भिन्न

From Vigyanwiki
एक चौथाई (एक चौथाई) वाला केक निकाला गया। शेष तीन चौथाई को बिंदीदार रेखाओं द्वारा दिखाया जाता है और 1/1/4 से लेबल किया जाता है।

एक भिन्न (लैटिन शब्द fractus से लिया हुआ) एक पूरे या, अधिक आम तौर पर, समान भागों की संख्या का एक हिस्सा का प्रतिनिधित्व करता है। जब रोजमर्रा की अंग्रेजी में बोली जाती है, तो एक भिन्न बताता है कि एक निश्चित आकार के कितने हिस्से हैं, उदाहरण के लिए, एक-आधा, आठ-पांचवें, तीन-चौथाई। एक सामान्य, अशिष्ट, या सरल भिन्न (उदाहरण: तथा ) एक भिन्न के होते हैं, एक पंक्ति के ऊपर प्रदर्शित होते हैं (या जैसे स्लैश से पहले 12), और एक गैर-शून्य हर, नीचे (या बाद में) उस लाइन को प्रदर्शित किया गया। भिन्नों और हर का उपयोग उन भिन्नों में भी किया जाता है जो आम नहीं हैं, जिसमें यौगिक भिन्न, जटिल भिन्न और मिश्रित अंक शामिल हैं।

सकारात्मक सामान्य भिन्नों में, भिन्न और हर प्राकृतिक संख्याएं हैं। भिन्न कई समान भागों का प्रतिनिधित्व करता है, और हर इंगित करता है कि उन भागों में से कितने एक इकाई या संपूर्ण बनाते हैं। हर शून्य नहीं हो सकता है, क्योंकि शून्य भाग कभी भी पूरी नहीं कर सकते। उदाहरण के लिए, भिन्न में 3/4, भिन्न 3 इंगित करता है कि भिन्न 3 बराबर भागों का प्रतिनिधित्व करता है, और हर 4 इंगित करता है कि 4 भाग एक पूरे बनाते हैं। दाईं ओर चित्र दिखाता है 3/4 एक केक का।

एक सामान्य भिन्न एक अंक है जो एक परिमेय संख्या का प्रतिनिधित्व करता है। उसी संख्या को दशमलव, एक प्रतिशत या नकारात्मक घातांक के साथ भी दर्शाया जा सकता है। उदाहरण के लिए, 0.01, 1% और 10−2 सभी भिन्न 1/100 के बराबर हैं। एक पूर्णांक को एक के निहित हर के रूप में सोचा जा सकता है (उदाहरण के लिए, 7, 7/1 के बराबर)।

भिन्नों के लिए अन्य उपयोग अनुपात और विभाजन का प्रतिनिधित्व करते हैं।[1] इस प्रकार भिन्न 3/4 अनुपात 3:4 (पूरे के लिए भाग का अनुपात), और डिवीजन 3 ÷ 4 (चार से तीन विभाजित) का प्रतिनिधित्व करने के लिए भी उपयोग किया जा सकता है। गैर-शून्य हर नियम, जो एक विभाजन के रूप में एक विभाजन का प्रतिनिधित्व करते समय लागू होता है, नियम का एक उदाहरण है कि शून्य द्वारा विभाजन अपरिभाषित है।

हम नकारात्मक भिन्न भी लिख सकते हैं, जो एक सकारात्मक भिन्न के विपरीत का प्रतिनिधित्व करते हैं। उदाहरण के लिए, यदि 1/2 एक आधा डॉलर के लाभ का प्रतिनिधित्व करता है, तो -1/2 एक आधा डॉलर के हानि का प्रतिनिधित्व करता है। चिह्न वाली संख्याओं के विभाजन के नियमों के कारण (जो कि भाग में यह बताता है कि नकारात्मक सकारात्मक द्वारा विभाजित नकारात्मक है), -1/2, −1/2 तथा 1/−2 सभी एक ही भिन्न का प्रतिनिधित्व करते हैं -नकारात्मक एक-आधा। और क्योंकि एक नकारात्मक द्वारा विभाजित एक नकारात्मक एक सकारात्मक पैदा करता है, −1/−2 सकारात्मक एक-आधा का प्रतिनिधित्व करता है।

गणित में सभी संख्याओं का सेट जो फॉर्म में व्यक्त किया जा सकता है a/b, जहां a और b पूर्णांक हैं और b शून्य नहीं है, को परिमेय संख्याओं का सेट कहा जाता है और इसे प्रतीक Q द्वारा दर्शाया जाता है, जिसका अर्थ भागफल है। एक संख्या एक परिमेय संख्या है जब इसे उस रूप में लिखा जा सकता है (यानी, एक सामान्य भिन्न के रूप में)। हालांकि, शब्द भिन्न का उपयोग गणितीय अभिव्यक्तियों का वर्णन करने के लिए भी किया जा सकता है जो परिमेय संख्या नहीं हैं। इन उपयोगों के उदाहरणों में बीजीय भिन्न (बीजगणितीय व्यंजकों के भागफल), और व्यंजक शामिल हैं जिनमें अपरिमेय संख्या हैं, जैसे (देखें 2 का वर्गमूल) और π/4 (प्रमाण देखें कि π अपरिमेय है)।

शब्दावली

एक भिन्न में, वर्णित किए जा रहे समान भागों की संख्या भिन्न (लैटिन शब्द numerātor, काउंटर या नंबरर से है), और भागों का प्रकार 'हर' (लैटिन शब्द dēnōminātor,से है जो नाम या नामित करती है) है।[2][3] एक उदाहरण के रूप में, भिन्न 8/5 आठ भागों की मात्रा, जिनमें से प्रत्येक पांचवें नाम के प्रकार का है। विभाजन के संदर्भ में, भिन्न भाज्य से मेल खाती है, और हर भाजक से मेल खाता है।

अनौपचारिक रूप से, भिन्न और हर को अकेले प्लेसमेंट द्वारा प्रतिष्ठित किया जा सकता है, लेकिन औपचारिक संदर्भों में वे आमतौर पर एक भिन्न बार द्वारा अलग किए जाते हैं। भिन्न बार क्षैतिज हो सकता है (जैसा कि में) 1/3), तिरछे (2/5 के रूप में), या विकर्ण (के रूप में 49)।[4] इन निशानों को क्रमशः क्षैतिज बार के रूप में जाना जाता है; द वर्जुले, स्लैश (यूएस), या स्ट्रोक (यूके);और भिन्न बार, सॉलिडस,[5] या भिन्न स्लैश।[n 1] टाइपोग्राफी में, लंबवत रूप से स्टैक किए गए भिन्नों को एन या अखरोट भिन्नों के रूप में भी जाना जाता है, और विकर्ण को ईएम या मटन भिन्नों के रूप में जाना जाता है, इस पर आधारित है कि क्या एक एकल-अंकों के भिन्न और हर के साथ एक भिन्न एक संकीर्ण एन वर्ग, या एक व्यापक एम के अनुपात पर कब्जा कर लेता है।वर्ग।[4] पारंपरिक टाइपफाउंडिंग में, एक पूर्ण भिन्न को प्रभावित करने वाला प्रकार का एक टुकड़ा (उदा। 1/2) को एक केस भिन्न के रूप में जाना जाता था, जबकि भिन्न के केवल हिस्से का प्रतिनिधित्व करने वालों को टुकड़ा भिन्न कहा जाता था।

अंग्रेजी भिन्नों के हर को आम तौर पर क्रमिक संख्या के रूप में व्यक्त किया जाता है, बहुवचन में यदि भिन्न 1 नहीं है (उदाहरण के लिए, 2/5 तथा 3/5 दोनों को पांचवें स्थान के रूप में पढ़ा जाता है।) अपवादों में डेनोमिनेटर 2 शामिल हैं, जो हमेशा आधा या हिस्सों को पढ़ा जाता है, हर 4, जिसे वैकल्पिक रूप से चौथाई / चौथाई या चौथे / चौथे के रूप में व्यक्त किया जा सकता है, और हर 100, जो हो सकता है वैकल्पिक रूप से सौवें / सौवें या प्रतिशत के रूप में व्यक्त किया जाए।

जब हर 1 होता है, तो इसे पूरी तरह से व्यक्त किया जा सकता है, लेकिन आमतौर पर अधिक अनदेखा किया जाता है, भिन्न के साथ एक पूरी संख्या के रूप में पढ़ा जाता है। उदाहरण के लिए, 3/1 तीन थोक के रूप में, या बस तीन के रूप में वर्णित किया जा सकता है। जब भिन्न 1 होता है, तो इसे छोड़ा जा सकता है (जैसा कि दसवें या प्रत्येक तिमाही में)।

