प्रभाव परिमाण: Difference between revisions
mNo edit summary |
|||
(14 intermediate revisions by 5 users not shown) | |||
Line 35: | Line 35: | ||
एक प्रभाव परिमाण को छोटे, मध्यम या बड़े के रूप में व्याख्यायित किया जाना चाहिए या नहीं यह इसके मूल संदर्भ और इसकी परिचालन परिभाषा पर निर्भर करता है। कोहेन के पारंपरिक मापदंड छोटे, मध्यम या बड़े<ref name="CohenJ1988Statistical"/> यह कई क्षेत्रों में लगभग सर्वव्यापी हैं, हालांकि कोहेन<ref name="CohenJ1988Statistical"/> ने चेतावनी दी: | एक प्रभाव परिमाण को छोटे, मध्यम या बड़े के रूप में व्याख्यायित किया जाना चाहिए या नहीं यह इसके मूल संदर्भ और इसकी परिचालन परिभाषा पर निर्भर करता है। कोहेन के पारंपरिक मापदंड छोटे, मध्यम या बड़े<ref name="CohenJ1988Statistical"/> यह कई क्षेत्रों में लगभग सर्वव्यापी हैं, हालांकि कोहेन<ref name="CohenJ1988Statistical"/> ने चेतावनी दी: | ||
<blockquote> शब्द 'छोटा,' 'मध्यम' और 'बड़ा' सापेक्ष हैं, न केवल एक दूसरे के लिए, बल्कि व्यवहार विज्ञान के क्षेत्र या इससे भी अधिक विशेष रूप से किसी भी जांच में नियोजित विशिष्ट विषय वस्तु और अनुसंधान पद्धति के लिए ....इस सापेक्षता के सामने, व्यवहार विज्ञान के रूप में जांच के विविध क्षेत्र में शक्ति विश्लेषण में उपयोग के लिए इन प्रतिबंधों के लिए पारंपरिक परिचालन परिभाषाएं प्रस्तुत करने में एक निश्चित खतरा निहित है। इस खतरा को फिर भी इस विश्वास | <blockquote> शब्द 'छोटा,' 'मध्यम' और 'बड़ा' सापेक्ष हैं, न केवल एक दूसरे के लिए, बल्कि व्यवहार विज्ञान के क्षेत्र या इससे भी अधिक विशेष रूप से किसी भी जांच में नियोजित विशिष्ट विषय वस्तु और अनुसंधान पद्धति के लिए ....इस सापेक्षता के सामने, व्यवहार विज्ञान के रूप में जांच के विविध क्षेत्र में शक्ति विश्लेषण में उपयोग के लिए इन प्रतिबंधों के लिए पारंपरिक परिचालन परिभाषाएं प्रस्तुत करने में एक निश्चित खतरा निहित है। इस खतरा को फिर भी इस विश्वास से स्वीकार किया जाता है कि संदर्भ के एक सामान्य पारंपरिक फ्रेम की आपूर्ति करके खोने से अधिक प्राप्त करना है, जिसे केवल तभी उपयोग करने की अनुशंसा की जाती है जब ES सूची का आकलन करने के लिए कोई उच्च आधार उपलब्ध न हो। (पृ. 25)</blockquote> | ||
दो प्रतिरूप अभिन्यास में, सॉविलोव्स्की ने <ref name="Sawilowsky2009"/>निष्कर्ष निकाला "अनुप्रयुक्त साहित्य में वर्तमान शोध निष्कर्षों के आधार पर, कोहेन की चेतावनियों को ध्यान में रखते हुए, प्रभाव के परिणाम के लिए | दो प्रतिरूप अभिन्यास में, सॉविलोव्स्की ने <ref name="Sawilowsky2009"/>निष्कर्ष निकाला "अनुप्रयुक्त साहित्य में वर्तमान शोध निष्कर्षों के आधार पर, कोहेन की चेतावनियों को ध्यान में रखते हुए, प्रभाव के परिणाम के लिए अंगुष्ठ नियम को संशोधित करना उचित लगता है, और बहुत छोटे, बहुत बड़े और विशाल को समिलित करने के लिए विवरणों का विस्तार किया। अन्य अभिन्यास के लिए समान वास्तविक मानक विकसित किए जा सकते हैं। | ||
लेथ <ref>{{Cite web | लेथ <ref>{{Cite web | ||
Line 45: | Line 45: | ||
| publisher = Division of Mathematical Sciences, the College of Liberal Arts or The University of Iowa | | publisher = Division of Mathematical Sciences, the College of Liberal Arts or The University of Iowa | ||
| access-date = 2008-10-08 | | access-date = 2008-10-08 | ||
}}</ref> ने एक "मध्यम" प्रभाव परिमाण के लिए | }}</ref> ने एक "मध्यम" प्रभाव परिमाण के लिए ध्यान दिया, "आप अपने उपकरण की सटीकता या विश्वसनीयता, या अपने विषयों की संकीर्णता या विविधता की चिंता किए बिना वही n चुनें। स्पष्ट है कि, यहां महत्वपूर्ण बातों की अनदेखी की जा रही है। शोधकर्ताओं को अपने परिणामों के वास्तविक महत्व की व्याख्या उन्हें एक सार्थक संदर्भ या ज्ञान में उनके योगदान की मात्रा निर्धारित करके करनी चाहिए, और कोहेन के प्रभाव परिमाण के विवरण एक प्रारंभिक बिंदु के रूप में सहायक हो सकते हैं।"<ref name="Ellis2010"/>इसी तरह, अमेरिकी शिक्षा विभाग की एक प्रायोजित सूचना में कहा है कि कोहेन के सामान्य छोटे, मध्यम और बड़े प्रभाव परिमाण मूल्यों का व्यापक अंधाधुंध उपयोग उन कार्यक्षेत्र में प्रभाव परिणामों को चिह्नित करने के लिए किया जाता है जिन पर उनके मानक मूल्य लागू नहीं होते हैं, इसी तरह यह अनुचित और भ्रामक है।<ref name="Lipsey">{{Cite book | ||
