जानने के लिए किया जा सकता है।


जोड़ का उपयोग विभिन्न संदर्भों में किया जाता है, जिसमें मात्राओं की तुलना करना, मात्राओं को जोड़ना, मापना और अलग करना शामिल है। इसके अलावा, यह प्रतीक + का उपयोग करके प्रदर्शित किया जा सकता है और क्रमविनिमेय संपत्ति का अनुसरण करता है, जिसका अर्थ है कि जोड़ का क्रम योग को प्रभावित नहीं करता है। जब अंकों की एक जोड़ी का परिणाम दो अंकों की संख्या में होता है, तो दस अंकों को अतिरिक्त एल्गोरिथ्म में कैरी डिजिट के रूप में संदर्भित किया जाता है। प्रारंभिक अंकगणित में, छात्र आमतौर पर पूर्ण संख्याओं और दशमलवों को जोड़ना सीखते हैं, और ऋणात्मक संख्याओं और भिन्नों जैसे अधिक उन्नत विषयों के बारे में भी सीख सकते हैं।
जोड़ का उपयोग विभिन्न संदर्भों में किया जाता है, जिसमें मात्राओं की तुलना करना, मात्राओं को जोड़ना और मापना सम्मिलित है। जब अंकों की एक जोड़ी का योग दो अंकों की संख्या में परिणत होता है, तो "दहाई" अंक को जोड़ कलन विधि में "कैरी अंक" के रूप में जाना जाता है। प्रारंभिक अंकगणित में, छात्र सामान्यतः पूर्ण संख्याओं और दशमलवों को जोड़ना सीखते हैं, और ऋणात्मक संख्याओं और भिन्नों जैसे अधिक उन्नत विषयों के बारे में भी सीख सकते हैं।


==== उदाहरण ====
==== उदाहरण ====
संख्या 653 और 274 का प्रयोग करके, इकाई के स्तंभ से प्रारंभ करके, हम पाते हैं कि तीन और चार का योग सात है।
संख्या 653 और 274 को एक के कॉलम  से शुरू करते हुए जोड़ने पर तीन और चार का योग सात होता है।


{| cellspacing="0" cellpadding="2px"
{| cellspacing="0" cellpadding="2px"
|
|
|Hundreds  
|सैकड़ों  
|Tens  
|दसियों  
|'''''Ones'''''
|'''''एक'''''  
|-
|-
| ||6 ||5 ||3
| ||6 ||5 ||3
Line 58: Line 47:
| || || ||7
| || || ||7
|}
|}
अगला, दस-स्तंभ। 5 और 7 का योग 12 है, जिसमें दो अंक हैं। 12 का अंतिम अंक दहाई-स्तंभ के नीचे लिखा जाता है, जबकि पहला अंक सैकड़ा-स्तंभ के ऊपर कैरी अंक के रूप में लिखा जाता है।
50 और 70 का योग 120 है। 120 से दहाई का अंक दहाई के कॉलम के नीचे लिखा जाता है, जबकि सैकड़ों का अंक सैकड़ों के कॉलम के ऊपर कैरी अंक के रूप में लिखा जाता है।


{| cellspacing="0" cellpadding="2px"
{| cellspacing="0" cellpadding="2px"
|
|
|Hundreds  
|सैकड़ों  
|'''''Tens'''''
|'''''दसियों'''''
|Ones
|एक
|-
|-
| ||'''1'''|| ||
| ||'''1'''|| ||
Line 74: Line 63:
| || ||2 ||7
| || ||2 ||7
|}
|}
अगला, सैकड़ा-स्तंभ। 6 और 2 का योग 8 है, लेकिन कैरी अंक मौजूद है, जो 8 में जोड़ा गया है, 9 के बराबर है।
600 और 200 का योग 800 है, लेकिन कैरी अंक उपस्थित है, जिसे 800 में जोड़ने पर 900 आता है।


{| cellspacing="0" cellpadding="2px"
{| cellspacing="0" cellpadding="2px"
|
|
|'''''Hundreds'''''
|'''''सैकड़ों'''''
|Tens  
|दसियों  
|Ones
|एक
|-
|-
| ||'''1'''|| ||
| ||'''1'''|| ||
Line 90: Line 79:
| ||9 ||2 ||7
| ||9 ||2 ||7
|}
|}
जोड़ने के लिए कोई अन्य अंक नहीं हैं, इसलिए एल्गोरिथम समाप्त हो गया है, परिणामस्वरूप निम्न समीकरण प्राप्त होता है:
परिणाम,


:<math>653 + 274 = 927</math>
:<math>653 + 274 = 927</math>
== घटाव ==
== घटाव ==
{{Main|Subtraction}}
{{Main|घटाव}}
घटाव दो संख्याओं के बीच के अंतर को खोजने की प्रक्रिया है, जहां न्यूनतम वह संख्या है जिसमें से घटाया जा रहा है, और सबट्रेंड वह संख्या है जिसे घटाया जा रहा है। इसे सांकेतिक रूप से ऋण चिह्न (-) द्वारा दर्शाया जाता है। उदाहरण के लिए, बयान पाँच घटा तीन बराबर दो को 5 - 3 = 2 के रूप में लिखा जा सकता है।
घटाव का उपयोग दो संख्याओं के बीच अंतर का मूल्यांकन करने के लिए किया जाता है, जहां व्यवकल्य वह संख्या होता है जिससे घटाया जाता है, और व्यवकलित वह संख्या होता है जो घटाया जाता है। इसे ऋण चिह्न (-) का उपयोग करके दर्शाया जाता है।
 
घटाव क्रमविनिमेय नहीं है, जिसका अर्थ है कि संक्रिया में संख्याओं का क्रम परिणाम को बदल सकता है। उदाहरण के लिए, 3 - 5, 5 - 3 के समान नहीं है। प्रारंभिक अंकगणित में, सकारात्मक परिणाम उत्पन्न करने के लिए लघुअंड हमेशा घटाव से बड़ा होता है। तथापि, यदि लघुअंड, उपवर्ग से छोटा है, तो परिणाम ऋणात्मक होगा।


दो संख्याओं के बीच अंतर खोजने के अलावा, घटाव का उपयोग अन्य संदर्भों में अलग करने, संयोजन करने या मात्राओं को खोजने के लिए भी किया जा सकता है। उदाहरण के लिए, टॉम के पास 8 सेब हैं। वह 3 सेब देता है। उसके पास कितने बचे हैं? अलगाव का प्रतिनिधित्व करता है, जबकि टॉम के पास 8 सेब हैं। तीन सेब हरे हैं और बाकी लाल हैं। कितने लाल हैं? संयोजन का प्रतिनिधित्व करता है। कुछ मामलों में, समूह में वस्तुओं की कुल संख्या का पता लगाने के लिए भी घटाव का उपयोग किया जा सकता है, जैसे टॉम के पास कुछ सेब थे। जेन ने उसे 3 और सेब दिए, तो अब उसके पास 8 सेब हो गए। उसने कितने से शुरुआत की?
घटाव क्रमविनिमेय नहीं है, जिसका अर्थ है कि संक्रिया में संख्याओं का क्रम परिणाम को बदल सकता है। उदाहरण के लिए, 3 - 5, 5 - 3 के समान नहीं है। प्रारंभिक अंकगणित में, सकारात्मक परिणाम उत्पन्न करने के लिए व्यवकल्य हमेशा व्यवकलित से बड़ा होता है।


घटाव को पूरा करने के कई तरीके हैं। [[ संयुक्त राज्य अमेरिका ]] में जिस विधि को [[ पारंपरिक गणित ]] कहा जाता है, वह प्राथमिक विद्यालय के छात्रों को हाथ की गणना के लिए उपयुक्त विधियों का उपयोग करके घटाना सिखाती है।<ref>{{Cite web |title=Everyday Mathematics4 at Home |url=https://everydaymath.uchicago.edu/parents/4th-grade/em4-at-home/vocab/4-1-9-us-traditional-subtraction.html |website=Everyday Mathematics Online |access-date=December 26, 2022}}</ref> उपयोग की जाने वाली विशेष विधि अलग-अलग देशों में भिन्न होती है, और एक देश के भीतर, अलग-अलग समय पर अलग-अलग तरीके फैशन में होते हैं। सुधार गणित को आम तौर पर किसी विशिष्ट तकनीक के लिए वरीयता की कमी से अलग किया जाता है, दूसरी कक्षा के छात्रों को गणना के अपने तरीकों का आविष्कार करने के लिए मार्गदर्शन द्वारा प्रतिस्थापित किया जाता है, जैसे संख्याओं, डेटा और अंतरिक्ष में जांच के मामले में नकारात्मक संख्याओं के गुणों का उपयोग करना।
घटाव का उपयोग अन्य संदर्भों में मात्राओं को अलग करने, संयोजित करने और खोजने के लिए भी किया जाता है। उदाहरण के लिए, "टॉम के पास 8 सेब हैं। वह 3 सेब दे देता है। उसके पास अब कितने बचे हैं?" एक विभाजन को प्रतिष्ठापित करता है, जबकि "टॉम के पास 8 सेब हैं। तीन सेब हरे हैं, और शेष सभी लाल हैं। कितने लाल हैं?" संयोजन को प्रतिष्ठापित करता है। कुछ स्थितियों में, किसी समूह में वस्तुओं की कुल संख्या ज्ञात करने के लिए घटाव का भी उपयोग किया जा सकता है, जैसे कि "टॉम के पास कुछ सेब थे। जेन ने उसे 3 और सेब दिए, तो अब उसके पास 8 सेब हैं। उसने कितने से प्रारम्भ की थी?"