पूरे भिन्न को एक एकल रचना के रूप में व्यक्त किया जा सकता है, जिस स्थिति में यह हाइफ़न किया जाता है, या एक के एक भिन्न के साथ कई भिन्नों के रूप में, जिस स्थिति में वे नहीं हैं। (उदाहरण के लिए, दो-पांचवें भिन्न है 2/5 और दो पांचवें एक ही भिन्न है जो 2 उदाहरणों के रूप में समझा जाता है 1/5।) विशेषण के रूप में उपयोग किए जाने पर भिन्नों को हमेशा हाइफ़न किया जाना चाहिए। वैकल्पिक रूप से, एक भिन्न का वर्णन इसे डेनोमिनेटर पर भिन्न के रूप में पढ़कर, मूल अंक के रूप में व्यक्त किए गए हर के साथ किया जा सकता है। (उदाहरण के लिए, 3/1 एक से अधिक एक के रूप में भी व्यक्त किया जा सकता है।) इस शब्द का उपयोग सॉलिडस भिन्नों के मामले में भी किया जाता है, जहां संख्याओं को एक स्लैश मार्क के बाएं और दाएं रखा जाता है। (उदाहरण के लिए, 1/2 को एक-आधा, एक आधा या दो से अधिक पढ़ा जा सकता है।) बड़े हर के साथ भिन्न जो दस की घात यां नहीं हैं, अक्सर इस फैशन में प्रदान किए जाते हैं (जैसे, 1/117 एक सौ से अधिक सत्रह से अधिक के रूप में, जबकि दस से विभाज्य के साथ उन लोगों को आमतौर पर सामान्य क्रमिक फैशन में पढ़ा जाता है (जैसे, 6/1000000 छह-मिलियन, छह मिलियन, या छह एक-मिलियनवें के रूप में)।

भिन्नों के रूप

सरल, सामान्य, या अशिष्ट भिन्न

एक साधारण भिन्न (जिसे एक सामान्य भिन्न या अशिष्ट भिन्न के रूप में भी जाना जाता है, जहां अशिष्ट लैटिन के लिए आम है) एक परिमेय संख्या है, जिसे a/b या ,के रूप में लिखा गया है जहां a और b दोनों पूर्णांक हैं।[9] अन्य भिन्नों के साथ, हर (b) शून्य नहीं हो सकता है। उदाहरणों में शामिल , , , तथा , इस शब्द का उपयोग मूल रूप से खगोल विज्ञान में उपयोग किए जाने वाले सेक्सेजिमल भिन्न से इस प्रकार के भिन्न को अलग करने के लिए किया गया था।[10] सामान्य भिन्न सकारात्मक या नकारात्मक हो सकते हैं, और वे उचित या विषम हो सकते हैं (नीचे देखें)। यौगिक भिन्न, जटिल भिन्न, मिश्रित अंक, और दशमलव (नीचे देखें) सामान्य भिन्न नहीं हैं; हालांकि, जब तक तर्कहीन नहीं होता है, तब तक उन्हें एक सामान्य भिन्न का मूल्यांकन नहीं किया जा सकता है।

  • एक इकाई भिन्न 1 के एक भिन्न के साथ एक सामान्य भिन्न है (जैसे,, )। यूनिट भिन्नों को नकारात्मक घातांक का उपयोग करके भी व्यक्त किया जा सकता है, जैसा कि 2 में है−1 , जो 1/2, और 2 का प्रतिनिधित्व करता है−2 , जो 1/(2 का प्रतिनिधित्व करता है2 ) या 1/4।
  • एक डायडिक भिन्न एक सामान्य भिन्न है जिसमें हर दो की घात है, उदा।

यूनिकोड में, प्रीकोम्ड भिन्न वर्ण संख्या रूपों के ब्लॉक में होते हैं।

सम और विषम भिन्न

सामान्य भिन्नों को या तो उचित या विषम के रूप में वर्गीकृत किया जा सकता है। जब भिन्न और हर दोनों सकारात्मक होते हैं, तो भिन्न को उचित कहा जाता है यदि भिन्न हर से कम है, और अन्यथा विषम है।[11][12] एक विषम भिन्न की अवधारणा एक देर से विकास है, इस तथ्य से प्राप्त शब्दावली के साथ कि भिन्न का अर्थ है एक टुकड़ा, इसलिए एक उचित भिन्न 1 से कम होना चाहिए।[10]यह 17 वीं शताब्दी की पाठ्यपुस्तक द ग्राउंड ऑफ आर्ट्स में समझाया गया था।[13][14] सामान्य तौर पर, एक सामान्य भिन्न को एक उचित भिन्न कहा जाता है, यदि भिन्न का निरपेक्ष मूल्य एक से कम है - अर्थात्, यदि भिन्न −1 से अधिक है और 1 से कम है।[15][16] यह एक विषम भिन्न, या कभी-कभी शीर्ष-भारी भिन्न कहा जाता है,[17] यदि भिन्न का निरपेक्ष मान 1. से अधिक या बराबर है। उचित भिन्नों के उदाहरण 2/3, −3/4, और 4/9 हैं, जबकि विषम भिन्नों के उदाहरण 9/4, −4/3, और हैं, और 3/3।

व्युत्क्रम और अदृश्य हर

अंश का व्युत्क्रम अंश और हर के आदान-प्रदान के साथ एक और भिन्न है। उदाहरण के लिए का व्युत्क्रम है। एक भिन्न और इसके व्युत्क्रम का उत्पाद 1 है, इसलिए व्युत्क्रम एक भिन्न का गुणक व्युत्क्रम है। एक सम भिन्न का व्युत्क्रम विषम है, और एक विषम भिन्न का व्युत्क्रम 1 के बराबर नहीं है (यानी, भिन्न और हर समान नहीं हैं) एक सम भिन्न है।

जब एक भिन्न के अंश और हर समान होते हैं (उदाहरण के लिए, ), इसका मूल्य 1 है, और इसलिए भिन्न विषम है। इसका व्युत्क्रम समान है और इसलिए 1 और विषम के बराबर भी है।

किसी भी पूर्णांक को नंबर एक के साथ एक भिन्न के रूप में लिखा जा सकता है। उदाहरण के लिए, 17 को लिखा जा सकता है , जहां 1 को कभी -कभी अदृश्य हर के रूप में जाना जाता है। इसलिए, शून्य को छोड़कर प्रत्येक भिन्न या पूर्णांक में एक व्युत्क्रम होता है। उदाहरण के लिए 17 का व्युत्क्रम है ।

अनुपात

एक अनुपात दो या अधिक संख्याओं के बीच एक संबंध है जिसे कभी -कभी एक भिन्न के रूप में व्यक्त किया जा सकता है। आमतौर पर, कई वस्तुओं को समूहीकृत किया जाता है और एक अनुपात में तुलना की जाती है, जो प्रत्येक समूह के बीच संबंध को संख्यात्मक रूप से निर्दिष्ट करती है। अनुपात समूह 1 से समूह 2 ... समूह n के रूप में व्यक्त किए जाते हैं। उदाहरण के लिए, यदि एक कार लॉट में 12 वाहन थे, जिनमें से

  • 2 सफेद हैं,
  • 6 लाल हैं, और
  • 4 पीले हैं,

फिर लाल से सफेद से पीली कारों का अनुपात 6 से 2 से 4 है। पीली कारों के लिए सफेद कारों का अनुपात 4 से 2 है और इसे 4: 2 या 2: 1 के रूप में व्यक्त किया जा सकता है।

एक अनुपात को अक्सर एक भिन्न में परिवर्तित किया जाता है जब इसे पूरे अनुपात के रूप में व्यक्त किया जाता है। उपरोक्त उदाहरण में, लॉट पर सभी कारों के लिए पीली कारों का अनुपात 4:12 या 1: 3 है। हम इन अनुपातों को एक भिन्न में बदल सकते हैं, और कह सकते हैं कि 4/12 कारों की या 1/3 बहुत से कारें पीले हैं। इसलिए, यदि किसी व्यक्ति ने बेतरतीब ढंग से एक कार को बहुत से चुना है, तो तीन मौका या संभावना में से एक है कि यह पीला होगा।

दशमलव भिन्न और प्रतिशत

एक दशमलव भिन्न एक ऐसा भिन्न है जिसका हर स्पष्ट रूप से नहीं दिया जाता है, लेकिन इसे दस की पूर्णांक घात माना जाता है। दशमलव भिन्नों को आमतौर पर दशमलव अंक का उपयोग करके व्यक्त किया जाता है जिसमें निहित हर को दशमलव विभाजक के दाईं ओर अंकों की संख्या से निर्धारित किया जाता है, जिसकी उपस्थिति (जैसे, एक अवधि,चिह्न (•), एक अल्पविराम) निर्भर करता हैलोकेल (उदाहरण के लिए, दशमलव प्रणाली (हिंदू -अरबिक अंक प्रणाली देखें) )। इस प्रकार, 0.75 के लिए भिन्न 75 है और निहित हर 10 से दूसरी घात है, अर्थात- 100, क्योंकि दशमलव के दाईं ओर दो अंक हैं। 1 (जैसे 3.75) से अधिक दशमलव संख्या में, संख्या का आंशिक भाग अंक द्वारा दशमलव के दाईं ओर (इस मामले में 0.75 के मान के साथ) द्वारा व्यक्त किया जाता है। 3.75 या तो एक विषम भिन्न के रूप में लिखा जा सकता है, 375/100, या मिश्रित संख्या के रूप में,