| author = Lipsey, M.W. | | author = Lipsey, M.W. | ||
| title = Translating the Statistical Representation of the Effects of Education Interventions Into More Readily Interpretable Forms | | title = Translating the Statistical Representation of the Effects of Education Interventions Into More Readily Interpretable Forms | ||
Line 54: | Line 54: | ||
|display-authors=etal}}</ref> | |display-authors=etal}}</ref> | ||
उन्होंने सुझाव दिया कि उपयुक्त मापदंड वे हैं जो तुलनीय प्रतिरूपों पर लक्षित तुलनीय हस्तक्षेपों से तुलनीय परिणाम उपायों के प्रभाव के परिणाम के वितरण पर आधारित | उन्होंने सुझाव दिया कि "उपयुक्त मापदंड वे हैं जो तुलनीय प्रतिरूपों पर लक्षित तुलनीय हस्तक्षेपों से तुलनीय परिणाम उपायों के प्रभाव के परिणाम के वितरण पर आधारित हैं"। इस प्रकार यदि एक ऐसे क्षेत्र में एक अध्ययन जहां अधिकांश हस्तक्षेप छोटे हैं (कोहेन के मापदंडों के अनुसार), तो ये नए मापदंड इसे "बड़ा" कहेंगे। संबंधित बिंदु में, [[एबेल्सन का विरोधाभास]] और सॉविलोव्स्की का विरोधाभास देखें।<ref>{{cite journal |last=Sawilowsky |first=S. S. |year=2005 |title=एबेलसन का विरोधाभास और माइकलसन-मॉर्ले प्रयोग|journal=Journal of Modern Applied Statistical Methods |volume=4 |issue=1 |pages=352 |url=http://digitalcommons.wayne.edu/coe_tbf/13 |doi=10.22237/jmasm/1114907520 |doi-access=free }}</ref><ref>{{cite book |first1=S. |last1=Sawilowsky |first2=J. |last2=Sawilowsky |first3=R. J. |last3=Grissom |year=2010 |chapter=Effect Size |editor-first=M. |editor-last=Lovric |title=सांख्यिकीय विज्ञान का अंतर्राष्ट्रीय विश्वकोश|publisher=Springer }}</ref><ref>{{cite journal |first=S. |last=Sawilowsky |year=2003 |title=परिकल्पना परीक्षण के खिलाफ मामले से विखंडन तर्क|journal=Journal of Modern Applied Statistical Methods |volume=2 |issue=2 |pages=467–474 |url=http://digitalcommons.wayne.edu/coe_tbf/17 |doi=10.22237/jmasm/1067645940 |doi-access=free }}</ref> | ||
== प्रकार == | == प्रकार == | ||
प्रभाव परिमाण के लगभग 50 से 100 विभिन्न उपाय ज्ञात हैं। विभिन्न प्रकार के कई प्रभाव परिणामों को अन्य प्रकारों में परिवर्तित किया जा सकता है, जैसा कि कई दो वितरणों के पृथक्करण का | प्रभाव परिमाण के लगभग 50 से 100 विभिन्न उपाय ज्ञात हैं। विभिन्न प्रकार के कई प्रभाव परिणामों को अन्य प्रकारों में परिवर्तित किया जा सकता है, जैसा कि कई दो वितरणों के पृथक्करण का आकलक करते हैं, इसलिए यह गणितीय रूप से संबंधित हैं। उदाहरण के लिए, एक सहसंबंध गुणांक को कोहेन के D में या इसके विपरीत परिवर्तित किया जा सकता है। | ||
=== सहसंबंध परिवार: "प्रसरण व्याख्या" के आधार पर प्रभाव परिमाण === | === सहसंबंध परिवार: "प्रसरण व्याख्या" के आधार पर प्रभाव परिमाण === | ||
ये प्रभाव परिमाण एक प्रयोग के भीतर प्रसरण की मात्रा का | ये प्रभाव परिमाण एक प्रयोग के भीतर प्रसरण की मात्रा का आकलक करते हैं जिसे प्रयोग के प्रतिरूप द्वारा समझाया गया है (प्रसरण व्याख्या)। | ||
==== पियर्सन R या सहसंबंध गुणांक ==== | ==== पियर्सन R या सहसंबंध गुणांक ==== | ||
Line 79: | Line 79: | ||
===== निर्धारण गुणांक (r<sup>2</sup> या R<sup>2) ===== | ===== निर्धारण गुणांक (r<sup>2</sup> या R<sup>2) ===== | ||
एक संबंधित प्रभाव परिमाण r<sup>2 है</sup>, [[निर्धारण गुणांक]] (जिसे R<sup>2</sup> या r-वर्ग भी कहा जाता है), जिसकी गणना पियर्सन सहसंबंध r के वर्ग के रूप में की जाती है। युग्मित | एक संबंधित प्रभाव परिमाण r<sup>2 है</sup>, [[निर्धारण गुणांक]] (जिसे R<sup>2</sup> या r-वर्ग भी कहा जाता है), जिसकी गणना पियर्सन सहसंबंध r के वर्ग के रूप में की जाती है। युग्मित आँकड़ो की स्थिति में, यह दो चरों द्वारा साझा किए गए विचरण के अनुपात का एक माप है, और 0 से 1 तक भिन्न होता है। उदाहरण के लिए, 0.21 के r के साथ निर्धारण गुणांक 0.0441 है, जिसका अर्थ है कि 4.4% किसी एक चर का प्रसरण दूसरे चर के साथ साझा किया जाता है। r<sup>2</sup> हमेशा धनात्मक होता है, इसलिए दो चरों के बीच सहसंबंध की दिशा नहीं बताता है। | ||
===== एटा-वर्ग | ===== एटा-वर्ग ===== | ||