अमेरिकी स्कूल वर्तमान में उधार लेने और अंकन की एक प्रणाली जिसे बैसाखी कहा जाता है, का उपयोग करके घटाव की एक विधि सिखाते हैं। हालांकि उधार लेने की एक विधि को पाठ्यपुस्तकों में पहले जाना और प्रकाशित किया गया था, जाहिर तौर पर बैसाखियां विलियम ए. ब्राउनेल|विलियम ए. ब्रोवेल का आविष्कार हैं, जिन्होंने नवंबर 1937 में एक अध्ययन में उनका उपयोग किया था।<ref>{{Cite web |last=Ross |first=Susan |title=Subtraction in the United States: An Historical Perspective |url=http://math.coe.uga.edu/tme/issues/v10n2/5ross.pdf |access-date=June 25, 2019 |website=Microsoft Word - Issue 2 -9/23/}}</ref> यह प्रणाली उस समय अमेरिका में उपयोग में आने वाले घटाव के अन्य तरीकों को विस्थापित करते हुए तेजी से पकड़ी गई।
घटाव को पूरा करने की कई विधियाँ हैं। [[पारंपरिक गणित]] पद्धति प्राथमिक विद्यालय के छात्रों को हाथ की गणना के लिए उपयुक्त तरीकों का उपयोग करके घटाना सिखाती है। [[सुधार गणित]] को सामान्यतः किसी विशिष्ट तकनीक के लिए प्राथमिकता की कमी से अलग किया जाता है, जिसे दूसरी कक्षा के छात्रों को गणना के अपने तरीकों का आविष्कार करने के लिए मार्गदर्शन द्वारा प्रतिस्थापित किया जाता है, जैसे कि [[टीईआरसी]] के मामले में नकारात्मक संख्याओं के गुणों का उपयोग करना।


कुछ यूरोपीय देशों में छात्रों को सिखाया जाता है, और कुछ पुराने अमेरिकी घटाव की एक विधि का उपयोग करते हैं जिसे ऑस्ट्रियन पद्धति कहा जाता है, जिसे अतिरिक्त विधि के रूप में भी जाना जाता है। इस पद्धति में कोई उधार नहीं है। बैसाखी (स्मृति की सहायता के लिए चिह्न) भी हैं जो देश के अनुसार अलग-अलग हैं।<ref>{{Cite web |last=Klapper |first=Paul |date=1916 |title=The Teaching of Arithmetic: A Manual for Teachers. pp. 177 |url=https://archive.org/details/teachingarithme00klapgoog/page/n190/mode/2up |access-date=2016-03-11}}</ref><ref>{{Cite web |last=Smith |first=David Eugene |date=1913 |title=The Teaching of Arithmetic. pp. 77 |url=https://archive.org/details/bub_gb_A7NJAAAAIAAJ/page/n85/mode/2up |access-date=2016-03-11}}</ref>
[[ संयुक्त राज्य अमेरिका |संयुक्त राज्य अमेरिका]] में जिस विधि को [[ पारंपरिक गणित | पारंपरिक गणित]] कहा जाता है, वह प्राथमिक विद्यालय के छात्रों को हाथ की गणना के लिए उपयुक्त विधियों का उपयोग करके घटाना सिखाती है।<ref>{{Cite web |title=Everyday Mathematics4 at Home |url=https://everydaymath.uchicago.edu/parents/4th-grade/em4-at-home/vocab/4-1-9-us-traditional-subtraction.html |website=Everyday Mathematics Online |access-date=December 26, 2022}}</ref> उपयोग की जाने वाली विशेष विधि अलग-अलग देशों में भिन्न होती है, और एक देश के भीतर, अलग-अलग समय पर अलग-अलग तरीके फैशन में होते हैं। सुधार गणित को सामान्यतः किसी विशिष्ट तकनीक के लिए वरीयता की कमी से अलग किया जाता है, दूसरी कक्षा के छात्रों को गणना के अपने तरीकों का आविष्कार करने के लिए मार्गदर्शन द्वारा प्रतिस्थापित किया जाता है, जैसे संख्याओं, डेटा और अंतरिक्ष में जांच के मामले में नकारात्मक संख्याओं के गुणों का उपयोग करना।
उधार लेने की विधि में, घटाव की सुविधा के लिए 86 - 39 जैसी घटाव की समस्या को दहाई के स्थान से 10 को इकाई के स्थान में जोड़ने के लिए उधार लेकर हल किया जा सकता है। उदाहरण के लिए, 6 में से 9 घटाने के लिए, हम दहाई के स्थान से 10 उधार ले सकते हैं, जिससे समस्या (70 + 16) - 39 हो जाएगी। यह 8 को काटकर, इसके ऊपर 7 लिखकर और 1 लिखकर इंगित किया जाता है। 6 के ऊपर। इन चिह्नों को बैसाखी कहा जाता है। 9 को फिर 16 से घटाया जाता है, जिसके परिणामस्वरूप 7 का मान होता है, और 30 को 70 से घटाया जाता है, जिसके परिणामस्वरूप 40 का मान होता है। अंतिम परिणाम 47 है।


जोड़ने की विधि में घटाव को कम करने के बजाय घटाव को बढ़ाना शामिल है, जैसा कि उधार लेने की विधि में होता है। यह समस्या को (80 + 16) - (39 + 10) में बदल देता है। सबट्रेंड अंक के नीचे रिमाइंडर के रूप में एक छोटा 1 चिह्नित किया गया है। इसके बाद ऑपरेशन किए जाते हैं: 9 को 16 से घटाकर 7 प्राप्त किया जाता है, और 40 का परिणाम प्राप्त करने के लिए 40 (30 + 10) को 80 से घटाया जाता है। अंतिम परिणाम अभी भी 47 है।
अमेरिकी स्कूल वर्तमान में उधार का उपयोग करके घटाव की विधि सिखाते हैं। हालाँकि, उधार लेने की एक विधि पूर्व पाठ्यपुस्तकों में ज्ञात और प्रकाशित की गई थी।<ref>{{Cite web |last=Ross |first=Susan |title=Subtraction in the United States: An Historical Perspective |url=http://math.coe.uga.edu/tme/issues/v10n2/5ross.pdf |access-date=June 25, 2019 |website=Microsoft Word - Issue 2 -9/23/}}</ref> "क्रचेस" [[विलियम ए. ब्रोवेल]] का आविष्कार है, जिन्होंने नवंबर 1937 में एक अध्ययन में उनका उपयोग किया था। उधार लेने की विधि में, घटाव की सुविधा के लिए इकाई के स्थान पर जोड़ने के लिए दहाई के स्थान से 10 उधार लेकर 86-39 जैसी घटाव समस्या को हल किया जा सकता है। उदाहरण के लिए, 6 में से 9 घटाने पर दहाई के स्थान से 10 उधार लेना सम्मिलित है, जिससे समस्या (70 + 16) - 39 हो जाती है। इसे 8 को काटकर, उसके ऊपर 7 लिखकर, और 6 के ऊपर 1 लिखकर दर्शाया जाता है। इन चिह्नों को "क्रचेस" कहा जाता है।


जोड़ विधि के दो रूप हैं, जो उनकी प्रस्तुति में भिन्न हैं। पहली भिन्नता में, हम 9 को 6 से घटाने का प्रयास करते हैं, और फिर 9 को 16 से घटाते हैं, एक 10 उधार लेते हैं और इसे अगले कॉलम में सबट्रेंड के अंक के पास चिह्नित करते हैं। दूसरी भिन्नता में, हम एक अंक खोजने की कोशिश करते हैं, जो 9 में जोड़ने पर हमें 6 देता है। जब यह संभव नहीं होता है, तो हम 16 देते हैं और 16 के 10 को 1 के रूप में लेते हैं, इसे उसी अंक के पास चिह्नित करते हैं जैसे कि पहली विधि। अंकन दोनों भिन्नताओं में समान हैं, यह केवल प्राथमिकता का मामला है कि हम उनकी उपस्थिति को कैसे समझाते हैं।
कुछ यूरोपीय देशों में छात्रों को पढ़ाया जाता है, और कुछ पुराने अमेरिकी घटाव की एक विधि का उपयोग किया जाता हैं जिसे ऑस्ट्रियाई विधि कहा जाता है, जिसे जोड़ विधि के रूप में भी जाना जाता है। इस पद्धति में कोई उधार नहीं लेना पड़ता।


यह ध्यान रखना महत्वपूर्ण है कि 100 - 87 जैसे मामलों में उधार लेने की विधि अधिक जटिल हो सकती है, जहां कई कॉलमों से उधार लेना आवश्यक है। इस मामले में, सैकड़े के स्थान से 100 लेकर, उसमें से 10 10 बनाकर, और तुरंत दहाई के स्थान से 10 उधार लेकर इकाई के स्थान पर रखकर न्यूनतम को 90 + 10 के रूप में फिर से लिखा जा सकता है। इसका परिणाम दहाई के स्थान पर 9 10 का मान और इकाई के स्थान पर 10 का मान होता है।
कुछ यूरोपीय देशों में छात्रों को सिखाया जाता है, और कुछ पुराने अमेरिकी घटाव की एक विधि का उपयोग करते हैं जिसे ऑस्ट्रियन पद्धति कहा जाता है, जिसे अतिरिक्त विधि के रूप में भी जाना जाता है। इस पद्धति में कोई उधार नहीं है। ऐसी क्रचेस भी  हैं जो देश के अनुसार अलग-अलग होती हैं। <ref>{{Cite web |last=Klapper |first=Paul |date=1916 |title=The Teaching of Arithmetic: A Manual for Teachers. pp. 177 |url=https://archive.org/details/teachingarithme00klapgoog/page/n190/mode/2up |access-date=2016-03-11}}</ref><ref>{{Cite web |last=Smith |first=David Eugene |date=1913 |title=The Teaching of Arithmetic. pp. 77 |url=https://archive.org/details/bub_gb_A7NJAAAAIAAJ/page/n85/mode/2up |access-date=2016-03-11}}</ref> यह समस्या को (80 + 16) - (39 + 10) में बदल देता है। अनुस्मारक के रूप में व्यवकलित अंक के नीचे एक छोटा 1 अंकित है।