दशमलव भिन्नों को नकारात्मक घातांक के साथ वैज्ञानिक संकेतन का उपयोग करके भी व्यक्त किया जा सकता है, जैसे 6.023×10−7, जो 0.0000006023 का प्रतिनिधित्व करता है, यहां 10−7 के हर एक का 107 प्रतिनिधित्व करता है। विभाजित करना 107भाग करने पर दशमलव बिंदु 7 स्थानों को बाईं ओर ले जाता है।

दशमलव विहर के दाईं ओर असीम रूप से कई अंकों के साथ दशमलव भिन्न एक अनंत श्रृंखला का प्रतिनिधित्व करते हैं। उदाहरण के लिए, 1/3 = 0.333 ... अनंत श्रृंखला 3/10 + 3/100 + 3/1000 + ... का प्रतिनिधित्व करता है।

एक अन्य प्रकार का भिन्न प्रतिशत (लैटिन प्रतिशत प्रति सौ अर्थ, प्रतीक % द्वारा दर्शाया गया) है, जिसमें निहित हर हमेशा 100 होता है। इस प्रकार, 51% का अर्थ है 51/100। शून्य से 100 या उससे कम प्रतिशत का व्यवहार उसी तरह से किया जाता है, उदा- 311% 311/100 के बराबर है, और −27% −27/100 के बराबर है।

पर्मिल या पार्ट्स प्रति हजार (पीपीटी) की संबंधित अवधारणा में 1000 का एक निहित हर है, जबकि अधिक सामान्य भागों-प्रति संकेतन, जैसा कि 75 भागों प्रति मिलियन (पीपीएम) में है, इसका मतलब है कि अनुपात 75/1,000,000 है।

क्या सामान्य भिन्न या दशमलव भिन्नों का उपयोग किया जाता है, अक्सर स्वाद और संदर्भ का मामला होता है। आम भिन्नों का उपयोग सबसे अधिक बार किया जाता है जब हर अपेक्षाकृत छोटा होता है। मानसिक गणना के द्वारा, भिन्न के दशमलव समकक्ष (0.1875) का उपयोग करके एक ही गणना करने की तुलना में 16 से 3/16 से गुणा करना आसान है। और यह 15 से 1/3 से गुणा करने के लिए अधिक सटीक है, उदाहरण के लिए, यह एक तिहाई के किसी भी दशमलव सन्निकटन द्वारा 15 को गुणा करना है। मौद्रिक मूल्यों को आमतौर पर हर 100 के साथ दशमलव भिन्नों के रूप में व्यक्त किया जाता है, अर्थात, दो दशमलव के साथ, उदाहरण के लिए $ 3.75। हालांकि, जैसा कि ऊपर उल्लेख किया गया है, पूर्व-दशिष्ट ब्रिटिश मुद्रा में, शिलिंग और पेंस को अक्सर एक भिन्न का रूप (लेकिन अर्थ नहीं) दिया जाता था, जैसे, उदाहरण के लिए 3/6 (तीन और छह पढ़ें) का अर्थ है 3 शिलिंग और 6 पेंस , और भिन्न 3/6 से कोई संबंध नहीं है।

मिश्रित संख्या

एक मिश्रित अंक (जिसे मिश्रित भिन्न या मिश्रित संख्या भी कहा जाता है) एक गैर-शून्य पूर्णांक और एक उचित भिन्न (एक ही संकेत होने) के योग का एक पारंपरिक निरूपण है। इसका उपयोग मुख्य रूप से माप में किया जाता है: उदाहरण के लिए, इंच वैज्ञानिक माप मिश्रित संख्याओं के बजाय हमेशा दशमलव अंक का उपयोग करते हैं। राशि को एक दृश्य ऑपरेटर के उपयोग के बिना निहित किया जा सकता है जैसे कि उपयुक्त जैसे "+" उदाहरण के लिए- दो पूरे केक और एक अन्य केक के तीन-चौथाई का उल्लेख करते हुए, पूर्णांक भाग को दर्शाने वाले अंक और केक के आंशिक भाग को एक दूसरे के बगल में लिखा जा सकता है इसके बजाय अस्पष्ट संकेतन नकारात्मक मिश्रित अंक, के रूप में , की तरह व्यवहार किया जाता है एक पूरे प्लस के किसी भी योग को एक भाग के विपरीत जोड़ने के नियमों को लागू करके एक विषम भिन्न में परिवर्तित किया जा सकता है।

यह परंपरा, औपचारिक रूप से, बीजगणित में संकेतन के साथ संघर्ष में है, जहां आसन्न प्रतीक, एक स्पष्ट इन्फिक्स ऑपरेटर के बिना, एक उत्पाद को निरूपित करते हैं। अभिव्यक्ति में , समझा गया ऑपरेशन गुणा है। यदि x उदाहरण के लिए, भिन्न द्वारा प्रतिस्थापित किया जाता है , मिश्रित संख्या की उपस्थिति से बचने के लिए, स्पष्ट गुणन को स्पष्ट गुणन द्वारा प्रतिस्थापित करने की आवश्यकता है।

जब गुणन का इरादा होता है, के रूप में लिखा जा सकता है

या या

एक विषम भिन्न को निम्नानुसार मिश्रित संख्या में परिवर्तित किया जा सकता है:

  1. यूक्लिडियन डिवीजन (शेष के साथ विभाजन) का उपयोग करते हुए, भिन्न को हर द्वारा विभाजित करें। उदाहरण में, , 11 को विभाजित करें 4. 11 = 4 = 2 शेष 3।
  2. भागफल (शेष के बिना) मिश्रित संख्या का पूरा हिस्सा बन जाता है।शेष आंशिक भाग का भिन्न बन जाता है। उदाहरण में, 2 पूरे नंबर भाग है और 3 आंशिक भाग का भिन्न है।
  3. नया हर विषम भिन्न के हर के समान है।उदाहरण में, यह 4. इस प्रकार है,

ऐतिहासिक धारणाएँ

मिस्र का भिन्न

एक मिस्र का भिन्न विशिष्ट सकारात्मक इकाई भिन्नों का योग है, उदाहरण के लिए , यह परिभाषा इस तथ्य से निकली है कि प्राचीन मिस्रियों ने सभी भिन्नों को छोड़कर इस तरह से व्यक्त किया , तथा प्रत्येक सकारात्मक परिमेय संख्या को मिस्र के भिन्न के रूप में विस्तारित किया जा सकता है। उदाहरण के लिए, के रूप में लिखा जा सकता है किसी भी सकारात्मक परिमेय संख्या को असीम रूप से कई तरीकों से इकाई भिन्नों के योग के रूप में लिखा जा सकता है। लिखने के दो तरीके हैं तथा

जटिल और यौगिक भिन्न

एक जटिल भिन्न में, या तो भिन्न, या हर, या दोनों, एक भिन्न या मिश्रित संख्या है,[18][19] भिन्नों के विभाजन के अनुरूप। उदाहरण के लिए, तथा जटिल भिन्न हैं। एक साधारण भिन्न के लिए एक जटिल भिन्न को कम करने के लिए, सबसे लंबी भिन्न रेखा का प्रतिनिधित्व विभाजन के रूप में मानें। उदाहरण के लिए:

यदि, एक जटिल भिन्न में, यह बताने का कोई अनूठा तरीका नहीं है कि कौन सी भिन्न रेखाएं पूर्ववर्तीता लेती हैं, तो यह अभिव्यक्ति विषम रूप से बनती है, क्योंकि अस्पष्टता के कारण।इसलिए 5/10/20/40 एक वैध गणितीय अभिव्यक्ति नहीं है, क्योंकि कई संभावित व्याख्याओं के कारण, उदा.-

या के रूप में

एक यौगिक भिन्न एक भिन्न का एक भिन्न है, या शब्द शब्द से जुड़े किसी भी संख्या में भिन्न,[18][19]भिन्नों के गुणन के अनुरूप।एक साधारण भिन्न में एक यौगिक भिन्न को कम करने के लिए, बस गुणन को बाहर ले जाएं (गुणन पर अनुभाग देखें)।उदाहरण के लिए, का एक यौगिक भिन्न है, के अनुरूप . शब्द यौगिक भिन्न और जटिल भिन्न निकटता से संबंधित हैं और कभी-कभी एक का उपयोग दूसरे के पर्याय के रूप में किया जाता है।(उदाहरण के लिए, यौगिक भिन्न जटिल भिन्न के बराबर है )