एटा-वर्ग अन्य भविष्यवक्ताओं के लिए नियंत्रण करते | एटा-वर्ग अन्य भविष्यवक्ताओं के लिए नियंत्रण करते समय एक भविष्यवक्ता द्वारा निर्भर चर में व्याख्या किए गए विचरण के अनुपात का वर्णन करता है, जो इसे r2 के अनुरूप बनाता है। एटा-वर्ग जनसंख्या में प्रतिरूप द्वारा समझाए गए विचरण का एक पक्षपाती आकलक है (यह केवल प्रतिरूपों में प्रभाव के परिणाम का आकलन करते है)। यह आकलन r2 के साथ कमजोरी साझा करता है कि प्रत्येक अतिरिक्त चर स्वचालित रूप से के मान को बढ़ा देगा। इसके अतिरिक्त, यह प्रतिरूपों के बारे में बताए गए विचरण को मापता है, न कि जनसंख्या को, जिसका अर्थ है कि यह हमेशा प्रभाव के परिणाम को कम कर देगा, हालांकि प्रतिरूप बड़ा होने पर पक्षपात छोटा हो जाता है। | ||
<math display="block"> \eta ^2 = \frac{SS_\text{Treatment}}{SS_\text{Total}} .</math> | <math display="block"> \eta ^2 = \frac{SS_\text{Treatment}}{SS_\text{Total}} .</math> | ||
[[Category:All articles with unsourced statements]] | |||
[[Category:Articles with hatnote templates targeting a nonexistent page]] | |||
[[Category:Articles with invalid date parameter in template]] | |||
[[Category:Articles with unsourced statements from March 2023]] | |||
[[Category:CS1 English-language sources (en)]] | |||
[[Category:Created On 24/03/2023]] | |||
[[Category:Lua-based templates]] | |||
[[Category:Machine Translated Page]] | |||
[[Category:Pages with reference errors]] | |||
[[Category:Pages with script errors]] | |||
[[Category:Short description with empty Wikidata description]] | |||
[[Category:Templates Vigyan Ready]] | |||
[[Category:Templates that add a tracking category]] | |||
[[Category:Templates that generate short descriptions]] | |||
[[Category:Templates using TemplateData]] | |||
[[Category:Wikipedia articles needing page number citations from August 2016]] | |||
[[Category:गणितीय और मात्रात्मक तरीके (अर्थशास्त्र)]] | |||
[[Category:चिकित्सा आँकड़े]] | |||
[[Category:दवा उद्योग]] | |||
[[Category:नैदानिक अनुसंधान]] | |||
[[Category:प्रभाव आकार| प्रभाव आकार ]] | |||
[[Category:बाद विश्लेषण]] | |||
[[Category:सांख्यिकीय परिकल्पना परीक्षण]] | |||
[[Category:साइकोमेट्रिक्स]] | |||
===== ओमेगा-वर्ग (ω<sup>2) ===== | ===== ओमेगा-वर्ग (ω<sup>2) ===== | ||
Line 116: | Line 140: | ||
==== कोहेन का q ==== | ==== कोहेन का q ==== | ||
एक अन्य माप जिसका उपयोग सहसंबंध अंतरों के साथ किया जाता है, कोहेन का q है। यह दो फिशर रूपांतरित पियर्सन समाश्रयण गुणांकों के बीच का अंतर है। प्रतीकों में यह | एक अन्य माप जिसका उपयोग सहसंबंध अंतरों के साथ किया जाता है, कोहेन का q है। यह दो फिशर रूपांतरित पियर्सन समाश्रयण गुणांकों के बीच का अंतर है। प्रतीकों में यह | ||
<math display="block"> q = \frac 1 2 \log \frac{ 1 + r_1 }{ 1 - r_1 } - \frac 1 2 \log \frac{1 + r_2}{1 - r_2} </math> | <math display="block"> q = \frac 1 2 \log \frac{ 1 + r_1 }{ 1 - r_1 } - \frac 1 2 \log \frac{1 + r_2}{1 - r_2} </math> | ||
है, | |||
जहां r<sub>1</sub> और r<sub>2</sub> में समाश्रयण की तुलना की जा रही है। Q का अपेक्षित मान शून्य है और इसका विचरण है | जहां r<sub>1</sub> और r<sub>2</sub> में समाश्रयण की तुलना की जा रही है। Q का अपेक्षित मान शून्य है और इसका विचरण है | ||
<math display="block"> \operatorname{var}(q) = \frac 1 {N_1 - 3} + \frac 1 {N_2 -3} </math> | <math display="block"> \operatorname{var}(q) = \frac 1 {N_1 - 3} + \frac 1 {N_2 -3} </math> | ||
जहां n<sub>1</sub> और n<sub>2</sub> क्रमशः पहले और दूसरे समाश्रयण में | जहां n<sub>1</sub> और n<sub>2</sub> क्रमशः पहले और दूसरे समाश्रयण में तथ्यांक बिंदुओं की संख्या है। | ||
=== अंतर परिवार: साधनों के बीच अंतर के आधार पर प्रभाव का परिणाम === | === अंतर परिवार: साधनों के बीच अंतर के आधार पर प्रभाव का परिणाम === | ||
Line 126: | Line 152: | ||
==== मानकीकृत माध्य अंतर ==== | ==== मानकीकृत माध्य अंतर ==== | ||