=== उदाहरण ===
=== उदाहरण ===
संख्या 792 और 308 के बीच अंतर खोजने के लिए, व्यक्ति को इकाई-स्तंभ से शुरू करना चाहिए, जिसमें 2 8 से छोटा है, इसलिए हमें 90 से 10 उधार लेना चाहिए, जिससे 90 80 बन जाए। हम इस 10 को 2 में जोड़ते हैं, जो बदलता है 12 - 8 की समस्या, जो कि 4 है।
संख्या 792 और 308 को घटाने पर, इकाई-स्तंभ से प्रारंभ करते हुए, 2, 8 से छोटा है, 90 से 10 को उधार लेते हैं, जिससे 90 को 80 बना दिया जाता है। इस 10 को 2 में जोड़ने पर, समस्या 12 - 8 में बदल जाती है, जो कि 4 है।


{|cellspacing=0 cellpadding=2px
{|cellspacing=0 cellpadding=2px
|
|
|Hundreds  
|सैकड़ों  
|Tens  
|दसियों  
|'''''Ones'''''
|'''''एक'''''
|-
|-
| || ||'''8'''||'''12'''
| || ||'''8'''||'''12'''
Line 133: Line 117:
| || || ||4
| || || ||4
|}
|}
अगला दहाई-स्तंभ है। चूँकि हमने 90 में से 10 लिया, यह अब 80 है, जिसका अर्थ है कि हमें 80 और 0 का अंतर खोजना होगा, जो कि सिर्फ 80 है।
90 में से 10 लेने पर यह अब 80 है। 80 और 0 के बीच का अंतर 80 है।


{|cellspacing=0 cellpadding=2px
{|cellspacing=0 cellpadding=2px
|
|
|Hundreds  
|सैकड़ों  
|'''''Tens'''''
|'''''दसियों'''''
|Ones
|एक
|-
|-
| || ||'''8'''||'''12'''
| || ||'''8'''||'''12'''
Line 149: Line 133:
| || ||8||4
| || ||8||4
|}
|}
अगला सैकड़ा-स्तंभ है। 700 और 300 का अंतर 400 है।
700 और 300 के बीच का अंतर 400 है।


{|cellspacing=0 cellpadding=2px
{|cellspacing=0 cellpadding=2px
|
|
|'''''Hundreds'''''
|'''''सैकड़ों'''''
|Tens  
|दसियों  
|Ones
|एक
|-
|-
| || ||'''8'''||'''12'''
| || ||'''8'''||'''12'''
Line 165: Line 149:
| ||4||8||4
| ||4||8||4
|}
|}
एल्गोरिथ्म पूरा हो गया है और परिणाम देता है:
परिणाम,


:<math>792 - 308 = 484</math>
:<math>792 - 308 = 484</math>


== गुणन ==
== गुणन ==
{{Main|Multiplication}}गुणन एक गणितीय संक्रिया है जो जोड़ की पुनरावृत्ति को संदर्भित करता है। जब दो संख्याओं को आपस में गुणा किया जाता है, तो परिणामी मान गुणनफल कहलाता है। गुणा की जाने वाली संख्याओं को कारक कहा जाता है, साथ ही गुण्य और गुणक का भी उपयोग किया जाता है।
{{Main|गुणन}}
 
गुणन बार-बार जोड़ने की एक गणितीय संक्रिया है। जब दो संख्याओं को आपस में गुणा किया जाता है, तो परिणामी मान गुणनफल कहलाता है। गुणा की जाने वाली संख्याओं को गुणितांक और गुणक कहा जाता है और कुल मिलाकर गुणनखंड के रूप में जाना जाता है।
 
उदाहरण के लिए, यदि पाँच थैले हैं, जिनमें से प्रत्येक में तीन सेब हैं, और सभी पाँच थैलों में से सेब एक खाली थैले में रखे गए हैं, तो खाली थैले में 15 सेब होंगे। इसे निम्नलिखित रूपों में लिखा जा सकता है, "पांच गुणा तीन बराबर है पंद्रह" "पांच गुणा तीन पंद्रह है" "पंद्रह पांच और तीन का गुणनफल है


उदाहरण के लिए, यदि पाँच थैले हैं, प्रत्येक में तीन सेब हैं, और सभी पाँच थैलों में से सेब एक खाली थैले में रखे गए हैं, तो खाली थैले में 15 सेब होंगे। इसे पांच गुना तीन बराबर पंद्रह या पांच गुना तीन पंद्रह के रूप में व्यक्त किया जा सकता है या पंद्रह पांच और तीन का उत्पाद है। गुणा को बार-बार जोड़ के रूप में माना जा सकता है, जहां पहला कारक इंगित करता है कि दूसरी कारक एक साथ कितनी बार जोड़ा जाता है।
"गुणाकार को प्रतिष्ठापित करने के लिए, गुणन चिह्न (×), एस्ट्रिस्क (*), ब्रैकेट (), या डॉट (⋅) का प्रयोग किया जाता है।" इसलिए, कथन "पांच गुना तीन बराबर पंद्रह" को "5 × 3 = 15", "5 * 3 = 15", "(5)(3) = 15", या "5 ⋅ 3 = 15" के रूप में लिखा जा सकता है। [[बीजगणित]] में, गुणाकार चिह्न को छोड़ा जा सकता है, उदाहरण के लिए,  xy, x × y को दर्शाता है।


गुणन चिह्न (×), साथ ही तारक (*) और कोष्ठक () का उपयोग करके गुणन का प्रतिनिधित्व किया जाता है। इसलिए, कथन पांच गुना तीन बराबर पंद्रह को 5 × 3 = 15, 5 * 3 = 15, या (5)(3) = 15 के रूप में लिखा जा सकता है। कुछ देशों में और उन्नत अंकगणित में, अन्य प्रतीकों का उपयोग किया जा सकता है, जैसे डॉट (⋅)। बीजगणित में, जहाँ संख्याओं को अक्षरों से दर्शाया जा सकता है, गुणन चिह्न को छोड़ा जा सकता है; उदाहरण के लिए, xy, x × y को प्रदर्शित करता है।
दो संख्याओं को गुणा करने का क्रम परिणाम को प्रभावित नहीं करता है। इसे गुणन के क्रमविनिमेय गुण के रूप में जाना जाता है।


जिस क्रम में दो संख्याओं को गुणा किया जाता है वह परिणाम को प्रभावित नहीं करता है। इसे गुणन का क्रमविनिमेय गुण कहते हैं। गुणन एल्गोरिथ्म में, अंकों की एक जोड़ी के गुणनफल के दहाई अंक को कैरी अंक कहा जाता है। तालिका का उपयोग करके अंकों की एक जोड़ी को गुणा करने के लिए, पहले अंक की पंक्ति और दूसरे अंक के कॉलम के चौराहे का पता लगाना चाहिए, जिसमें दो अंकों का उत्पाद होगा। अंकों के अधिकांश जोड़े दो अंकों की संख्या में परिणत होते हैं।
गुणन कलन विधि में, अंकों की एक जोड़ी के उत्पाद के दसवें अंक को "कैरी अंक" कहा जाता है। तालिका का उपयोग करके अंकों की एक जोड़ी को गुणा करने के लिए, पहले अंक की पंक्ति और दूसरे अंक के कॉलम के प्रतिच्छेदन का पता लगाना होगा, जिसमें दो अंकों का उत्पाद सम्मिलित होगा। अधिकांश अंकों के युग्म परिणाम दो अंकों की संख्याओं में होता है।


==== एक अंक के कारक के लिए गुणन एल्गोरिथम का उदाहरण ====
==== एकल-अंकीय गुणनखंड के लिए गुणन का उदाहरण ====
संख्या 729 और 3 का उपयोग करके, इकाई-स्तंभ से शुरू करके, 9 और 3 का गुणनफल 27 होता है। 7 को इकाई-स्तंभ के नीचे लिखा जाता है और 2 को दहाई-स्तंभ के ऊपर कैरी अंक के रूप में लिखा जाता है।
729 और 3 को गुणा करने पर, इकाई के कॉलम से शुरू करते हुए, 9 और 3 का गुणनफल 27 होता है। एक के कॉलम के नीचे 7 लिखा जाता है और दहाई के कॉलम के ऊपर कैरी अंक के रूप में 2 लिखा जाता है।


{|cellspacing=0 cellpadding=2px
{|cellspacing=0 cellpadding=2px
|
|
|Hundreds  
|सैकड़ों  
|Tens  
|दसियों  
|'''''Ones'''''
|'''''एक'''''
|-
|-
| || ||'''2'''||
| || ||'''2'''||
Line 195: Line 183:
| || || ||7
| || || ||7
|}
|}
अगला, दस-स्तंभ। 2 और 3 का गुणनफल 6 है, और कैरी अंक 2 से 6 जोड़ता है, इसलिए 8 को दहाई-स्तंभ के नीचे लिखा जाता है।
2 और 3 का गुणनफल 6 है, और कैरी अंक 2 से 6 जोड़ता है, इसलिए दहाई कॉलम के नीचे 8 लिखा जाता है।


{|cellspacing=0 cellpadding=2px
{|cellspacing=0 cellpadding=2px
|
|
|Hundreds  
|सैकड़ों  
|'''''Tens'''''
|'''''दसियों'''''
|Ones
|एक
|-
|-
| ||7 ||2 ||9
| ||7 ||2 ||9
Line 209: Line 197:
| || ||8 ||7
| || ||8 ||7
|}
|}
अगला, सैकड़ा-स्तंभ। 7 और 3 का गुणनफल 21 है, और चूंकि यह अंतिम अंक है, 2 को कैरी अंक के रूप में नहीं लिखा जाएगा, बल्कि 1 के बगल में लिखा जाएगा।
7 और 3 का गुणनफल 21 है, और चूँकि यह अंतिम अंक है, इसलिए 2 को कैरी अंक के रूप में नहीं लिखा जाएगा, बल्कि 1 के समीप में लिखा जाएगा।