फिर भी, जटिल भिन्न और यौगिक भिन्न दोनों को पुराना माना जा सकता है[20] और अब कोई अच्छी तरह से परिभाषित तरीके से उपयोग किया जाता है, आंशिक रूप से एक दूसरे के लिए समानार्थी रूप से लिया जाता है[21] या मिश्रित अंकों के लिए।[22] उन्होंने तकनीकी शब्दों के रूप में अपना अर्थ खो दिया है और विशेषताओं को जटिल और यौगिक का उपयोग उनके हर दिन में भागों से मिलकर किया जाता है।

भिन्नों के साथ अंकगणित

संपूर्ण संख्याओं की तरह, भिन्न कम्यूटेटिव, साहचर्य और वितरण कानूनों का पालन करते हैं, और शून्य द्वारा विभाजन के विपरीत नियम।

समकक्ष भिन्न

एक भिन्न के भिन्न और हर को एक ही (गैर-शून्य) संख्या से गुणा करना एक भिन्न में परिणाम होता है जो मूल भिन्न के बराबर होता है।यह सच है क्योंकि किसी भी गैर-शून्य संख्या के लिए , भिन्न बराबरी ।इसलिए, से गुणा करना एक के द्वारा गुणा करने के समान है, और किसी द्वारा गुणा किए गए किसी भी संख्या का मूल संख्या के समान मूल्य है। एक उदाहरण के माध्यम से, भिन्न से शुरू करें । जब अंशऔर हर दोनों को 2 से गुणा किया जाता है, तो परिणाम होता है , जिसका समान मान (0.5) जैसा है । इस नेत्रहीन को चित्रित करने के लिए, एक केक को चार टुकड़ों में काटने की कल्पना करें;एक साथ दो टुकड़ों () आधा केक बनाओ ()।

सरलीकरण (कम करना) भिन्न

एक ही गैर-शून्य संख्या द्वारा एक भिन्न के अंश और हर को विभाजित करने से एक समतुल्य भिन्न होता है: यदि एक भिन्न के अंश और हर दोनों एक संख्या (जिसे कारक कहा जाता है) 1 से अधिक विभाज्य हैं, तो भिन्न कम किया जा सकता है। एक छोटे अंश और एक छोटे हर के साथ एक समान भिन्न के लिए। उदाहरण के लिए, यदि अंश और भिन्न के हर दोनों द्वारा विभाज्य हैं तब उन्हें लिखा जा सकता है तथा और भिन्न बन जाता है , जो कि अंश और हर दोनों को विभाजित करके कम किया जा सकता है कम भिन्न देने के लिए यदि कोई के लिए ले जाता है c अंश और हर का सबसे बड़ा आम हर, एक को समतुल्य भिन्न मिलता है, जिसके अंश और हर के पास सबसे कम निरपेक्ष मूल्य होते हैं। एक का कहना है कि भिन्न को इसकी सबसे कम शर्तों तक कम कर दिया गया है।

यदि अंश और हर 1 से अधिक किसी भी कारक को साझा नहीं करते हैं, तो भिन्न पहले से ही अपने सबसे कम शब्दों में कम हो गया है, और यह कहा जाता है कि यह अयोग्य, कम, या सरलतम शब्दों में है।उदाहरण के लिए, सबसे कम शब्दों में नहीं है क्योंकि 3 और 9 दोनों को बिल्कुल विभाजित किया जा सकता है। इसके विपरीत, सबसे कम शब्दों में है - केवल सकारात्मक पूर्णांक जो 3 और 8 दोनों में समान रूप से जाता है 1 है।

इन नियमों का उपयोग करते हुए, उदाहरण के लिए हम यह दिखा सकते हैं कि .

एक अन्य उदाहरण के रूप में, चूंकि 63 और 462 का सबसे बड़ा आम हर 21 है, इसलिए भिन्न न्यूमरेटर और हर को 21 से विभाजित करके सबसे कम शब्दों में कम किया जा सकता है:

यूक्लिडियन एल्गोरिथ्म किसी भी दो पूर्णांक के सबसे बड़े सामान्य हर को खोजने के लिए एक विधि देता है।

भिन्नों की तुलना

एक ही सकारात्मक हर के साथ भिन्नों की तुलना में भिन्नों की तुलना के समान परिणाम मिलता है:

इसलिये 3 > 2, और समान हर सकारात्मक हैं।

यदि समान हर नकारात्मक हैं, तो भिन्नों की तुलना करने का विपरीत परिणाम भिन्नों के लिए रखता है:

यदि दो सकारात्मक भिन्नों में एक ही भिन्न है, तो छोटे हर के साथ भिन्न बड़ी संख्या है।जब एक पूरे को समान टुकड़ों में विभाजित किया जाता है, यदि पूरे समान टुकड़ों को पूरे बनाने के लिए आवश्यक है, तो प्रत्येक टुकड़ा बड़ा होना चाहिए। जब दो सकारात्मक भिन्नों में एक ही भिन्न होता है, तो वे एक ही संख्या में भागों का प्रतिनिधित्व करते हैं, लेकिन छोटे हर के साथ भिन्न में, भाग बड़े होते हैं।

अलग-अलग भिन्नों और हर के साथ भिन्नों की तुलना करने का एक तरीका एक सामान्य हर को खोजने के लिए है। तुलना करने के लिए तथा , इन में परिवर्तित हो गए हैं तथा (जहां डॉट गुणन को दर्शाता है और × का एक वैकल्पिक प्रतीक है)। तब bd एक आम हर है और भिन्नों के विज्ञापन और bc की तुलना की जा सकती है। भिन्नों की तुलना करने के लिए आम हर के मूल्य को निर्धारित करना आवश्यक नहीं है - कोई केवल ad और bc की तुलना कर सकता है, bd का मूल्यांकन किए बिना, जैसे, तुलना करना  ? देता है

अधिक श्रमसाध्य प्रश्न के लिए  ? अन्य भिन्न के हर द्वारा प्रत्येक भिन्न के ऊपर और नीचे गुणा करें, एक सामान्य हर प्राप्त करने के लिए, उपज  ? ।गणना करना आवश्यक नहीं है - केवल भिन्नों की तुलना करने की आवश्यकता है। चूंकि 5 × 17 (= 85) 4 × 18 (= 72) से अधिक है, तुलना का परिणाम है

क्योंकि नकारात्मक भिन्नों सहित प्रत्येक नकारात्मक संख्या, शून्य से कम है, और सकारात्मक भिन्नों सहित प्रत्येक सकारात्मक संख्या, शून्य से अधिक है, यह इस प्रकार है कि कोई भी नकारात्मक भिन्न किसी भी सकारात्मक भिन्न से कम है। यह उपरोक्त नियमों के साथ, सभी संभावित भिन्नों की तुलना करने की अनुमति देता है।

जोड़

जोड़ का पहला नियम यह है कि समान मात्रा की तरह जोड़ा जा सकता है;उदाहरण के लिए, विभिन्न मात्रा में चौथाई। मात्राओं के विपरीत, जैसे कि तिहाई को चौथाई में जोड़ना, पहले नीचे वर्णित मात्राओं को समान करने के लिए परिवर्तित किया जाना चाहिए: दो चौथाई वाली जेब की कल्पना करें, और एक अन्य जेब जिसमें तीन चौथाई; कुल मिलाकर, पाँच चौथाई हैं। चूंकि चार चौथाई एक (डॉलर) के बराबर है, इसलिए इसे निम्नानुसार दर्शाया जा सकता है:

.
यदि एक केक को जोड़ा जाना है एक केक में, टुकड़ों को तुलनीय मात्रा में परिवर्तित करने की आवश्यकता होती है, जैसे कि केक-आठवीं या केक-चौथाई।

असमान अंक जोड़ना

मात्रा (जैसे चौथाई और तिहाई) के विपरीत युक्त भिन्नों को जोड़ने के लिए, सभी मात्राओं को पसंद करने के लिए सभी मात्राओं को परिवर्तित करना आवश्यक है।कन्वर्ट करने के लिए चुने हुए भिन्न के अंश को बाहर करना आसान है;बस प्रत्येक भिन्न के दो हर (नीचे संख्या) को एक साथ गुणा करें। एक पूर्णांक संख्या के मामले में व्युत्क्रम और अदृश्य हर लागू करें | अदृश्य हर तिहाई में चौथाई जोड़ने के लिए, दोनों प्रकार के भिन्नों को बारहवें स्थान पर बदल दिया जाता है, इस प्रकार:

निम्नलिखित दो मात्राओं को जोड़ने पर विचार करें:

सबसे पहले, परिवर्तित करें पंद्रहवें में अंश और हर दोनों को तीन से गुणा करके: ।तब से 1 के बराबर है, गुणा भिन्न के मूल्य को नहीं बदलता है।

दूसरा, परिवर्तित करें पंद्रहवें में अंश और हर दोनों को पांच से गुणा करके:

अब यह देखा जा सकता है कि:

के बराबर है:

इस विधि को बीजगणितीय रूप से व्यक्त किया जा सकता है:

यह बीजीय विधि हमेशा काम करती है, जिससे गारंटी होती है कि सरल भिन्नों का योग हमेशा एक साधारण भिन्न होता है। हालांकि, यदि एकल हर में एक सामान्य कारक होता है, तो इन के उत्पाद की तुलना में एक छोटा हर का उपयोग किया जा सकता है। उदाहरण के लिए, जोड़ते समय तथा एकल हर का एक सामान्य कारक होता है और इसलिए।

सबसे छोटा संभव हर एकल हर के कम से कम आम कई द्वारा दिया जाता है, जिसके परिणामस्वरूप एकल हर के सभी सामान्य कारकों द्वारा आवृत्ति को विभाजित करने के परिणामस्वरूप होता है।इसे सबसे अल्प सामान्य हर कहा जाता है।

घटाव

भिन्नों को घटाने की प्रक्रिया, संक्षेप में, उन्हें जोड़ने के समान है: एक समान हर ढूंढें, और प्रत्येक भिन्न को चुने हुए समान हर के साथ एक समान भिन्न में बदलें। परिणामस्वरूप भिन्न में वह हर होगा, और इसके भिन्न मूल भिन्नों के भिन्नों को घटाने का परिणाम होगा। उदाहरण के लिए,


गुणन

एक भिन्न को एक और भिन्न से गुणा करना

भिन्नों को गुणा करने के लिए, अंश को अंश गुणा करें और हर को गुणा करें।इस प्रकार:

प्रक्रिया को समझाने के लिए, एक तिमाही के एक तिहाई पर विचार करें। केक के उदाहरण का उपयोग करते हुए, यदि समान आकार के तीन छोटे स्लाइस एक चौथाई बनाते हैं, और चार तिमाहियों में एक पूरे, बारह में से बारह, समान स्लाइस एक पूरे होते हैं। इसलिए, एक तिमाही का एक तिहाई बारहवां है। अब भिन्नों पर विचार करें। पहला भिन्न, दो तिहाई, एक तिहाई से दोगुना बड़ा है। चूंकि एक तिहाई एक तिहाई एक बारहवें स्थान पर है, एक चौथाई का दो तिहाई दो बारहवां है। दूसरा भिन्न, तीन चौथाई, एक चौथाई से तीन गुना बड़ा है, इसलिए तीन तिहाई तीन तिमाहियों में तीन गुना बड़ा है, जो एक तिमाही के दो तिहाई से बड़ा है।इस प्रकार दो तिहाई बार तीन तिमाहियों में छह बारहवें स्थान हैं।

भिन्नों को गुणा करने के लिए एक छोटी कटौती को रद्दीकरण कहा जाता है। प्रभावी रूप से उत्तर गुणा के दौरान सबसे कम शब्दों में कम हो जाता है।उदाहरण के लिए:

एक दो बाएं भिन्न के भिन्न और दाएं के हर दोनों में एक सामान्य कारक है और दोनों से बाहर विभाजित है। तीन बाएं हर और दाएं भिन्न का एक सामान्य कारक है और दोनों से विभाजित है।

एक पूरे नंबर द्वारा एक भिन्न को गुणा करना

चूंकि एक पूरी संख्या को फिर से लिखा जा सकता है जैसा कि स्वयं 1 से विभाजित किया गया है, सामान्य भिन्न गुणा नियम अभी भी लागू हो सकते हैं।

यह विधि काम करती है क्योंकि भिन्न 6/1 का अर्थ है छह बराबर भाग, जिनमें से प्रत्येक एक संपूर्ण है।

गुणा मिश्रित संख्या

मिश्रित संख्याओं को गुणा करते समय, मिश्रित संख्या को एक विषम भिन्न में परिवर्तित करना बेहतर माना जाता है।[23] उदाहरण के लिए:

दूसरे शब्दों में, वैसा ही है जैसा कि , कुल में 11 तिमाहियों को बनाते हुए (क्योंकि 2 केक, प्रत्येक तिमाहियों में विभाजन 8 तिमाहियों को कुल बनाता है) और 33 चौथाई है , चूंकि 8 केक, प्रत्येक चौथाई से बना है, कुल मिलाकर 32 चौथाई है।

डिवीजन

एक भिन्न को एक पूरे नंबर से विभाजित करने के लिए, आप या तो संख्या को संख्या से विभाजित कर सकते हैं, यदि यह समान रूप से भिन्न में जाता है, या संख्या से हर को गुणा करता है। उदाहरण के लिए, बराबरी और बराबरी भी करता है , जो कम कर देता है ।एक संख्या को एक भिन्न से विभाजित करने के लिए, उस संख्या को उस भिन्न के व्युत्क्रम द्वारा गुणा करें। इस प्रकार, .

दशमलव और भिन्नों के बीच परिवर्तित करना

एक दशमलव में एक सामान्य भिन्न को बदलने के लिए, हर द्वारा भिन्न के दशमलव अभ्यावेदन का एक लंबा विभाजन करें (यह मुहावरेदार रूप से हर को भी भिन्न में विभाजित करता है), और वांछित सटीकता के उत्तर को गोल करें।उदाहरण के लिए, बदलने के लिए 1/4 एक दशमलव को, विभाजित करें 1.00 द्वारा 4 (4 में 1.00), प्राप्त करने के लिए 0.25।बदलने के लिए 1/3 एक दशमलव को, विभाजित करें 1.000... द्वारा 3 (3 में 1.000...), और जब वांछित सटीकता प्राप्त की जाती है, तो रुकें, जैसे, पर 4 के साथ दशमलव 0.3333।भिन्न 1/4 दो दशमलव अंकों के साथ बिल्कुल लिखा जा सकता है, जबकि भिन्न 1/3 अंकों की एक परिमित संख्या के साथ दशमलव के रूप में बिल्कुल नहीं लिखा जा सकता है।एक दशमलव को एक भिन्न में बदलने के लिए, हर में लिखें 1 दशमलव बिंदु के दाईं ओर अंक के रूप में कई शून्य द्वारा पीछा किया जाता है, और भिन्न में मूल दशमलव के सभी अंकों में लिखते हैं, बस दशमलव बिंदु को छोड़ देते हैं।इस प्रकार


परिवर्तनों को दोहराना दशमलव को भिन्नों में

दशमलव संख्या, जबकि गणना करते समय काम करने के लिए यकीनन अधिक उपयोगी है, कभी -कभी सामान्य भिन्नों में सटीकता की कमी होती है। कभी -कभी एक ही सटीकता तक पहुंचने के लिए एक अनंत दोहराने वाले दशमलव की आवश्यकता होती है। इस प्रकार, अक्सर दोहराए जाने वाले दशमलवों को भिन्नों में परिवर्तित करना उपयोगी होता है।

एक दोहराने वाले दशमलव को इंगित करने का एक पारंपरिक तरीका यह है कि एक बार (एक विनकुलम के रूप में जाना जाता है) को अंकों पर दोहराने के लिए, उदाहरण के लिए - 0.789 = 0.789789789 ... दशमलव बिंदु के तुरंत बाद शुरू होने वाले पैटर्न को दोहराने के लिए, रूपांतरण का परिणाम एक भिन्न के रूप में पैटर्न के साथ भिन्न है, और एक समान संख्या में नाइन एक हर के रूप में है। उदाहरण के लिए:

0.5 = 5/9
0.62 = 62/99
0.264 = 264/999
0.6291 = 6291/9999

यदि अग्रणी शून्य पैटर्न से पहले होता है, तो नाइन को समान संख्या में अनुगामी शून्य द्वारा प्रत्यय दिया जाता है:

0.05 = 5/90
0.000392 = 392/999000
0.0012 = 12/9900

यदि डिकिमल्स का एक गैर-दोहराने वाला सेट पैटर्न से पहले होता है (जैसे) 0.1523987), कोई भी क्रमशः गैर-दोहराव और दोहराए जाने वाले भागों के योग के रूप में संख्या लिख सकता है:

0.1523 + 0.0000987

फिर, दोनों भागों को भिन्नों में परिवर्तित करें, और उन्हें ऊपर वर्णित विधियों का उपयोग करके जोड़ें:

1523 /10000 + 987 /9990000 = 1522464 /9990000

वैकल्पिक रूप से, बीजगणित का उपयोग किया जा सकता है, जैसे कि नीचे:

  1. लेट एक्स = दोहराने वाला दशमलव:
    x = 0.1523987
  2. दोनों पक्षों को , जो कि इस मामले में 10 (इस मामले में 10 4 ) दशमलव संख्या के दोहराए जाने वाले भाग से ठीक पहले दशमलव बिंदु को स्थानांतरित करने के लिए 10 की घात से गुणा करें
  3. 10 की घात से दोनों पक्षों को गुणा करें (इस मामले में 103 ) यह उन स्थानों की संख्या के समान है जो दोहराते हैं:
    10,000,000x = 1,523,987.987
  4. दो समीकरणों को एक दूसरे से घटाएं (यदि a = b और c = d, तो a - c = b - d):
    10,000,000x - 10,000x = 1,523,987.987 − 1,523.987
  5. दोहराने वाले दशमलव को साफ करने के लिए घटाव संचालन जारी रखें:
    9,990,000x = 1,523,987 - 1,523
    `<स्पैन स्टाइल = दृश्यता: छिपी> 9,990,000x = 1,522,464
  6. एक भिन्न के रूप में x का प्रतिनिधित्व करने के लिए दोनों पक्षों को 9,990,000 से विभाजित करें
    x = 1522464/9990000


सार गणित में भिन्न

महान व्यावहारिक महत्व के अलावा, गणितज्ञों द्वारा भिन्नों का भी अध्ययन किया जाता है, जो जांचते हैं कि ऊपर दिए गए भिन्नों के नियम सुसंगत और विश्वसनीय हैं। गणितज्ञ एक आदेशित जोड़ी के रूप में एक भिन्न को परिभाषित करते हैं पूर्णांक का तथा जिसके लिए संचालन जोड़, घटाव, गुणा और विभाजन को निम्नानुसार परिभाषित किया गया है:[24]

ये परिभाषाएँ ऊपर दी गई परिभाषाओं से हर मामले में सहमत हैं;केवल संकेतन अलग है।वैकल्पिक रूप से, परिचालन के रूप में घटाव और विभाजन को परिभाषित करने के बजाय, जोड़ और गुणन के संबंध में उलटा भिन्नों को परिभाषित किया जा सकता है:

इसके अलावा, संबंध, के रूप में निर्दिष्ट है

भिन्नों का एक समानता संबंध है।एक समतुल्यता वर्ग के प्रत्येक भिन्न को पूरे वर्ग के लिए एक प्रतिनिधि माना जा सकता है, और प्रत्येक पूरे वर्ग को एक अमूर्त भिन्न के रूप में माना जा सकता है।यह समतुल्यता उपरोक्त परिभाषित संचालन द्वारा संरक्षित है, अर्थात, भिन्नों पर संचालन के परिणाम उनके तुल्यता वर्ग से प्रतिनिधियों के चयन से स्वतंत्र हैं।औपचारिक रूप से, भिन्नों को जोड़ने के लिए

तथा मतलब

और इसी तरह अन्य संचालन के लिए।

पूर्णांक के भिन्नों के मामले में, भिन्न a/b साथ a तथा b कोपराइम और b > 0 अक्सर उनके समकक्ष भिन्नों के लिए विशिष्ट रूप से निर्धारित प्रतिनिधियों के रूप में लिया जाता है, जिन्हें समान परिमेय संख्या माना जाता है।इस तरह से पूर्णांक के भिन्न परिमेय संख्याओं का क्षेत्र बनाते हैं।

आम तौर पर, a और b किसी भी अभिन्न डोमेन आर के तत्व हो सकते हैं, जिस स्थिति में एक भिन्न आर के भिन्नों के क्षेत्र का एक तत्व है। उदाहरण के लिए, एक अनिश्चित में बहुपद, कुछ अभिन्न डोमेन डी से गुणांक के साथ, स्वयं एक हैं। इंटीग्रल डोमेन, इसे पी। पी। इसलिए पी के ए और बी तत्वों के लिए, भिन्नों का उत्पन्न क्षेत्र परिमेय भिन्नों का क्षेत्र है (जिसे परिमेय कार्यों के क्षेत्र के रूप में भी जाना जाता है)।

बीजगणितीय भिन्न

एक बीजीय भिन्न दो बीजगणितीय अभिव्यक्तियों का संकेतित भागफल है। पूर्णांक के भिन्नों के साथ, एक बीजगणितीय भिन्न के हर शून्य नहीं हो सकते हैं। बीजीय भिन्नों के दो उदाहरण हैं तथा ।बीजगणितीय भिन्न अंकगणितीय भिन्नों के समान क्षेत्र गुणों के अधीन हैं।

यदि भिन्न और हर बहुपद हैं, जैसा कि , बीजीय भिन्न को एक परिमेय भिन्न (या परिमेय अभिव्यक्ति) कहा जाता है।एक तर्कहीन भिन्न वह है जो परिमेय नहीं है, जैसे, उदाहरण के लिए, एक जिसमें एक आंशिक घातांक या जड़ के तहत चर होता है, जैसा कि

बीजीय भिन्नों का वर्णन करने के लिए उपयोग की जाने वाली शब्दावली साधारण भिन्नों के लिए उपयोग की जाने वाली समान है।उदाहरण के लिए, एक बीजगणितीय भिन्न सबसे कम शब्दों में है यदि केवल भिन्न और हर के लिए सामान्य कारक 1 और −1 हैं।एक बीजीय भिन्न जिसका भिन्न या हर, या दोनों, एक भिन्न होता है, जैसे , एक जटिल भिन्न कहा जाता है।

परिमेय संख्याओं का क्षेत्र पूर्णांक के भिन्नों का क्षेत्र है, जबकि पूर्णांक स्वयं एक क्षेत्र नहीं हैं, बल्कि एक अभिन्न डोमेन हैं।इसी तरह, एक क्षेत्र में गुणांक के साथ परिमेय भिन्न उस क्षेत्र में गुणांक के साथ बहुपद के भिन्नों का क्षेत्र बनाते हैं।वास्तविक गुणांक के साथ परिमेय भिन्नों को ध्यान में रखते हुए, संख्याओं का प्रतिनिधित्व करने वाले कट्टरपंथी भाव, जैसे परिमेय भिन्न भी हैं, जैसे कि एक पारलौकिक संख्याएं हैं जैसे के बाद से तथा वास्तविक संख्याएं हैं, और इस प्रकार गुणांक के रूप में माना जाता है।ये समान संख्या, हालांकि, पूर्णांक गुणांक के साथ परिमेय भिन्न नहीं हैं।

आंशिक भिन्न शब्द का उपयोग तब किया जाता है जब परिमेय भिन्नों को सरल भिन्नों में विघटित किया जाता है।उदाहरण के लिए, परिमेय भिन्न दो भिन्नों के योग के रूप में विघटित किया जा सकता है: यह परिमेय कार्यों के एंटीडाइवेटिव्स की गणना के लिए उपयोगी है (अधिक के लिए आंशिक भिन्न अपघटन देखें)।

कट्टरपंथी भाव

एक भिन्न में भिन्न या हर में कट्टरपंथी भी हो सकते हैं।यदि हर में कट्टरपंथी होते हैं, तो यह इसे परिमेय बनाने के लिए सहायक हो सकता है (एक कट्टरपंथी अभिव्यक्ति के सरलीकृत रूप की तुलना करें), खासकर यदि आगे के संचालन, जैसे कि उस भिन्न को दूसरे से जोड़ना या तुलना करना, को बाहर किया जाना है।यह भी अधिक सुविधाजनक है अगर विभाजन को मैन्युअल रूप से किया जाना है।जब हर एक मोनोमियल स्क्वायर रूट होता है, तो इसे भड़काने वाले द्वारा भिन्न के शीर्ष और नीचे दोनों को गुणा करके परिमेय बनाया जा सकता है:

द्विपदीय हर के युक्तिकरण की प्रक्रिया में हर में एक भिन्न के शीर्ष और नीचे को गुणा करना शामिल है, ताकि हर में हर के रूप में होता है ताकि हर एक परिमेय संख्या बन जाए।उदाहरण के लिए:

यहां तक कि अगर इस प्रक्रिया के परिणामस्वरूप भिन्न तर्कहीन हो, जैसे कि ऊपर दिए गए उदाहरणों में, प्रक्रिया अभी भी बाद के जोड़तोड़ की सुविधा प्रदान कर सकती है, जो कि एक अतार्किक की संख्या को कम करके एक व्यक्ति के साथ काम करने के लिए है।

टाइपोग्राफिक विविधताएं

कंप्यूटर डिस्प्ले और टाइपोग्राफी में, सरल भिन्नों को कभी -कभी एकल वर्ण के रूप में मुद्रित किया जाता है, उदा।½ (एक आधा)।यूनिकोड में ऐसा करने की जानकारी के लिए संख्या रूपों पर लेख देखें।

वैज्ञानिक प्रकाशन उपयोग पर दिशानिर्देशों के साथ, भिन्नों को सेट करने के चार तरीकों को अलग करता है:[25]