[[File:Cohens d 4panel.svg|thumb|कोहेन के डी के विभिन्न मूल्यों को दर्शाते हुए गॉसियन घनत्व के भूखंड।]]एक (जनसंख्या) प्रभाव परिमाण θ के आधार पर समान्यतः दो | [[File:Cohens d 4panel.svg|thumb|कोहेन के डी के विभिन्न मूल्यों को दर्शाते हुए गॉसियन घनत्व के भूखंड।]]एक (जनसंख्या) प्रभाव परिमाण θ के आधार पर समान्यतः दो आबादीयों के बीच मानकीकृत माध्य अंतर (SMD) पर विचार करता है<ref name="HedgesL1985Statistical">{{Cite book | author = [[Larry V. Hedges]] & [[Ingram Olkin]] | title = मेटा-विश्लेषण के लिए सांख्यिकीय तरीके| publisher = [[Academic Press]] | year = 1985 | location = Orlando | isbn = 978-0-12-336380-0 }}</ref>{{Rp|p=78|date=November 2012}} | ||
<math display="block">\theta = \frac{\mu_1 - \mu_2} \sigma,</math> | <math display="block">\theta = \frac{\mu_1 - \mu_2} \sigma,</math> | ||
जहाँ μ<sub>1</sub> एक आबादी के लिए माध्य है, μ<sub>2</sub> अन्य आबादी के लिए माध्य है, और σ एक या दोनों आबादी के आधार पर एक [[मानक विचलन]] है। | जहाँ μ<sub>1</sub> एक आबादी के लिए माध्य है, μ<sub>2</sub> अन्य आबादी के लिए माध्य है, और σ एक या दोनों आबादी के आधार पर एक [[मानक विचलन]] है। | ||
व्यावहारिक समायोजना में जनसंख्या मूल्य समान्यतः ज्ञात नहीं होते हैं और प्रतिरूप तथ्यांक से आकलन | व्यावहारिक समायोजना में जनसंख्या मूल्य समान्यतः ज्ञात नहीं होते हैं और प्रतिरूप तथ्यांक से इसका आकलन होना चाहिए। साधनों के आधार पर प्रभाव परिणामों के कई संस्करण अलग-अलग होते हैं, जिनके संबंध में सांख्यिकी का उपयोग किया जाता है। | ||
प्रभाव परिमाण के लिए यह फॉर्म एक [[टी-परीक्षण]] सांख्यिकी के लिए गणना के समान है, महत्वपूर्ण अंतर के साथ टी-परीक्षण सांख्यिकी में <math>\sqrt{n}</math> का एक गुणांक समिलित है इसका अर्थ है कि किसी दिए गए प्रभाव परिमाण के लिए, प्रतिदर्श आमाप के साथ महत्व | प्रभाव परिमाण के लिए यह फॉर्म एक [[टी-परीक्षण]] सांख्यिकी के लिए गणना के समान है, महत्वपूर्ण अंतर के साथ टी-परीक्षण सांख्यिकी में <math>\sqrt{n}</math> का एक गुणांक समिलित है इसका अर्थ है कि यह किसी दिए गए प्रभाव परिमाण के लिए, प्रतिदर्श आमाप के साथ महत्व के स्तर को बढ़ता है। टी-परीक्षण प्रतिदर्शन के विपरीत, प्रभाव परिमाण का उद्देश्य जनसंख्या [[पैरामीटर|मापदंड]] का आकलन करना है और जो प्रतिदर्श आमाप से प्रभावित नहीं होता है। | ||
0.2 से 0.5 के SMD मूल्यों को छोटा माना जाता है, 0.5 से 0.8 को मध्यम माना जाता है, और 0.8 से अधिक को बड़ा माना जाता है।<ref name="Andrade2020">{{cite journal | last1 = Andrade | first1 = Chittaranjan | title = माध्य अंतर, मानकीकृत माध्य अंतर (एसएमडी), और मेटा-विश्लेषण में उनका उपयोग| journal = The Journal of Clinical Psychiatry | date = 22 September 2020 | volume = 81 | issue = 5 | eissn = 1555-2101 | doi = 10.4088/JCP.20f13681 | pmid = 32965803 | s2cid = 221865130 | url = | quote = SMD values of 0.2-0.5 are considered small, values of 0.5-0.8 are considered medium, and values > 0.8 are considered large. In psychopharmacology studies that compare independent groups, SMDs that are statistically significant are almost always in the small to medium range. It is rare for large SMDs to be obtained.| doi-access = free }}</ref> | 0.2 से 0.5 के SMD मूल्यों को छोटा माना जाता है, 0.5 से 0.8 को मध्यम माना जाता है, और 0.8 से अधिक को बड़ा माना जाता है।<ref name="Andrade2020">{{cite journal | last1 = Andrade | first1 = Chittaranjan | title = माध्य अंतर, मानकीकृत माध्य अंतर (एसएमडी), और मेटा-विश्लेषण में उनका उपयोग| journal = The Journal of Clinical Psychiatry | date = 22 September 2020 | volume = 81 | issue = 5 | eissn = 1555-2101 | doi = 10.4088/JCP.20f13681 | pmid = 32965803 | s2cid = 221865130 | url = | quote = SMD values of 0.2-0.5 are considered small, values of 0.5-0.8 are considered medium, and values > 0.8 are considered large. In psychopharmacology studies that compare independent groups, SMDs that are statistically significant are almost always in the small to medium range. It is rare for large SMDs to be obtained.| doi-access = free }}</ref> | ||