{|cellspacing=0 cellpadding=2px
{|cellspacing=0 cellpadding=2px
|
|
|'''''Hundreds'''''
|'''''सैकड़ों'''''
|Tens  
|दसियों  
|Ones
|एक
|-
|-
| || 7 || 2 || 9
| || 7 || 2 || 9
Line 223: Line 211:
|2 ||1 ||8 ||7
|2 ||1 ||8 ||7
|}
|}
गुण्य का कोई भी अंक बिना गुणित के नहीं छोड़ा गया है, इसलिए एल्गोरिथम समाप्त हो जाता है, जिसके परिणामस्वरूप निम्न समीकरण प्राप्त होता है:
परिणाम,
:<math>3 \times 729 = 2187</math>
:<math>3 \times 729 = 2187</math>
 
==== बहु-अंकीय गुणनखंडों के लिए गुणन का उदाहरण ====
 
789 और 345 को इकाई-स्तंभ से गुणा करने पर, 789 और 5 का गुणनफल 3945 होता है।
==== बहु-अंकीय कारकों के लिए गुणन एल्गोरिथ्म का उदाहरण ====
मान लीजिए कि हमारा उद्देश्य दो संख्याओं, 789 और 345 का गुणनफल ज्ञात करना है।
{|
|7 ||8 ||9
|-
|3 ||4 ||5
|}
पहला भाग, इकाई-स्तंभ से शुरू करते हुए, 789 और 5 का गुणनफल 3945 है।
{| cellspacing=0 cellpadding=2px
{| cellspacing=0 cellpadding=2px
| ||7 ||8 ||9
| ||7 ||8 ||9
Line 242: Line 222:
|3 ||9 ||4 ||5
|3 ||9 ||4 ||5
|}
|}
फिर दहाई-कॉलम। हम गुणक 4 का उपयोग कर रहे हैं, जो दहाई के अंक में है। इसका मतलब है कि हम गुणक 40 का उपयोग कर रहे हैं, न कि 4। हमें इस वजह से उत्तर के अंत में एक 0 जोड़ना चाहिए। 789 और 40 का गुणनफल 31560 है।
4 दहाई अंक में है। गुणक 40 है, 4 नहीं। 789 और 40 का गुणनफल 31560 है।
{|cellspacing=0 cellpadding=2px
{|cellspacing=0 cellpadding=2px
|-
|-
Line 257: Line 237:
|1 ||5 ||6 ||0  
|1 ||5 ||6 ||0  
|}
|}
अगला, सैकड़ा-स्तंभ। चूंकि हम गुणक 3 का उपयोग कर रहे हैं और वह सैकड़े के अंक में है, इसका मतलब है कि यह गुणक 300 है, और इसलिए 789 और 300 का गुणनफल 236700 है।
3 सैकड़े के अंक में है। गुणक 300 है। 789 और 300 का गुणनफल 236700 है।
{|cellspacing=0 cellpadding=2px
{|cellspacing=0 cellpadding=2px
|
|
Line 279: Line 259:
|6 ||7 ||0 ||0  
|6 ||7 ||0 ||0  
|}
|}
दूसरा भाग, अब हमारे पास हमारे सभी उत्पाद हैं। 789 और 345 का कुल गुणनफल ज्ञात करने के लिए, हमें अपने सभी गुणनफलों का योग ज्ञात करना होगा।
सभी उत्पादों को जोड़कर,
{|cellspacing=0 cellpadding=2px
{|cellspacing=0 cellpadding=2px
| || || || ||7 ||8 ||9
| || || || ||7 ||8 ||9
Line 293: Line 273:
| ||2 ||7 ||2 ||2 ||0 ||5
| ||2 ||7 ||2 ||2 ||0 ||5
|}
|}
उदाहरण का उत्तर है
परिणाम,
:<math>789 \times 345 = 272205</math>.
:<math>789 \times 345 = 272205</math>.


== विभाग ==
== विभाजन ==
{{Main|Division (mathematics)|Long division}}
{{Main|विभाजन (गणित)|विस्तृत विभाजन}}
गणित में, विशेष रूप से प्रारंभिक अंकगणित में, विभाजन एक अंकगणितीय संक्रिया है जो गुणन का व्युत्क्रम है।
 
भाग एक अंकगणितीय संक्रिया है जो [[गुणन]] का व्युत्क्रम है।
 
विशेष रूप से, एक संख्या ''a'' और एक गैर-शून्य संख्या ''b'' दी गई है, यदि कोई अन्य संख्या ''c'' गुणा ''b'' ''a'' के बराबर है, अर्थात
:<math>c \times b = a</math>,
:तो a को b से विभाजित करने पर c बराबर होता है। वह


विशेष रूप से, एक संख्या ''a'' और एक गैर-शून्य संख्या ''b'' दी गई है, यदि कोई अन्य संख्या ''c'' गुणा ''b'' ''a'' के बराबर है, वह है:
:<math>c \times b = a</math>
तो ए विभाजित बी बराबर सी। वह है:
:<math>\frac ab = c</math>
:<math>\frac ab = c</math>
उदाहरण के लिए,
:है, उदाहरण के लिए,
:<math>\frac 63 = 2</math>
जबसे
:<math>2 \times 3 = 6</math>.


उपरोक्त अभिव्यक्ति में, a को 'लाभांश', b को 'भाजक' और c को 'भागफल' कहा जाता है। [[ शून्य से विभाजन ]] - जहां विभाजक शून्य है - प्राथमिक अंकगणित में या तो अर्थहीन या अपरिभाषित कहा जाता है।
:<math>\frac 63 = 2</math> ।
उपरोक्त अभिव्यक्ति में, a को 'लाभांश', b को 'भाजक' और c को 'भागफल' कहा जाता है। प्रारंभिक अंकगणित में[[ शून्य से विभाजन | शून्य से विभाजन]] को या तो अर्थहीन या अपरिभाषित कहा जाता है।


=== डिवीजन नोटेशन ===
विभाजन को विभाजक के ऊपर एक क्षैतिज रेखा, जिसे [[विनकुलम|रेखा कोष्ठक]] भी कहा जाता है, तथा इसके बीच रखकर दिखाया जा सकता है। उदाहरण के लिए, a को b से विभाजित करने पर इस प्रकार लिखा जाता है, <math>\frac ab</math>
विभाजन को अक्सर एक क्षैतिज रेखा के साथ विभाजक पर लाभांश रखकर दिखाया जाता है, जिसे उनके बीच विनकुलम (प्रतीक) भी कहा जाता है। उदाहरण के लिए, a से विभाजित b को इस प्रकार लिखा जाता है:
:<math>\frac ab</math>
इसे ए डिवाइडेड बाय बी या ए ओवर बी के रूप में जोर से पढ़ा जा सकता है। विभाजन को एक पंक्ति में व्यक्त करने का एक तरीका यह है कि लाभांश, फिर एक [[ स्लैश (विराम चिह्न) ]], फिर विभाजक, इस प्रकार लिखा जाए:
:<math>a/b</math>
अधिकांश कंप्यूटर [[ प्रोग्रामिंग भाषा ]]ओं में विभाजन निर्दिष्ट करने का यह सामान्य तरीका है क्योंकि इसे आसानी से वर्णों के सरल अनुक्रम के रूप में टाइप किया जा सकता है।


एक हस्तलिखित या टाइपोग्राफ़िकल भिन्नता - जो इन दो रूपों के बीच में है - एक ठोस (विराम चिह्न) (अंश स्लैश) का उपयोग करता है, लेकिन लाभांश को बढ़ाता है और विभाजक को कम करता है, इस प्रकार है:
यह मौखिक रूप से "a विभाजित b" या "a ऊपर b" के रूप में पढ़ा जा सकता है।
 
विभाजन को एक पंक्ति में व्यक्त करने का दूसरा तरीका यह है कि लाभांश, फिर [[स्लैश|स्लैश (विराम चिह्न)]], फिर भाजक को इस प्रकार लिखें,
 
<math>a/b</math>
 
अधिकांश कंप्यूटर [[ प्रोग्रामिंग भाषा | प्रोग्रामिंग लैंग्वेज]] में विभाजन निर्दिष्ट करने का यह सामान्य तरीका है।
 
एक हस्तलिखित या मुद्रण भिन्नता एक [[सॉलिडस]] (अंश स्लैश) का उपयोग करती है लेकिन लाभांश को बढ़ाती है और भाजक को कम करती है,


:{{frac|''a''|''b''}}
:{{frac|''a''|''b''}}
इनमें से किसी भी रूप का उपयोग [[ अंश (गणित) ]] प्रदर्शित करने के लिए किया जा सकता है। एक सामान्य अंश एक विभाजन अभिव्यक्ति है जहां लाभांश और भाजक दोनों पूर्णांक होते हैं (हालांकि आमतौर पर अंश और भाजक कहा जाता है), और इसका कोई निहितार्थ नहीं है कि विभाजन को आगे मूल्यांकन करने की आवश्यकता है।
इन सभी रूपों का उपयोग एक [[भिन्न]] को प्रदर्शित करने के लिए किया जा सकता है। एक सामान्य भिन्न एक विभाजन अभिव्यक्ति है जहां लाभांश और भाजक दोनों [[संख्याएं]] हैं (हालांकि सामान्यतः अंश और हर कहा जाता है), और इसका कोई निहितार्थ नहीं है कि विभाजन का आगे मूल्यांकन करने की आवश्यकता है।
 
विभाजन दिखाने का एक अधिक बुनियादी तरीका इस तरह से [[ ओबिलिस्क ]] (या विभाजन चिन्ह) का उपयोग करना है:
:<math>a \div b.</math>
:<math>a \div b.</math>
अस्पष्ट होने के कारण बुनियादी अंकगणित को छोड़कर यह रूप दुर्लभ है और अधिक जटिल अंकगणित के लिए निराश है।{{Clarify|reason=What's ambiguous about it?|date=January 2023}} उदाहरण के लिए, [[ कैलकुलेटर ]] की कुंजी पर एक लेबल के रूप में, ओबेलस का उपयोग अकेले डिवीजन ऑपरेशन का प्रतिनिधित्व करने के लिए भी किया जाता है।
अस्पष्ट होने के कारण बुनियादी अंकगणित को छोड़कर यह रूप दुर्लभ है और अधिक जटिल अंकगणित के लिए निराश है। उदाहरण के लिए, [[ कैलकुलेटर ]] की कुंजी पर एक लेबल के रूप में, ओबेलस का उपयोग अकेले डिवीजन ऑपरेशन का प्रतिनिधित्व करने के लिए भी किया जाता है।
 