  • विशेष भिन्न: भिन्न जो एक एकल वर्ण के रूप में एक पतले बार के साथ प्रस्तुत किए जाते हैं, लगभग एक ही ऊंचाई और पाठ में अन्य वर्णों के समान चौड़ाई के साथ।आम तौर पर सरल भिन्नों के लिए उपयोग किया जाता है, जैसे: ½, ⅔, and,,, और।चूंकि अंक छोटे होते हैं, इसलिए सुगमता एक मुद्दा हो सकती है, खासकर छोटे आकार के फोंट के लिए।इनका उपयोग आधुनिक गणितीय संकेतन में नहीं, बल्कि अन्य संदर्भों में किया जाता है।
  • केस भिन्न: विशेष भिन्नों के समान, इन्हें एक एकल टाइपोग्राफिक चरित्र के रूप में प्रस्तुत किया जाता है, लेकिन एक क्षैतिज बार के साथ, इस प्रकार उन्हें ईमानदार बना दिया जाता है।एक उदाहरण होगा , लेकिन अन्य पात्रों के समान ऊंचाई के साथ प्रस्तुत किया गया।कुछ स्रोतों में केस भिन्नों के रूप में भिन्नों के सभी प्रतिपादन शामिल हैं यदि वे बार की दिशा की परवाह किए बिना केवल एक टाइपोग्राफिक स्थान लेते हैं।[26]
  • शिलिंग या सॉलिडस भिन्न: 1/2, इसलिए कहा जाता है क्योंकि इस संकेतन का उपयोग पूर्व-दशमलव ब्रिटिश मुद्रा (£ एसडी) के लिए किया गया था, जैसा कि 2/6 में एक आधा मुकुट के लिए, जिसका अर्थ है दो शिलिंग और छह पेंस।जबकि संकेतन दो शिलिंग और छह पेंस एक भिन्न का प्रतिनिधित्व नहीं करते थे, आगे स्लैश का उपयोग अब भिन्नों में किया जाता है, विशेष रूप से असमान लाइनों से बचने के लिए, गद्य के साथ (प्रदर्शित होने के बजाय) के साथ इनलाइन इनलाइन के लिए।इसका उपयोग भिन्नों को बढ़ाने के लिए भिन्नों (जटिल भिन्नों) या घातांक के भीतर भिन्नों के लिए भी किया जाता है।इस तरह से लिखे गए भिन्नों को टुकड़ा भिन्न के रूप में भी जाना जाता है,[27] सभी एक टाइपोग्राफिक लाइन पर लिखे गए हैं, लेकिन 3 या अधिक टाइपोग्राफिक रिक्त स्थान लेते हैं।
  • निर्मित भिन्न: ।यह संकेतन साधारण पाठ की दो या अधिक पंक्तियों का उपयोग करता है, और अन्य पाठ के भीतर शामिल होने पर लाइनों के बीच अंतर करने में भिन्नता में परिणाम होता है।जबकि बड़े और सुपाठ्य, ये विघटनकारी हो सकते हैं, विशेष रूप से सरल भिन्नों के लिए या जटिल भिन्नों के भीतर।

इतिहास

शुरुआती भिन्न पूर्णांक के व्युत्क्रम थे: प्राचीन प्रतीक जो दो के एक हिस्से का प्रतिनिधित्व करते हैं, तीन का एक हिस्सा, चार का एक हिस्सा, और इसी तरह।[28] मिस्रियों ने मिस्र के भिन्नों का इस्तेमाल किया c. 1000& nbsp; bc।लगभग 4000 साल पहले, मिस्रियों ने थोड़ा अलग तरीकों का उपयोग करके भिन्नों के साथ विभाजित किया।उन्होंने यूनिट भिन्नों के साथ कम से कम सामान्य गुणकों का उपयोग किया।उनके तरीकों ने आधुनिक तरीकों के समान ही उत्तर दिया।[29] मिस्रियों को भी अखमिम वुडन टैबलेट और कई राइंड गणितीय पपीरस समस्याओं में डायडिक भिन्नों के लिए एक अलग संकेतन था।

यूनानियों ने इकाई भिन्नों का उपयोग किया और (बाद में) भिन्नों को जारी रखा।ग्रीक दार्शनिक पाइथागोरस के अनुयायी (c. 530& nbsp; bc) ने पाया कि दो के वर्गमूल को पूर्णांक के एक भिन्न के रूप में व्यक्त नहीं किया जा सकता है।(यह आमतौर पर हालांकि संभवतः गलत तरीके से मेटापोंटम के हिप्पेसस को बताता है, जिसके बारे में कहा जाता है कि इस तथ्य को प्रकट करने के लिए निष्पादित किया गया है।) 150 BC भारत में जैन गणितज्ञों ने स्टानंगा सूत्र लिखा, जिसमें संख्याओं के सिद्धांत, अंकगणितीय संचालन और संचालन के सिद्धांत पर काम शामिल है।

भनानारासी के रूप में जाना जाने वाले भिन्नों की एक आधुनिक अभिव्यक्ति भारत में आर्यभट्ट के काम में उत्पन्न हुई है (c. AD 500),[citation needed] ब्रह्मगुप्त (c. 628), and Bhāskara II|Bhaskara (c. 1150)।[30] उनके कार्य भिन्नों को रखकर भिन्नों का गठन करते हैं (Sanskrit: amsa) हर पर (cheda), लेकिन उनके बीच एक बार के बिना।[30]संस्कृत साहित्य में, भिन्नों को हमेशा एक पूर्णांक से एक अतिरिक्त या घटाव के रूप में व्यक्त किया गया था।[citation needed] पूर्णांक एक पंक्ति पर लिखा गया था और अगली पंक्ति में इसके दो भागों में भिन्न।यदि भिन्न एक छोटे सर्कल द्वारा चिह्नित किया गया था ⟨०⟩ अथवा पार जाना ⟨+⟩, यह पूर्णांक से घटाया जाता है;यदि ऐसा कोई संकेत प्रकट नहीं होता है, तो इसे जोड़ा जाना समझा जाता है।उदाहरण के लिए, भास्कर मैं लिखता हूं:[31]

६ १ 2
१ १ १
४ ५ 9

जो के बराबर है

6 1 2
1 1 -1
4 5 9

और आधुनिक संकेतन में 6 के रूप में लिखा जाएगा1/4, 11/5, और 2 - 1/9 (यानी, 18/9)।

क्षैतिज भिन्न पट्टी को पहले अल-हासर के काम में देखा जाता है (fl. 1200),[30]Fez, मोरक्को के एक मुस्लिम गणितज्ञ, जो इस्लामी विरासत न्यायशास्त्र में विशेषज्ञता रखते थे। अपनी चर्चा में वह लिखते हैं, ... उदाहरण के लिए, यदि आपको तीन-पांचवें और पांचवें का एक तिहाई लिखने के लिए कहा जाता है, तो इस प्रकार लिखें, [32] एक ही आंशिक संकेतन - पूर्णांक से पहले दिए गए भिन्न के साथ[30]13 वीं शताब्दी में लियोनार्डो फाइबोनैचि के काम में जल्द ही के बाद।[33] दशमलव भिन्नों की उत्पत्ति पर चर्चा करने में, डिर्क जन स्ट्रुइक राज्यों:[34] <clocquote> एक सामान्य कम्प्यूटेशनल प्रथा के रूप में दशमलव भिन्नों की शुरूआत को फ्लेमिश पैम्फलेट डे थिएन्डे में वापस किया जा सकता है, जिसे 1585 में लेडेन में प्रकाशित किया गया था, साथ में एक फ्रांसीसी अनुवाद, ला डिस, फ्लेमिश मैथमेटियन साइमन स्टीविन (1548-1620) द्वारा एक साथ, ला डिस्री के साथ, (1548-1620), फिर उत्तरी नीदरलैंड में बस गए। यह सच है कि स्टेविन से कई शताब्दियों से कई शताब्दियों से दशमलव भिन्नों का उपयोग किया गया था और फारसी खगोलशास्त्री अल-काशी ने अंकगणित (समरकंद, शुरुआती पंद्रहवीं शताब्दी) के लिए अपनी कुंजी में दशमलव और सेक्सजिमल दोनों भिन्नों का उपयोग किया था।[35]

जबकि फारसी गणितज्ञ जमशिद अल-कशी ने दावा किया था कि 15 वीं शताब्दी में खुद दशमलव भिन्नों की खोज की गई थी, जे. लीनार्ट बर्गग्रेन ने कहा कि उन्हें गलत माना गया था, क्योंकि दशमलव भिन्नों का उपयोग पहले पांच शताब्दियों से पहले किया गया था। अबुल-हसन अल-उक्लिदिसी द्वारा 10 वीं शताब्दी की शुरुआत में उपयोग किया गया था।[36][n 2]


औपचारिक शिक्षा में

शैक्षणिक उपकरण

प्राथमिक स्कूलों में, भिन्नों को क्यूसेनेयर रॉड्स, भिन्न बार, भिन्न स्ट्रिप्स, भिन्न सर्कल, पेपर (फोल्डिंग या कटिंग के लिए), पैटर्न ब्लॉक, पाई के आकार के टुकड़े, प्लास्टिक आयताकार, ग्रिड पेपर, डॉट पेपर, जियोबोर्ड, काउंटर्स औरकंप्यूटर सॉफ्टवेयर।