Line 138: | Line 164: | ||
==== कोहेन D {{anchor|Cohen's d}}==== | ==== कोहेन D {{anchor|Cohen's d}}==== | ||
कोहेन के D को | कोहेन के D को आँकड़ों के मानक विचलन द्वारा विभाजित दो साधनों के बीच के अंतर के रूप में परिभाषित किया गया है, अर्थात | ||
<math display="block">d = \frac{\bar{x}_1 - \bar{x}_2} s.</math> | <math display="block">d = \frac{\bar{x}_1 - \bar{x}_2} s.</math> | ||
जैकब कोहेन (सांख्यिकीविद्) ने संयोजित मानक विचलन को परिभाषित किया है, (दो स्वतंत्र प्रतिरूपों के लिए):<ref name="CohenJ1988Statistical">{{cite book | last = Cohen | first = Jacob | author-link = Jacob Cohen (statistician) | title = व्यवहार विज्ञान के लिए सांख्यिकीय शक्ति विश्लेषण| url = https://books.google.com/books?id=2v9zDAsLvA0C&pg=PP1 | year = 1988 | publisher = Routledge | isbn = 978-1-134-74270-7}}</ref>{{Rp|p=67|date=July 2014|chapter-url = http://www.utstat.toronto.edu/~brunner/oldclass/378f16/readings/CohenPower.pdf#page=66}} | जैकब कोहेन (सांख्यिकीविद्) ने संयोजित मानक विचलन को परिभाषित किया है, (दो स्वतंत्र प्रतिरूपों के लिए):<ref name="CohenJ1988Statistical">{{cite book | last = Cohen | first = Jacob | author-link = Jacob Cohen (statistician) | title = व्यवहार विज्ञान के लिए सांख्यिकीय शक्ति विश्लेषण| url = https://books.google.com/books?id=2v9zDAsLvA0C&pg=PP1 | year = 1988 | publisher = Routledge | isbn = 978-1-134-74270-7}}</ref>{{Rp|p=67|date=July 2014|chapter-url = http://www.utstat.toronto.edu/~brunner/oldclass/378f16/readings/CohenPower.pdf#page=66}} | ||
<math display="block">s = \sqrt{\frac{(n_1-1)s^2_1 + (n_2-1)s^2_2}{n_1+n_2 - 2}}</math> | <math display="block">s = \sqrt{\frac{(n_1-1)s^2_1 + (n_2-1)s^2_2}{n_1+n_2 - 2}}</math> | ||
जहां | जहां एक समूह को विचरण के रूप में परिभाषित किया गया है | ||
<math display="block">s_1^2 = \frac 1 {n_1-1} \sum_{i=1}^{n_1} (x_{1,i} - \bar{x}_1)^2,</math> | <math display="block">s_1^2 = \frac 1 {n_1-1} \sum_{i=1}^{n_1} (x_{1,i} - \bar{x}_1)^2,</math> | ||
और इसी तरह दूसरे समूह के लिए। | और इसी तरह दूसरे समूह के लिए। | ||
Line 164: | Line 190: | ||
|- | |- | ||
|} | |} | ||
कोहेन के D का वर्णन करते समय अन्य लेखक मानक विचलन की थोड़ी अलग गणना चुनते हैं, जहां | कोहेन के D का वर्णन करते समय अन्य लेखक मानक विचलन की थोड़ी अलग गणना चुनते हैं, जहां हर में -2 नही होता है<ref>{{Cite journal | ||
| author1 = Robert E. McGrath | | author1 = Robert E. McGrath | ||
| author2 = Gregory J. Meyer | | author2 = Gregory J. Meyer | ||
Line 189: | Line 215: | ||
और | और | ||
<math display="block">d = \frac{\bar{X}_1 - \bar{X}_2}{\text{SD}} = \frac t {\sqrt N}</math> | <math display="block">d = \frac{\bar{X}_1 - \bar{X}_2}{\text{SD}} = \frac t {\sqrt N}</math> | ||
सांख्यिकीय परीक्षण के लिए [[नमूना आकार का अनुमान|प्रतिदर्श आमाप का | सांख्यिकीय परीक्षण के लिए [[नमूना आकार का अनुमान|प्रतिदर्श आमाप का]] आकलन करने में कोहेन के D का प्रायः उपयोग किया जाता है। एक निचला कोहेन का D बड़े प्रतिदर्श आमाप की आवश्यकता को इंगित करता है, और इसके विपरीत, जैसा कि वांछित महत्व स्तर और सांख्यिकीय शक्ति के अतिरिक्त मापदंडों के साथ इसे बाद में निर्धारित किया जा सकता है।<ref>{{cite book|last=Kenny|first=David A.|title=सामाजिक और व्यवहार विज्ञान के लिए सांख्यिकी|url=https://books.google.com/books?id=EdqhQgAACAAJ&pg=PP1|year=1987|publisher=Little, Brown|isbn=978-0-316-48915-7|chapter=Chapter 13|chapter-url=http://davidakenny.net/doc/statbook/chapter_13.pdf}}</ref> | ||
युग्मित प्रतिरूपों के लिए कोहेन सुझाव देते हैं कि परिकलित D वास्तव में a d' है, जो परीक्षण की शक्ति प्राप्त करने के लिए सही उत्तर प्रदान नहीं करता है, और प्रदान की गई तालिकाओं में मानों को देखने से पहले, निम्नलिखित सूत्र से इसे r के लिए ठीक किया जाना चाहिए :{{sfn|Cohen|1988|p=49}} | युग्मित प्रतिरूपों के लिए कोहेन सुझाव देते हैं कि परिकलित D वास्तव में a d' है, जो परीक्षण की शक्ति प्राप्त करने के लिए सही उत्तर प्रदान नहीं करता है, और प्रदान की गई तालिकाओं में मानों को देखने से पहले, निम्नलिखित सूत्र से इसे r के लिए ठीक किया जाना चाहिए :{{sfn|Cohen|1988|p=49}} | ||