कुछ गैर-[[ अंग्रेजी भाषा ]]-भाषी संस्कृतियों में, ए डिवाइडेड बाय बी लिखा जाता है {{nowrap|''a'' : ''b''}}. हालांकि, अंग्रेजी उपयोग में [[ बृहदान्त्र (विराम चिह्न) ]] [[ अनुपात ]] की संबंधित अवधारणा को व्यक्त करने के लिए प्रतिबंधित है (फिर a से b है)।


गुणन सारणी के ज्ञान के साथ, दो संख्याओं को लंबे विभाजन की विधि का उपयोग करके कागज पर विभाजित किया जा सकता है। दीर्घ विभाजन, [[ लघु विभाजन ]] का एक संक्षिप्त संस्करण छोटे विभाजकों के लिए भी उपयोग किया जा सकता है।
कुछ गैर-[[ अंग्रेजी भाषा | अंग्रेजी भाषी]] -संस्कृतियों में, "a को b से विभाजित" को a : b लिखा जाता है। है {{nowrap|''a'' : ''b''}}. हालांकि, अंग्रेजी उपयोग में [[ बृहदान्त्र (विराम चिह्न) |अपूर्ण विराम]][[ अनुपात ]]की अवधारणा ("a से b") तक ही सीमित है।


एक कम व्यवस्थित पद्धति - लेकिन जो सामान्य रूप से विभाजन की अधिक समग्र समझ की ओर ले जाती है - इसमें [[ चंकिंग (विभाजन) ]] की अवधारणा शामिल है। प्रत्येक चरण में आंशिक शेष से अधिक गुणकों को घटाने की अनुमति देकर, अधिक फ्री-फॉर्म विधियों को भी विकसित किया जा सकता है।
गुणन सारणी के ज्ञान के साथ, दो संख्याओं को लंबे विभाजन की विधि का उपयोग करके कागज पर विभाजित किया जा सकता है। [[दीर्घ विभाजन]] विधि का उपयोग करके दो संख्याओं को कागज पर विभाजित किया जा सकता है। दीर्घ विभाजन, [[लघु विभाजन]] का संक्षिप्त रूप, छोटे भाजक के लिए भी उपयोग किया जा सकता है।


वैकल्पिक रूप से, यदि लाभांश में एक अंश (गणित) अल भाग ([[ दशमलव अंश ]] के रूप में व्यक्त) है, तो कोई व्यक्ति जहाँ तक वांछित हो, एल्गोरिथम को उसके स्थान से आगे बढ़ा सकता है। यदि विभाजक का दशमलव भिन्नात्मक भाग है, तब तक दोनों संख्याओं में दशमलव को दाईं ओर ले जाकर समस्या को फिर से दोहराया जा सकता है जब तक कि विभाजक के पास कोई अंश न हो।
एक कम व्यवस्थित विधि में[[ चंकिंग (विभाजन) | खंडीयन]] की अवधारणा सम्मिलित है। जिसमें प्रत्येक चरण में आंशिक शेष से अधिक गुणकों को घटाना सम्मिलित है।


एक अंश से विभाजित करने के लिए, उस अंश के व्युत्क्रम (ऊपर और नीचे के हिस्सों की स्थिति को उलट कर) से गुणा किया जा सकता है, उदाहरण के लिए:
किसी भिन्न से विभाजित करने के लिए, कोई व्यक्ति उस भिन्न के व्युत्क्रम (ऊपर और नीचे के हिस्सों की स्थिति को उलट कर) से गुणा कर सकता है। उदाहरण के लिए,


:<math>\textstyle{5 \div {1 \over 2} = 5 \times {2 \over 1} = 5 \times 2 = 10}</math>
:<math>\textstyle{5 \div {1 \over 2} = 5 \times {2 \over 1} = 5 \times 2 = 10}</math>
:<math>\textstyle{{2 \over 3} \div {2 \over 5} = {2 \over 3} \times {5 \over 2} = {10 \over 6} = {5 \over 3}}</math>
:<math>\textstyle{{2 \over 3} \div {2 \over 5} = {2 \over 3} \times {5 \over 2} = {10 \over 6} = {5 \over 3}}</math>
==== उदाहरण ====
==== उदाहरण ====
आइए हम 272 और 8 का भागफल ज्ञात करें। सैकड़े के अंक से शुरू करते हुए, 2, 8 से विभाज्य नहीं है। इसलिए, हमें दहाई के अंक 7 तक जाना चाहिए, और 27 प्राप्त करने के लिए 20 को 7 में जोड़ना चाहिए। क्रम में 27 और 8 को [[ विभाजित ]] करें, हमें सबसे बड़े सामान्य भाजक (जीसीडी) द्वारा लाभांश घटाना चाहिए, जो कि सबसे बड़ा सकारात्मक पूर्णांक है जो प्रत्येक पूर्णांक में विभाजित होता है। 27 और 8 का GCD 24 है। 27 में से 24 घटाने पर 3 मिलता है, इसलिए 3 को दहाई-कॉलम के नीचे लिखा जाना चाहिए।
272 और 8 को सैकड़ों अंकों से विभाजित करने पर, 2, 8 से विभाज्य नहीं होता है, 20 को 7 में जोड़ने पर 27 प्राप्त होता है। 27 और 8 को विभाजित करने के लिए, हमें लाभांश को [[महानतम सामान्य भाजक|महत्तम सामान्य भाजक]] (जीसीडी) से घटाना होगा। 27 और 8 की जीसीडी 24 है। 27 में से 24 घटाने पर 3 मिलता है।


{|cellspacing=0 cellpadding=2px
{|cellspacing=0 cellpadding=2px
Line 351: Line 328:
| || ||3||
| || ||3||
|}
|}
8, 3 से बड़ा है, इसलिए हमें विभाजन जारी रखने के लिए इकाई के अंक की ओर जाना चाहिए, जिसमें संख्या 2 है। हम 3 को 2 के आगे रखते हैं और 32 प्राप्त करते हैं, जो 8 से विभाज्य है, और इसलिए भागफल 32 और 8, 4 होता है। 4 को इकाई-स्तंभ के नीचे लिखा जाता है।
8, 3 से बड़ा है, इसलिए हमें विभाजन जारी रखने के लिए इकाई के अंक की ओर जाना चाहिए, जिसमें संख्या 2 है। 30 और 2 को जोड़ने पर 32 प्राप्त होता है, जो 8 से विभाज्य है, और 32 और 8 का भागफल 4 होता है। 4 को इकाई-स्तंभ के नीचे लिखा जाता है।


{|cellspacing=0 cellpadding=2px
{|cellspacing=0 cellpadding=2px
Line 360: Line 337:
| || ||3||4
| || ||3||4
|}
|}
कोई अन्य अंक शेष नहीं हैं, और हम जाँच सकते हैं कि 34 वास्तव में उत्तर है, 272 प्राप्त करने के लिए भाजक, 8 के साथ भागफल को गुणा करके। इस प्रकार, एल्गोरिथ्म पूरा हो गया है, परिणाम प्राप्त कर रहा है:
परिणाम
:<math>272 \div 8 = 34</math>
:<math>272 \div 8 = 34</math>
== शैक्षिक मानक ==
== शैक्षिक मानक ==
प्राथमिक अंकगणित आमतौर पर प्राथमिक या माध्यमिक विद्यालय स्तरों पर पढ़ाया जाता है और स्थानीय शैक्षिक मानकों द्वारा शासित होता है। संयुक्त राज्य अमेरिका और कनाडा में प्रारंभिक अंकगणित पढ़ाने के लिए प्रयुक्त सामग्री और विधियों के बारे में बहस हुई है। एक मुद्दा कैलकुलेटर बनाम मैन्युअल संगणना का उपयोग रहा है, कुछ तर्क के साथ कि मानसिक अंकगणितीय कौशल को बढ़ावा देने के लिए कैलकुलेटर का उपयोग सीमित होना चाहिए। एक और बहस पारंपरिक और सुधार गणित के बीच अंतर पर केंद्रित है, जिसमें पारंपरिक तरीके अक्सर बुनियादी संगणना कौशल और सुधार के तरीकों पर अधिक ध्यान केंद्रित करते हैं, उच्च-स्तरीय गणितीय अवधारणाओं जैसे कि [[ बीजगणित ]], सांख्यिकी और समस्या-समाधान पर अधिक जोर देते हैं।
प्राथमिक अंकगणित सामान्यतः प्राथमिक या माध्यमिक विद्यालय स्तर पर पढ़ाया जाता है और स्थानीय शैक्षिक मानकों द्वारा शासित होता है। संयुक्त राज्य अमेरिका और कनाडा में, प्रारंभिक अंकगणित पढ़ाने के लिए उपयोग की जाने वाली सामग्री और विधियों के बारे में बहस चल रही है।एक मुद्दा मैन्युअल गणना बनाम कैलकुलेटर का उपयोग रहा है, कुछ लोगों का तर्क है कि मानसिक अंकगणितीय कौशल को बढ़ावा देने के लिए कैलकुलेटर का उपयोग सीमित होना चाहिए। एक और बहस पारंपरिक और सुधार गणित के बीच अंतर पर केंद्रित है, पारंपरिक तरीकों में अक्सर बुनियादी गणना कौशल और सुधार विधियों पर अधिक ध्यान केंद्रित किया जाता है, जो बीजगणित, सांख्यिकी और समस्या-समाधान जैसी उच्च-स्तरीय गणितीय अवधारणाओं पर अधिक जोर देते हैं।
 