शिक्षकों के लिए दस्तावेज

संयुक्त राज्य अमेरिका के कई राज्यों ने गणित की शिक्षा के लिए कॉमन कोर स्टेट स्टैंडर्ड्स इनिशिएटिव के दिशानिर्देशों से सीखने के प्रक्षेपवक्र को अपनाया है। भिन्नों के साथ भिन्नों और संचालन के सीखने को अनुक्रमण करने के अलावा, दस्तावेज़ एक भिन्न की निम्नलिखित परिभाषा प्रदान करता है: फॉर्म में एक संख्या व्यक्त करने योग्य / कहाँ पे एक पूरी संख्या है और एक सकारात्मक पूरी संख्या है। (इन मानकों में शब्द भिन्न हमेशा एक गैर-नकारात्मक संख्या को संदर्भित करता है।)[38] दस्तावेज़ स्वयं नकारात्मक भिन्नों को भी संदर्भित करता है।

यह भी देखें

  • क्रॉस गुणा
  • 0.999 ...
  • कई
  • फ्रेट्रान
Number systems
Complex
Real
Rational
Integer
Natural
Zero: 0
One: 1
Prime numbers
Composite numbers
Negative integers
Fraction
Finite decimal
Dyadic (finite binary)
Repeating decimal
Irrational
Algebraic irrational
Transcendental
Imaginary


टिप्पणियाँ

  1. Some typographers such as Bringhurst mistakenly distinguish the slash ⟨/⟩ as the virgule and the fraction slash ⟨⟩ as the solidus,[6] although in fact both are synonyms for the standard slash.[7][8]
  2. While there is some disagreement among history of mathematics scholars as to the primacy of al-Uqlidisi's contribution, there is no question as to his major contribution to the concept of decimal fractions.[37]


संदर्भ

  1. H. Wu, The Mis-Education of Mathematics Teachers , Notices of the American Mathematical Society, Volume 58, Issue 03 (March 2011), p. 374 Archived 2017-08-20 at the Wayback Machine
  2. Schwartzman, Steven (1994). The Words of Mathematics: An Etymological Dictionary of Mathematical Terms Used in English. Mathematical Association of America. ISBN 978-0-88385-511-9.
  3. "Fractions". www.mathsisfun.com. Retrieved 2020-08-27.
  4. Jump up to: 4.0 4.1 Ambrose, Gavin; et al. (2006). The Fundamentals of Typography (2nd ed.). Lausanne: AVA Publishing. p. 74. ISBN 978-2-940411-76-4. Archived from the original on 2016-03-04. Retrieved 2016-02-20..
  5. Weisstein, Eric W. "Fraction". mathworld.wolfram.com (in English). Retrieved 2020-08-27.
  6. Bringhurst, Robert (2002). "5.2.5: Use the Virgule with Words and Dates, the Solidus with Split-level Fractions". The Elements of Typographic Style (3rd ed.). Point Roberts: Hartley & Marks. pp. 81–82. ISBN 978-0-88179-206-5.
  7. "virgule, n.". Oxford English Dictionary (1st ed.). Oxford: Oxford University Press. 1917.
  8. "solidus, n.1". Oxford English Dictionary (1st ed.). Oxford: Oxford University Press. 1913.
  9. Weisstein, Eric W. "Common Fraction". MathWorld.
  10. Jump up to: 10.0 10.1 David E. Smith (1 June 1958). History of Mathematics. Courier Corporation. p. 219. ISBN 978-0-486-20430-7.
  11. "World Wide Words: Vulgar fractions". World Wide Words. Archived from the original on 2014-10-30. Retrieved 2014-10-30.
  12. Weisstein, Eric W. "Improper Fraction". MathWorld.
  13. Jack Williams (19 November 2011). Robert Recorde: Tudor Polymath, Expositor and Practitioner of Computation. Springer Science & Business Media. pp. 87–. ISBN 978-0-85729-862-1.
  14. Record, Robert (1654). Record's Arithmetick: Or, the Ground of Arts: Teaching the Perfect Work and Practise of Arithmetick ... Made by Mr. Robert Record ... Afterward Augmented by Mr. John Dee. And Since Enlarged with a Third Part of Rules of Practise ... By John Mellis. And Now Diligently Perused, Corrected ... and Enlarged ; with an Appendix of Figurative Numbers ... with Tables of Board and Timber Measure ... the First Calculated by R. C. But Corrected, and the Latter ... Calculated by Ro. Hartwell ... James Flesher, and are to be sold by Edward Dod. pp. 266–.
  15. Laurel (31 March 2004). "Math Forum – Ask Dr. Math: Can Negative Fractions Also Be Proper or Improper?". Archived from the original on 9 November 2014. Retrieved 2014-10-30.
  16. "New England Compact Math Resources". Archived from the original on 2012-04-15. Retrieved 2011-12-31.
  17. Greer, A. (1986). New comprehensive mathematics for 'O' level (2nd ed., reprinted ed.). Cheltenham: Thornes. p. 5. ISBN 978-0-85950-159-0. Archived from the original on 2019-01-19. Retrieved 2014-07-29.
  18. Jump up to: 18.0 18.1 Trotter, James (1853). A complete system of arithmetic. p. 65.
  19. Jump up to: 19.0 19.1 Barlow, Peter (1814). A new mathematical and philosophical dictionary.
  20. https://www.collinsdictionary.com/dictionary/english/complex-fraction Archived 2017-12-01 at the Wayback Machine et al.
  21. "Complex fraction definition and meaning". Collins English Dictionary. 2018-03-09. Archived from the original on 2017-12-01. Retrieved 2018-03-13.
  22. "Compound Fractions". Sosmath.com. 1996-02-05. Archived from the original on 2018-03-14. Retrieved 2018-03-13.
  23. Schoenborn, Barry; Simkins, Bradley (2010). "8. Fun with Fractions". Technical Math For Dummies (in English). Hoboken: Wiley Publishing Inc. p. 120. ISBN 978-0-470-59874-0. OCLC 719886424. Retrieved 28 September 2020.
  24. "Fraction". Encyclopedia of Mathematics. 2012-04-06. Archived from the original on 2014-10-21. Retrieved 2012-08-15.
  25. Galen, Leslie Blackwell (March 2004). "Putting Fractions in Their Place" (PDF). American Mathematical Monthly. 111 (3): 238–242. doi:10.2307/4145131. JSTOR 4145131. Archived (PDF) from the original on 2011-07-13. Retrieved 2010-01-27.
  26. "built fraction". allbusiness.com glossary. Archived from the original on 2013-05-26. Retrieved 2013-06-18.
  27. "piece fraction". allbusiness.com glossary. Archived from the original on 2013-05-21. Retrieved 2013-06-18.
  28. Eves, Howard (1990). An introduction to the history of mathematics (6th ed.). Philadelphia: Saunders College Pub. ISBN 978-0-03-029558-4.
  29. Milo Gardner (December 19, 2005). "Math History". Archived from the original on December 19, 2005. Retrieved 2006-01-18. See for examples and an explanation.
  30. Jump up to: 30.0 30.1 30.2 30.3 Miller, Jeff (22 December 2014). "Earliest Uses of Various Mathematical Symbols". Archived from the original on 20 February 2016. Retrieved 15 February 2016.
  31. Filliozat, Pierre-Sylvain (2004). "Ancient Sanskrit Mathematics: An Oral Tradition and a Written Literature". In Chemla, Karine; Cohen, Robert S.; Renn, Jürgen; et al. (eds.). History of Science, History of Text. Boston Series in the Philosophy of Science (in English). Vol. 238. Dordrecht: Springer Netherlands. p. 152. doi:10.1007/1-4020-2321-9_7. ISBN 978-1-4020-2320-0.
  32. Cajori, Florian (1928). A History of Mathematical Notations. Vol. 1. La Salle, Illinois: Open Court Publishing Company. p. 269. Archived from the original on 2014-04-14. Retrieved 2017-08-30.
  33. Cajori (1928), p. 89
  34. A Source Book in Mathematics 1200–1800. New Jersey: Princeton University Press. 1986. ISBN 978-0-691-02397-7.
  35. Die Rechenkunst bei Ğamšīd b. Mas'ūd al-Kāšī. Wiesbaden: Steiner. 1951.
  36. Berggren, J. Lennart (2007). "Mathematics in Medieval Islam". The Mathematics of Egypt, Mesopotamia, China, India, and Islam: A Sourcebook. Princeton University Press. p. 518. ISBN 978-0-691-11485-9.
  37. "MacTutor's al-Uqlidisi biography" Archived 2011-11-15 at the Wayback Machine. Retrieved 2011-11-22.
  38. "Common Core State Standards for Mathematics" (PDF). Common Core State Standards Initiative. 2010. p. 85. Archived (PDF) from the original on 2013-10-19. Retrieved 2013-10-10.


बाहरी संबंध


]


]