Line 195: | Line 221: | ||
==== | ==== ग्लास' Δ ==== | ||
1976 में, [[जीन वी. ग्लास]] ने प्रभाव परिमाण का एक आकलक प्रस्तावित किया जो केवल दूसरे समूह के मानक विचलन का उपयोग करता है<ref name="HedgesL1985Statistical"/>{{Rp|p=78|date=November 2012}} | 1976 में, [[जीन वी. ग्लास]] ने प्रभाव परिमाण का एक आकलक प्रस्तावित किया जो केवल दूसरे समूह के मानक विचलन का उपयोग करता है<ref name="HedgesL1985Statistical"/>{{Rp|p=78|date=November 2012}} | ||
<math display="block">\Delta = \frac{\bar{x}_1 - \bar{x}_2}{s_2}</math> | <math display="block">\Delta = \frac{\bar{x}_1 - \bar{x}_2}{s_2}</math> | ||
दूसरे समूह को एक नियंत्रण वर्ग | दूसरे समूह को एक नियंत्रण वर्ग के रूप में माना जा सकता है, और ग्लास ने तर्क दिया कि यदि नियंत्रण वर्ग से कई उपचारों की तुलना की जाती है तो नियंत्रण वर्ग से गणना किए गए मानक विचलन का उपयोग करना उच्च होगा, ताकि प्रभाव के परिणाम समान साधनों और विभिन्न प्रसरण के अधीन भिन्न न हों । | ||
समान जनसंख्या प्रसरण की सही धारणा के | समान जनसंख्या प्रसरण की सही धारणा के अधीन σ के लिए एक संयोजित आकलन अधिक सटीक है। | ||
==== हेजेज जी ==== | ==== हेजेज जी ==== | ||
Line 215: | Line 241: | ||
}}</ref>एक मानकीकृत अंतर के आधार पर अन्य उपायों की तरह है<ref name="HedgesL1985Statistical"/>{{Rp|p=79|date=November 2012}} | }}</ref>एक मानकीकृत अंतर के आधार पर अन्य उपायों की तरह है<ref name="HedgesL1985Statistical"/>{{Rp|p=79|date=November 2012}} | ||
<math display="block">g = \frac{\bar{x}_1 - \bar{x}_2}{s^*}</math> | <math display="block">g = \frac{\bar{x}_1 - \bar{x}_2}{s^*}</math> | ||
जहां संयोजित मानक विचलन की <math>s^*</math> के रूप में गणना की जाती है:<!---there is something missing here... otherwise it is identical with Cohen's d... --> | जहां संयोजित मानक विचलन की <math>s^*</math> के रूप में इसकी गणना की जाती है:<!---there is something missing here... otherwise it is identical with Cohen's d... --> | ||
<math display="block">s^* = \sqrt{\frac{(n_1-1)s_1^2 + (n_2-1)s_2^2}{n_1+n_2-2}}.</math> | <math display="block">s^* = \sqrt{\frac{(n_1-1)s_1^2 + (n_2-1)s_2^2}{n_1+n_2-2}}.</math> | ||
हालांकि, जनसंख्या प्रभाव परिमाण θ के लिए एक [[अनुमानक|आकलक]] के रूप में यह आकलन के पक्षपात है। फिर भी, इस पक्षपात को एक गुणक द्वारा गुणा करके लगभग ठीक किया जा सकता है | हालांकि, जनसंख्या प्रभाव परिमाण θ के लिए एक [[अनुमानक|आकलक]] के रूप में यह आकलन के पक्षपात है। फिर भी, इस पक्षपात को एक गुणक द्वारा गुणा करके लगभग ठीक किया जा सकता है | ||
<math display="block">g^* = J(n_1+n_2-2) \,\, g \, \approx \, \left(1-\frac{3}{4(n_1+n_2)-9}\right) \,\, g</math> | <math display="block">g^* = J(n_1+n_2-2) \,\, g \, \approx \, \left(1-\frac{3}{4(n_1+n_2)-9}\right) \,\, g</math> | ||
हेजेज और ओल्किन | हेजेज और ओल्किन <math>g^*</math>d के रूप में, इस कम-पक्षपाती आकलक का उल्लेख करते हैं <ref name="HedgesL1985Statistical" />लेकिन यह कोहेन के D के समान नहीं है। संशुद्धि गुणक J () के सटीक रूप में [[गामा समारोह|गामा फलन]] समिलित है<ref name="HedgesL1985Statistical"/>{{Rp|p=104|date=November 2012}} | ||
<math display="block">J(a) = \frac{\Gamma(a/2)}{\sqrt{a/2 \,}\,\Gamma((a-1)/2)}.</math> | <math display="block">J(a) = \frac{\Gamma(a/2)}{\sqrt{a/2 \,}\,\Gamma((a-1)/2)}.</math> | ||
<!-- | <!-- | ||
Line 236: | Line 262: | ||
==== | ==== अंतरो के आधार पर प्रभाव के परिणाम का वितरण ==== | ||
शर्त यह है कि [[गाऊसी]] ने एक पर्पटित हेजेज जी<math display="inline">\sqrt{n_1 n_2/(n_1+n_2)}\,g</math>, , गैर-केंद्रीय टी-वितरण के साथ [[गैर केंद्रीयता पैरामीटर|गैर केंद्रीय मापदंड]] <math display="inline">\sqrt{n_1 n_2/(n_1+n_2)}\theta</math> और {{math|(''n''<sub>1</sub> + ''n''<sub>2</sub> − 2)}} स्वतंत्रता की डिग्रियों वितरित की हो। इसी तरह, पर्पटित ग्लास 'Δ के साथ {{math|''n''<sub>2</sub> − 1}} स्वतंत्रता की डिग्रियां वितरित की जाती है। | |||