संयुक्त राज्य अमेरिका में, 1989 के [[ गणित के शिक्षकों की राष्ट्रीय परिषद (NCTM) ]]NCTM) के मानकों ने प्राथमिक विद्यालय के पाठ्यक्रम में एक बदलाव का नेतृत्व किया, जो कॉलेज पर अधिक ध्यान देने के पक्ष में पारंपरिक रूप से प्राथमिक अंकगणित का हिस्सा माने जाने वाले कुछ विषयों पर जोर देता है या छोड़ देता है। -स्तर की अवधारणाएं जैसे कि बीजगणित और सांख्यिकी। यह बदलाव विवादास्पद रहा है, कुछ तर्क के साथ कि इसके परिणामस्वरूप बुनियादी संगणना कौशल पर जोर देने की कमी हुई है जो बाद की गणित कक्षाओं में सफलता के लिए महत्वपूर्ण हैं।


== सामान्यीकरण ==
संयुक्त राज्य अमेरिका में, 1989 के[[ गणित के शिक्षकों की राष्ट्रीय परिषद (NCTM) | राष्ट्रीय गणित शिक्षक परिषद (एनसीटीएम)]] के मानकों ने प्राथमिक विद्यालय के पाठ्यक्रम में एक बदलाव का नेतृत्व किया, जिसमें कॉलेज पर अधिक ध्यान केंद्रित करने के पक्ष में पारंपरिक रूप से प्रारंभिक अंकगणित का हिस्सा माने जाने वाले कुछ विषयों पर जोर नहीं दिया गया या हटा दिया गया- जिसमे [[बीजगणित]] और [[सांख्यिकी]] जैसी स्तरीय अवधारणाएँ बनी रही। यह बदलाव विवादास्पद रहा है, कुछ लोगों का तर्क है कि इसके परिणामस्वरूप बुनियादी गणना कौशल पर जोर देने की कमी हो गई है जो बाद की गणित कक्षाओं में सफलता के लिए महत्वपूर्ण हैं।
 
प्राथमिक अंकगणित गणित की एक शाखा है जिसमें जोड़, घटाव, गुणा और भाग के बुनियादी संचालन शामिल हैं। इन संक्रियाओं का उपयोग आम तौर पर वास्तविक संख्याओं के साथ किया जाता है, जो इन संक्रियाओं और उनके व्युत्क्रमों से सुसज्जित होने पर एक [[ क्षेत्र (गणित) ]] बनाती हैं। एक क्षेत्र वस्तुओं का एक समूह है जिसे जोड़ा जा सकता है, घटाया जा सकता है, गुणा किया जा सकता है, और अपेक्षित नियमों का पालन करने वाले तरीकों से विभाजित किया जा सकता है, जैसे सहयोगी और वितरण गुण।
 
जबकि वास्तविक संख्याएँ एक क्षेत्र का एक प्रसिद्ध उदाहरण हैं, वहाँ कई अन्य प्रकार के क्षेत्र हैं जो वास्तविक संख्याओं से भिन्न व्यवहार कर सकते हैं। उदाहरण के लिए, मॉड्यूलर पूर्णांक अंकगणितीय सापेक्ष एक अभाज्य संख्या भी एक क्षेत्र है। अंकगणित के नियमों को और भी शिथिल करने से अन्य बीजगणितीय संरचनाएँ बन सकती हैं, जैसे कि विभाजन वलय और समाकल डोमेन|अभिन्न डोमेन।


== यह भी देखें ==
== यह भी देखें ==
*प्रारंभिक अंकज्ञान
*[[प्रारंभिक अंकगणित]]
* [[ प्रारंभिक गणित ]]
* [[ प्रारंभिक गणित ]]
* चंकिंग (विभाजन)
* [[खंडीयन (विभाजन)]]
*[[ प्लस और माइनस संकेत ]]
*[[ प्लस और माइनस संकेत ]]
*शून्य से विभाजन
*[[पीनो अभिगृहीत]]
*[[शून्य से विभाजन]]
*[[ वास्तविक संख्या ]]
*[[ वास्तविक संख्या ]]
*[[ काल्पनिक संख्या ]]
*[[ काल्पनिक संख्या ]]
Line 386: Line 356:
==संदर्भ==
==संदर्भ==
{{Reflist}}
{{Reflist}}
==बाहरी कड़ियाँ==
==बाहरी कड़ियाँ==
*[http://www.wdl.org/en/item/2863 "A Friendly Gift on the Science of Arithmetic"] is an Arabic document from the 15th century that talks about basic arithmetic.
*[http://www.wdl.org/en/item/2863 "A Friendly Gift on the Science of Arithmetic"] is an Arabic document from the 15th century that talks about basic arithmetic.
Line 393: Line 361:
{{Elementary arithmetic}}
{{Elementary arithmetic}}
{{Authority control}}
{{Authority control}}
[[Category:प्राथमिक अंकगणित |प्राथमिक अंकगणित ]][[श्रेणी:गणित शिक्षा]]




[[Category: Machine Translated Page]]
[[Category:All articles lacking in-text citations]]
[[Category:All articles with style issues]]
[[Category:Articles lacking in-text citations from मई 2010]]
[[Category:Articles with hatnote templates targeting a nonexistent page]]
[[Category:Articles with invalid date parameter in template]]
[[Category:Articles with multiple maintenance issues]]
[[Category:CS1 English-language sources (en)]]
[[Category:Created On 05/01/2023]]
[[Category:Created On 05/01/2023]]
[[Category:Lua-based templates]]
[[Category:Machine Translated Page]]
[[Category:Pages with script errors]]
[[Category:Templates Translated in Hindi]]
[[Category:Templates Vigyan Ready]]
[[Category:Templates that add a tracking category]]
[[Category:Templates that generate short descriptions]]
[[Category:Templates using TemplateData]]
[[Category:Wikipedia articles needing clarification from January 2023]]
[[Category:Wikipedia articles with style issues from मार्च 2012]]
[[Category:प्राथमिक अंकगणित|प्राथमिक अंकगणित ]]

Latest revision as of 12:47, 17 October 2023

प्रारंभिक स्तर के गणित संचालन के लिए प्रतीक। ऊपर से बायाँ मुड़ते हुए, जोड़, घटाव, गुणा, और भाग के लिए हम हिंदी में निम्नलिखित लिख सकते हैं,जोड़ (+) घटाव (-) गुणा (×) भाग (/)

प्राथमिक अंकगणितगणित की एक शाखा है जो बुनियादी संख्यात्मक संचालन जैसे जोड़, घटाव, गुणा और भाग (गणित) से संबंधित है। अपने निम्न स्तर के अमूर्तन, अनुप्रयोग की विस्तृत श्रृंखला और सभी गणित की मूलभूत नींव होने के कारण, प्रारंभिक अंकगणित गणित की सबसे अधिक पढ़ाई जाने वाली शाखा है।

अंक

अंक प्रणाली में संख्याओं के मान को दर्शाने के लिए अंक नामक प्रतीकों का उपयोग किया जाता है। सबसे अधिक उपयोग किए जाने वाले अंक[1]अरबी अंक (0, 1, 2, 3, 4, 5, 6, 7, 8, 9) हैं। हिंदू-अरबी अंक प्रणाली सबसे अधिक उपयोग की जाने वाली अंक प्रणाली है, इन अंकों का उपयोग करके संख्याओं को दर्शाने के लिए एक स्थितिगत अंकन प्रणाली का उपयोग किया जाता है।

उत्तरवर्ती फलन और आकार

प्रारंभिक अंकगणित में, एक प्राकृतिक संख्या (शून्य सहित) का उत्तरवर्ती उस संख्या में 1 जोड़कर प्राप्त किया गया परिणाम होता है, जबकि एक प्राकृतिक संख्या का पूर्ववर्ती (शून्य को छोड़कर) उस संख्या से 1 घटाकर प्राप्त परिणाम होता है। उदाहरण के लिए, शून्य का उत्तरवर्ती एक होता है और ग्यारह का पूर्ववर्ती दस, या गणितीय शब्दों में:, 'और होता है। प्रत्येक प्राकृतिक संख्या का एक उत्तरवर्ती होता है, और सभी प्राकृतिक संख्याओं (शून्य को छोड़कर) का एक पूर्ववर्ती होता है।

यदि पहली संख्या दूसरी संख्या (>) से बड़ी है, तो दूसरी संख्या पहली संख्या (<) से कम है। तीन आठ से छोटा है (3 <8), और आठ तीन से बड़ा है (8 > 3)।

गणना

गिनती में सेट में उपस्थित प्रत्येक वस्तु को एक प्राकृतिक संख्या से निर्दिष्ट करना तथा पहली वस्तु के लिए एक से शुरू होकर और प्रत्येक बाद की वस्तु के लिए एक से बढ़ना सम्मिलित होता है। सेट में वस्तु की संख्या गिनती है और सेट में किसी वस्तु को निर्दिष्ट उच्चतम प्राकृतिक संख्या के बराबर जाना जाता है। इस गिनती को सेट की गणनांक के रूप में भी जाना जाता है।

गिनती मिलान चिह्नों का उपयोग करके मिलान करने, सेट में प्रत्येक वस्तु के लिए एक चिह्न बनाने की प्रक्रिया भी हो सकती है।

अधिक उन्नत गणित में, गिनती की प्रक्रिया को एक सेट के तत्वों और सेट {1, ..., n} के बीच एकैक फलन पत्राचार (या आक्षेप) के निर्माण के रूप में सोचा जा सकता है, जहां n एक है प्राकृतिक संख्या, और समुच्चय का आकार n है।

जोड़

जोड़ एक गणितीय संक्रिया है जो दो या दो से अधिक संख्याओं को जोड़ती है,जिन्हें जोड़ या सारांश कहा जाता है, जिससे अंतिम संख्या उत्पन्न होती है, जिसे योग कहा जाता है। दो संख्याओं का योग धन चिह्न "+" का उपयोग करके व्यक्त किया जाता है इसे निम्नलिखित नियमों के अनुसार किया जाता है,

  • दो संख्याओं का योग उनके व्यक्तिगत मानों को जोड़ने पर प्राप्त संख्या के बराबर होता है।
  • जिस क्रम में जोड़ जोड़े जाते हैं वह योग को प्रभावित नहीं करता है। इस गुण को जोड़ के क्रमविनिमेय गुण के रूप में जाना जाता है।
  • दो संख्याओं का योग अद्वितीय होता है, जिसका अर्थ है कि संख्याओं के किसी भी जोड़े के योग के लिए केवल एक ही सही उत्तर होता है।
  • जोड़ में एक व्युत्क्रम संचालन होता है, जिसे घटाव कहा जाता है, जिसका उपयोग दो संख्याओं के बीच अंतर जानने के लिए किया जा सकता है।

जोड़ का उपयोग विभिन्न संदर्भों में किया जाता है, जिसमें मात्राओं की तुलना करना, मात्राओं को जोड़ना और मापना सम्मिलित है। जब अंकों की एक जोड़ी का योग दो अंकों की संख्या में परिणत होता है, तो "दहाई" अंक को जोड़ कलन विधि में "कैरी अंक" के रूप में जाना जाता है। प्रारंभिक अंकगणित में, छात्र सामान्यतः पूर्ण संख्याओं और दशमलवों को जोड़ना सीखते हैं, और ऋणात्मक संख्याओं और भिन्नों जैसे अधिक उन्नत विषयों के बारे में भी सीख सकते हैं।

उदाहरण

संख्या 653 और 274 को एक के कॉलम से शुरू करते हुए जोड़ने पर तीन और चार का योग सात होता है।

सैकड़ों दसियों एक
6 5 3
+ 2 7 4
7

50 और 70 का योग 120 है। 120 से दहाई का अंक दहाई के कॉलम के नीचे लिखा जाता है, जबकि सैकड़ों का अंक सैकड़ों के कॉलम के ऊपर कैरी अंक के रूप में लिखा जाता है।

सैकड़ों दसियों एक
1
6 5 3
+ 2 7 4
2 7

600 और 200 का योग 800 है, लेकिन कैरी अंक उपस्थित है, जिसे 800 में जोड़ने पर 900 आता है।

सैकड़ों दसियों एक
1
6 5 3
+ 2 7 4
9 2 7

परिणाम,

घटाव

घटाव का उपयोग दो संख्याओं के बीच अंतर का मूल्यांकन करने के लिए किया जाता है, जहां व्यवकल्य वह संख्या होता है जिससे घटाया जाता है, और व्यवकलित वह संख्या होता है जो घटाया जाता है। इसे ऋण चिह्न (-) का उपयोग करके दर्शाया जाता है।

घटाव क्रमविनिमेय नहीं है, जिसका अर्थ है कि संक्रिया में संख्याओं का क्रम परिणाम को बदल सकता है। उदाहरण के लिए, 3 - 5, 5 - 3 के समान नहीं है। प्रारंभिक अंकगणित में, सकारात्मक परिणाम उत्पन्न करने के लिए व्यवकल्य हमेशा व्यवकलित से बड़ा होता है।

घटाव का उपयोग अन्य संदर्भों में मात्राओं को अलग करने, संयोजित करने और खोजने के लिए भी किया जाता है। उदाहरण के लिए, "टॉम के पास 8 सेब हैं। वह 3 सेब दे देता है। उसके पास अब कितने बचे हैं?" एक विभाजन को प्रतिष्ठापित करता है, जबकि "टॉम के पास 8 सेब हैं। तीन सेब हरे हैं, और शेष सभी लाल हैं। कितने लाल हैं?" संयोजन को प्रतिष्ठापित करता है। कुछ स्थितियों में, किसी समूह में वस्तुओं की कुल संख्या ज्ञात करने के लिए घटाव का भी उपयोग किया जा सकता है, जैसे कि "टॉम के पास कुछ सेब थे। जेन ने उसे 3 और सेब दिए, तो अब उसके पास 8 सेब हैं। उसने कितने से प्रारम्भ की थी?"

घटाव को पूरा करने की कई विधियाँ हैं। पारंपरिक गणित पद्धति प्राथमिक विद्यालय के छात्रों को हाथ की गणना के लिए उपयुक्त तरीकों का उपयोग करके घटाना सिखाती है। सुधार गणित को सामान्यतः किसी विशिष्ट तकनीक के लिए प्राथमिकता की कमी से अलग किया जाता है, जिसे दूसरी कक्षा के छात्रों को गणना के अपने तरीकों का आविष्कार करने के लिए मार्गदर्शन द्वारा प्रतिस्थापित किया जाता है, जैसे कि टीईआरसी के मामले में नकारात्मक संख्याओं के गुणों का उपयोग करना।

संयुक्त राज्य अमेरिका में जिस विधि को पारंपरिक गणित कहा जाता है, वह प्राथमिक विद्यालय के छात्रों को हाथ की गणना के लिए उपयुक्त विधियों का उपयोग करके घटाना सिखाती है।[2] उपयोग की जाने वाली विशेष विधि अलग-अलग देशों में भिन्न होती है, और एक देश के भीतर, अलग-अलग समय पर अलग-अलग तरीके फैशन में होते हैं। सुधार गणित को सामान्यतः किसी विशिष्ट तकनीक के लिए वरीयता की कमी से अलग किया जाता है, दूसरी कक्षा के छात्रों को गणना के अपने तरीकों का आविष्कार करने के लिए मार्गदर्शन द्वारा प्रतिस्थापित किया जाता है, जैसे संख्याओं, डेटा और अंतरिक्ष में जांच के मामले में नकारात्मक संख्याओं के गुणों का उपयोग करना।

अमेरिकी स्कूल वर्तमान में उधार का उपयोग करके घटाव की विधि सिखाते हैं। हालाँकि, उधार लेने की एक विधि पूर्व पाठ्यपुस्तकों में ज्ञात और प्रकाशित की गई थी।[3] "क्रचेस" विलियम ए. ब्रोवेल का आविष्कार है, जिन्होंने नवंबर 1937 में एक अध्ययन में उनका उपयोग किया था। उधार लेने की विधि में, घटाव की सुविधा के लिए इकाई के स्थान पर जोड़ने के लिए दहाई के स्थान से 10 उधार लेकर 86-39 जैसी घटाव समस्या को हल किया जा सकता है। उदाहरण के लिए, 6 में से 9 घटाने पर दहाई के स्थान से 10 उधार लेना सम्मिलित है, जिससे समस्या (70 + 16) - 39 हो जाती है। इसे 8 को काटकर, उसके ऊपर 7 लिखकर, और 6 के ऊपर 1 लिखकर दर्शाया जाता है। इन चिह्नों को "क्रचेस" कहा जाता है।

कुछ यूरोपीय देशों में छात्रों को पढ़ाया जाता है, और कुछ पुराने अमेरिकी घटाव की एक विधि का उपयोग किया जाता हैं जिसे ऑस्ट्रियाई विधि कहा जाता है, जिसे जोड़ विधि के रूप में भी जाना जाता है। इस पद्धति में कोई उधार नहीं लेना पड़ता।

कुछ यूरोपीय देशों में छात्रों को सिखाया जाता है, और कुछ पुराने अमेरिकी घटाव की एक विधि का उपयोग करते हैं जिसे ऑस्ट्रियन पद्धति कहा जाता है, जिसे अतिरिक्त विधि के रूप में भी जाना जाता है। इस पद्धति में कोई उधार नहीं है। ऐसी क्रचेस भी हैं जो देश के अनुसार अलग-अलग होती हैं। [4][5] यह समस्या को (80 + 16) - (39 + 10) में बदल देता है। अनुस्मारक के रूप में व्यवकलित अंक के नीचे एक छोटा 1 अंकित है।

उदाहरण

संख्या 792 और 308 को घटाने पर, इकाई-स्तंभ से प्रारंभ करते हुए, 2, 8 से छोटा है, 90 से 10 को उधार लेते हैं, जिससे 90 को 80 बना दिया जाता है। इस 10 को 2 में जोड़ने पर, समस्या 12 - 8 में बदल जाती है, जो कि 4 है।

सैकड़ों दसियों एक
8 12
7 9 2
3 0 8
4

90 में से 10 लेने पर यह अब 80 है। 80 और 0 के बीच का अंतर 80 है।

सैकड़ों दसियों एक
8 12
7 9 2
3 0 8
8 4

700 और 300 के बीच का अंतर 400 है।

सैकड़ों दसियों एक
8 12
7 9 2
3 0 8
4 8 4

परिणाम,

गुणन

गुणन बार-बार जोड़ने की एक गणितीय संक्रिया है। जब दो संख्याओं को आपस में गुणा किया जाता है, तो परिणामी मान गुणनफल कहलाता है। गुणा की जाने वाली संख्याओं को गुणितांक और गुणक कहा जाता है और कुल मिलाकर गुणनखंड के रूप में जाना जाता है।

उदाहरण के लिए, यदि पाँच थैले हैं, जिनमें से प्रत्येक में तीन सेब हैं, और सभी पाँच थैलों में से सेब एक खाली थैले में रखे गए हैं, तो खाली थैले में 15 सेब होंगे। इसे निम्नलिखित रूपों में लिखा जा सकता है, "पांच गुणा तीन बराबर है पंद्रह" "पांच गुणा तीन पंद्रह है" "पंद्रह पांच और तीन का गुणनफल है

"गुणाकार को प्रतिष्ठापित करने के लिए, गुणन चिह्न (×), एस्ट्रिस्क (*), ब्रैकेट (), या डॉट (⋅) का प्रयोग किया जाता है।" इसलिए, कथन "पांच गुना तीन बराबर पंद्रह" को "5 × 3 = 15", "5 * 3 = 15", "(5)(3) = 15", या "5 ⋅ 3 = 15" के रूप में लिखा जा सकता है। बीजगणित में, गुणाकार चिह्न को छोड़ा जा सकता है, उदाहरण के लिए, xy, x × y को दर्शाता है।

दो संख्याओं को गुणा करने का क्रम परिणाम को प्रभावित नहीं करता है। इसे गुणन के क्रमविनिमेय गुण के रूप में जाना जाता है।