वितरण से [[अपेक्षित मूल्य]] और प्रभाव परिमाण के प्रसरण की गणना करना संभव है। | वितरण से [[अपेक्षित मूल्य]] और प्रभाव परिमाण के प्रसरण की गणना करना संभव है। | ||
Line 259: | Line 285: | ||
! Cramér's ''V'' (''φ''<sub>''c''</sub>) | ! Cramér's ''V'' (''φ''<sub>''c''</sub>) | ||
|} | |} | ||
[[ची-चुकता परीक्षण]] के लिए समिति के सामान्य रूप से उपयोग किए जाने वाले उपायों में [[फी गुणांक]] और हेराल्ड क्रैमर के | [[ची-चुकता परीक्षण]] के लिए समिति के सामान्य रूप से उपयोग किए जाने वाले उपायों में [[फी गुणांक]] और हेराल्ड क्रैमर के V हैं (कभी-कभी क्रैमर फाई के रूप में संदर्भित होते है और φ<sub>''c के रूप में दर्शाए जाते है)''</sub>)। फी [[बिंदु-द्विक्रमिक सहसंबंध गुणांक]] और कोहेन के डी से संबंधित है और दो चरों (2 × 2) के बीच संबंध की सीमा का आकलन करते है।<ref name="Ref_">आरोन, बी., क्रॉम्रे, जे.डी., और फेरॉन, जे.एम. (1998, नवंबर)। [http://www.eric.ed.gov/ERICWebPortal/custom/portlets/recordDetails/detailmini.jsp?_nfpb=true&_&ERICExtSearch_SearchValue_0=ED433353&ERICExtSearch_SearchType_0=no&accno=ED433353 r-आधारित और d-आधारित प्रभाव-आकार सूचकांकों की समानता: a के साथ समस्याएँ आमतौर पर अनुशंसित सूत्र।] फ्लोरिडा एजुकेशनल रिसर्च एसोसिएशन, ऑरलैंडो, FL की वार्षिक बैठक में प्रस्तुत किया गया पेपर। (ERIC दस्तावेज़ पुनरुत्पादन सेवा सं. ED433353)</ref> क्रैमर V का उपयोग दो से अधिक स्तरों वाले चर के साथ किया जा सकता है। | ||
फी की गणना ची-वर्ग अंक-विवरन के वर्गमूल को प्रतिदर्श आमाप से विभाजित करके की जा सकती है। | फी की गणना ची-वर्ग अंक-विवरन के वर्गमूल को प्रतिदर्श आमाप से विभाजित करके की जा सकती है। | ||
इसी तरह, क्रैमर के V की गणना प्रतिदर्श आमाप और न्यूनतम आयाम की लंबाई से विभाजित | इसी तरह, क्रैमर के V की गणना प्रतिदर्श आमाप और न्यूनतम आयाम की लंबाई से विभाजित कई वर्ग के वर्गमूल को लेकर की जाती है (K पंक्तियों की संख्या R या कॉलम C की छोटी संख्या है)। | ||
φ<sub>''c''</sub> दो असतत चरों का अंतर्संबंध है<ref name="Ref_a">{{cite book | last=Sheskin|first=David J. | title=पैरामीट्रिक और गैर पैरामीट्रिक सांख्यिकीय प्रक्रियाओं की पुस्तिका| url=https://books.google.com/books?id=bmwhcJqq01cC&pg=PP1 | edition=Third | year=2003 | publisher=CRC Press | isbn=978-1-4200-3626-8}}</ref> और इसकी गणना r या c के किसी भी मान के लिए की जा सकती है। हालाँकि, जैसे-जैसे ची-वर्ग मान | φ<sub>''c''</sub> दो असतत चरों का अंतर्संबंध है<ref name="Ref_a">{{cite book | last=Sheskin|first=David J. | title=पैरामीट्रिक और गैर पैरामीट्रिक सांख्यिकीय प्रक्रियाओं की पुस्तिका| url=https://books.google.com/books?id=bmwhcJqq01cC&pg=PP1 | edition=Third | year=2003 | publisher=CRC Press | isbn=978-1-4200-3626-8}}</ref> और इसकी गणना r या c के किसी भी मान के लिए की जा सकती है। हालाँकि, जैसे-जैसे ची-वर्ग मान कक्षों की संख्या के साथ बढ़ते जाते हैं, r और c के बीच का अंतर जितना अधिक होता है, उतनी ही अधिक संभावना V की प्रवृत्ति सार्थक सहसंबंध के मजबूत प्रमाण के बिना 1 हो जाएगी। | ||
क्रैमर के V को 'फिट ऑफ गुडनेस' ची-वर्ग प्रतिरूप पर भी लागू किया जा सकता है{{reference required|date=March 2023}} (अर्थात् वे जहाँ c = 1)। इस स्थिति में यह एकल परिणाम (अर्थात k परिणामों में से) की प्रवृत्ति के माप के रूप में कार्य करता है। ऐसी स्थिति में, V की 0 से 1 श्रेणी को बनाए रखने के लिए, k के लिए r का उपयोग करना चाहिए। अन्यथा, c का उपयोग करने से Phi के लिए समीकरण कम हो जाएगा। | क्रैमर के V को 'फिट ऑफ गुडनेस' ची-वर्ग प्रतिरूप पर भी लागू किया जा सकता है{{reference required|date=March 2023}} (अर्थात् वे जहाँ c = 1)। इस स्थिति में यह एकल परिणाम (अर्थात k परिणामों में से) की प्रवृत्ति के माप के रूप में कार्य करता है। ऐसी स्थिति में, V की 0 से 1 श्रेणी को बनाए रखने के लिए, k के लिए r का उपयोग करना चाहिए। अन्यथा, c का उपयोग करने से Phi के लिए समीकरण कम हो जाएगा। | ||
==== कोहेन का ओमेगा (ω) ==== | ==== कोहेन का ओमेगा (ω) ==== | ||