गुणन कलन विधि में, अंकों की एक जोड़ी के उत्पाद के दसवें अंक को "कैरी अंक" कहा जाता है। तालिका का उपयोग करके अंकों की एक जोड़ी को गुणा करने के लिए, पहले अंक की पंक्ति और दूसरे अंक के कॉलम के प्रतिच्छेदन का पता लगाना होगा, जिसमें दो अंकों का उत्पाद सम्मिलित होगा। अधिकांश अंकों के युग्म परिणाम दो अंकों की संख्याओं में होता है।

एकल-अंकीय गुणनखंड के लिए गुणन का उदाहरण

729 और 3 को गुणा करने पर, इकाई के कॉलम से शुरू करते हुए, 9 और 3 का गुणनफल 27 होता है। एक के कॉलम के नीचे 7 लिखा जाता है और दहाई के कॉलम के ऊपर कैरी अंक के रूप में 2 लिखा जाता है।

सैकड़ों दसियों एक
2
7 2 9
× 3
7

2 और 3 का गुणनफल 6 है, और कैरी अंक 2 से 6 जोड़ता है, इसलिए दहाई कॉलम के नीचे 8 लिखा जाता है।

सैकड़ों दसियों एक
7 2 9
× 3
8 7

7 और 3 का गुणनफल 21 है, और चूँकि यह अंतिम अंक है, इसलिए 2 को कैरी अंक के रूप में नहीं लिखा जाएगा, बल्कि 1 के समीप में लिखा जाएगा।

सैकड़ों दसियों एक
7 2 9
× 3
2 1 8 7

परिणाम,

बहु-अंकीय गुणनखंडों के लिए गुणन का उदाहरण

789 और 345 को इकाई-स्तंभ से गुणा करने पर, 789 और 5 का गुणनफल 3945 होता है।

7 8 9
× 3 4 5
3 9 4 5

4 दहाई अंक में है। गुणक 40 है, 4 नहीं। 789 और 40 का गुणनफल 31560 है।

7 8 9
× 3 4 5
3 9 4 5
3 1 5 6 0

3 सैकड़े के अंक में है। गुणक 300 है। 789 और 300 का गुणनफल 236700 है।

7 8 9
× 3 4 5
3 9 4 5
3 1 5 6 0
2 3 6 7 0 0

सभी उत्पादों को जोड़कर,

7 8 9
× 3 4 5
3 9 4 5
3 1 5 6 0
+ 2 3 6 7 0 0
2 7 2 2 0 5

परिणाम,

.

विभाजन

भाग एक अंकगणितीय संक्रिया है जो गुणन का व्युत्क्रम है।

विशेष रूप से, एक संख्या a और एक गैर-शून्य संख्या b दी गई है, यदि कोई अन्य संख्या c गुणा b a के बराबर है, अर्थात

,
तो a को b से विभाजित करने पर c बराबर होता है। वह
है, उदाहरण के लिए,

उपरोक्त अभिव्यक्ति में, a को 'लाभांश', b को 'भाजक' और c को 'भागफल' कहा जाता है। प्रारंभिक अंकगणित में शून्य से विभाजन को या तो अर्थहीन या अपरिभाषित कहा जाता है।

विभाजन को विभाजक के ऊपर एक क्षैतिज रेखा, जिसे रेखा कोष्ठक भी कहा जाता है, तथा इसके बीच रखकर दिखाया जा सकता है। उदाहरण के लिए, a को b से विभाजित करने पर इस प्रकार लिखा जाता है,

यह मौखिक रूप से "a विभाजित b" या "a ऊपर b" के रूप में पढ़ा जा सकता है।

विभाजन को एक पंक्ति में व्यक्त करने का दूसरा तरीका यह है कि लाभांश, फिर स्लैश (विराम चिह्न), फिर भाजक को इस प्रकार लिखें,

अधिकांश कंप्यूटर प्रोग्रामिंग लैंग्वेज में विभाजन निर्दिष्ट करने का यह सामान्य तरीका है।

एक हस्तलिखित या मुद्रण भिन्नता एक सॉलिडस (अंश स्लैश) का उपयोग करती है लेकिन लाभांश को बढ़ाती है और भाजक को कम करती है,

ab

इन सभी रूपों का उपयोग एक भिन्न को प्रदर्शित करने के लिए किया जा सकता है। एक सामान्य भिन्न एक विभाजन अभिव्यक्ति है जहां लाभांश और भाजक दोनों संख्याएं हैं (हालांकि सामान्यतः अंश और हर कहा जाता है), और इसका कोई निहितार्थ नहीं है कि विभाजन का आगे मूल्यांकन करने की आवश्यकता है।

अस्पष्ट होने के कारण बुनियादी अंकगणित को छोड़कर यह रूप दुर्लभ है और अधिक जटिल अंकगणित के लिए निराश है। उदाहरण के लिए, कैलकुलेटर की कुंजी पर एक लेबल के रूप में, ओबेलस का उपयोग अकेले डिवीजन ऑपरेशन का प्रतिनिधित्व करने के लिए भी किया जाता है।

कुछ गैर- अंग्रेजी भाषी -संस्कृतियों में, "a को b से विभाजित" को a : b लिखा जाता है। है a : b. हालांकि, अंग्रेजी उपयोग में अपूर्ण विरामअनुपात की अवधारणा ("a से b") तक ही सीमित है।

गुणन सारणी के ज्ञान के साथ, दो संख्याओं को लंबे विभाजन की विधि का उपयोग करके कागज पर विभाजित किया जा सकता है। दीर्घ विभाजन विधि का उपयोग करके दो संख्याओं को कागज पर विभाजित किया जा सकता है। दीर्घ विभाजन, लघु विभाजन का संक्षिप्त रूप, छोटे भाजक के लिए भी उपयोग किया जा सकता है।

एक कम व्यवस्थित विधि में खंडीयन की अवधारणा सम्मिलित है। जिसमें प्रत्येक चरण में आंशिक शेष से अधिक गुणकों को घटाना सम्मिलित है।

किसी भिन्न से विभाजित करने के लिए, कोई व्यक्ति उस भिन्न के व्युत्क्रम (ऊपर और नीचे के हिस्सों की स्थिति को उलट कर) से गुणा कर सकता है। उदाहरण के लिए,

उदाहरण

272 और 8 को सैकड़ों अंकों से विभाजित करने पर, 2, 8 से विभाज्य नहीं होता है, 20 को 7 में जोड़ने पर 27 प्राप्त होता है। 27 और 8 को विभाजित करने के लिए, हमें लाभांश को महत्तम सामान्य भाजक (जीसीडी) से घटाना होगा। 27 और 8 की जीसीडी 24 है। 27 में से 24 घटाने पर 3 मिलता है।

2 7 2
÷ 8
3

8, 3 से बड़ा है, इसलिए हमें विभाजन जारी रखने के लिए इकाई के अंक की ओर जाना चाहिए, जिसमें संख्या 2 है। 30 और 2 को जोड़ने पर 32 प्राप्त होता है, जो 8 से विभाज्य है, और 32 और 8 का भागफल 4 होता है। 4 को इकाई-स्तंभ के नीचे लिखा जाता है।

2 7 2
÷ 8
3 4

परिणाम

शैक्षिक मानक

प्राथमिक अंकगणित सामान्यतः प्राथमिक या माध्यमिक विद्यालय स्तर पर पढ़ाया जाता है और स्थानीय शैक्षिक मानकों द्वारा शासित होता है। संयुक्त राज्य अमेरिका और कनाडा में, प्रारंभिक अंकगणित पढ़ाने के लिए उपयोग की जाने वाली सामग्री और विधियों के बारे में बहस चल रही है।एक मुद्दा मैन्युअल गणना बनाम कैलकुलेटर का उपयोग रहा है, कुछ लोगों का तर्क है कि मानसिक अंकगणितीय कौशल को बढ़ावा देने के लिए कैलकुलेटर का उपयोग सीमित होना चाहिए। एक और बहस पारंपरिक और सुधार गणित के बीच अंतर पर केंद्रित है, पारंपरिक तरीकों में अक्सर बुनियादी गणना कौशल और सुधार विधियों पर अधिक ध्यान केंद्रित किया जाता है, जो बीजगणित, सांख्यिकी और समस्या-समाधान जैसी उच्च-स्तरीय गणितीय अवधारणाओं पर अधिक जोर देते हैं।

संयुक्त राज्य अमेरिका में, 1989 के राष्ट्रीय गणित शिक्षक परिषद (एनसीटीएम) के मानकों ने प्राथमिक विद्यालय के पाठ्यक्रम में एक बदलाव का नेतृत्व किया, जिसमें कॉलेज पर अधिक ध्यान केंद्रित करने के पक्ष में पारंपरिक रूप से प्रारंभिक अंकगणित का हिस्सा माने जाने वाले कुछ विषयों पर जोर नहीं दिया गया या हटा दिया गया- जिसमे बीजगणित और सांख्यिकी जैसी स्तरीय अवधारणाएँ बनी रही। यह बदलाव विवादास्पद रहा है, कुछ लोगों का तर्क है कि इसके परिणामस्वरूप बुनियादी गणना कौशल पर जोर देने की कमी हो गई है जो बाद की गणित कक्षाओं में सफलता के लिए महत्वपूर्ण हैं।

यह भी देखें

संदर्भ

  1. "numeral system | mathematics | Britannica". www.britannica.com (in English). Paragraph 2, sentence 4. Retrieved 2022-11-24.
  2. "Everyday Mathematics4 at Home". Everyday Mathematics Online. Retrieved December 26, 2022.
  3. Ross, Susan. "Subtraction in the United States: An Historical Perspective" (PDF). Microsoft Word - Issue 2 -9/23/. Retrieved June 25, 2019.
  4. Klapper, Paul (1916). "The Teaching of Arithmetic: A Manual for Teachers. pp. 177". Retrieved 2016-03-11.
  5. Smith, David Eugene (1913). "The Teaching of Arithmetic. pp. 77". Retrieved 2016-03-11.

बाहरी कड़ियाँ