ची-वर्ग परीक्षण के लिए उपयोग किए जाने वाले प्रभाव परिमाण का एक अन्य माप कोहेन का ओमेगा | ची-वर्ग परीक्षण के लिए उपयोग किए जाने वाले प्रभाव परिमाण का एक अन्य माप कोहेन का ओमेगा (<math> \omega</math>) है, इसे इस रूप में परिभाषित किया गया है | ||
<math display="block"> \omega = \sqrt{ \sum_{i=1}^m \frac{ (p_{1i} - p_{0i})^2 }{p_{0i}} } </math> | <math display="block"> \omega = \sqrt{ \sum_{i=1}^m \frac{ (p_{1i} - p_{0i})^2 }{p_{0i}} } </math> | ||
जहां P<sub>0''i,''</sub> <sub>के अंतर्गत</sub> iवां | जहां P<sub>0''i,''</sub> <sub>के अंतर्गत</sub> iवां कक्ष का अनुपात है, p<sub>1''i H1 के अंतर्गत''</sub> i<sup>वां</sup> कक्ष का अनुपात है और m कक्षों की संख्या है। | ||
व्यवहार विज्ञान के लिए सांख्यिकीय शक्ति विश्लेषण (1988, PP.224-225) में, कोहेन ओमेगा की व्याख्या के लिए निम्नलिखित सामान्य दिशानिर्देश देते हैं (नीचे दी गई तालिका देखें), लेकिन किसी भी मूल संदर्भ में इसकी संभावित अक्षमता के विपरीत चेतावनी देते हैं और संदर्भ का उपयोग करने की सलाह देते हैं। | व्यवहार विज्ञान के लिए सांख्यिकीय शक्ति विश्लेषण (1988, PP.224-225) में, कोहेन ओमेगा की व्याख्या के लिए निम्नलिखित सामान्य दिशानिर्देश देते हैं (नीचे दी गई तालिका देखें), लेकिन यह किसी भी मूल संदर्भ में इसकी संभावित अक्षमता के विपरीत चेतावनी देते हैं और संदर्भ का उपयोग करने की सलाह देते हैं। | ||
{| class="wikitable" | {| class="wikitable" | ||
Line 293: | Line 319: | ||
==== विषम अनुपात ==== | ==== विषम अनुपात ==== | ||
विषम अनुपात (OR) एक अन्य उपयोगी प्रभाव परिमाण है। यह उचित है जब शोध प्रश्न दो [[बाइनरी डेटा|द्विआधारी आँकड़े]] के बीच | विषम अनुपात (OR) एक अन्य उपयोगी प्रभाव परिमाण है। यह उचित है जब शोध प्रश्न दो [[बाइनरी डेटा|द्विआधारी आँकड़े]] के बीच साहचर्य कोटि पर केंद्रित हो। उदाहरण के लिए, वर्तनी क्षमता के अध्ययन पर विचार करें। एक नियंत्रण वर्ग में, दो छात्र असफल होने वाले प्रत्येक के लिए कक्षा उत्तीर्ण करते हैं, इसलिए उत्तीर्ण होने की संभावना दो से एक (या 2/1 = 2) होती है। उपचार वर्ग में, असफल होने वाले प्रत्येक छात्र के लिए छह छात्र उत्तीर्ण होते हैं, इसलिए उत्तीर्ण होने की संभावना छह से एक (या 6/1 = 6) होती है। प्रभाव के परिमाण की गणना इस बात पर ध्यान देकर की जा सकती है कि उपचार वर्ग में पास होने की संभावना नियंत्रण वर्ग की तुलना में तीन गुना अधिक है (क्योंकि 6 को 2 से विभाजित करने पर 3 होता है)। इसलिए, विषम अनुपात 3 है। विषम अनुपात अंक-विवरन कोहेन के D की तुलना में एक अलग मापदंड पर हैं, इसलिए यह '3' कोहेन के 3 के D से तुलना करने योग्य नहीं है। | ||
==== सापेक्ष खतरा ==== | ==== सापेक्ष खतरा ==== | ||
सापेक्ष खतरा (RR), जिसे '''खतरा अनुपात''' भी कहा जाता है, कुछ स्वतंत्र चर के सापेक्ष किसी घटना का खतरा (संभावना) है। प्रभाव के परिणाम का यह माप विषम अनुपात से भिन्न होता है, जिसमें यह 'विषम' के अतिरिक्त 'संभावनाओं' की तुलना करता है, लेकिन छोटी संभावनाओं के लिए असम्बद्ध रूप से उत्तरार्द्ध तक पहुंचता है। उपरोक्त उदाहरण का उपयोग करते हुए, नियंत्रण वर्ग और उपचार | सापेक्ष खतरा (RR), जिसे '''खतरा अनुपात''' भी कहा जाता है, कुछ स्वतंत्र चर के सापेक्ष किसी घटना का खतरा (संभावना) है। प्रभाव के परिणाम का यह माप विषम अनुपात से भिन्न होता है, जिसमें यह 'विषम' के अतिरिक्त 'संभावनाओं' की तुलना करता है, लेकिन छोटी संभावनाओं के लिए असम्बद्ध रूप से उत्तरार्द्ध तक पहुंचता है। उपरोक्त उदाहरण का उपयोग करते हुए, नियंत्रण वर्ग और उपचार वर्ग में पास होने वाली 'संभावना' क्रमशः 2/3 (या 0.67) और 6/7 (या 0.86) है। प्रभाव परिमाण की गणना ऊपर की तरह ही की जा सकती है, लेकिन इसके अतिरिक्त संभावनाओं का उपयोग किया जा सकता है। इसलिए, सापेक्ष खतरा 1.28 है। चूंकि उत्तीर्ण होने की बड़ी संभावनाओं का उपयोग किया गया था, सापेक्ष खतरा और विषम अनुपात के बीच एक बड़ा अंतर है। अगर 'विफलता' (एक छोटी संभावना) को घटना के रूप में उपयोग किया गया होता ('उत्तीर्ण' होने के अतिरिक्त), प्रभाव परिमाण के दो उपायों के बीच का अंतर इतना बड़ा नहीं होता। | ||
जबकि दोनों उपाय उपयोगी हैं, उनके अलग-अलग सांख्यिकीय उपयोग हैं। चिकित्सा अनुसंधान में, विषम अनुपात समान्यतः [[मामला नियंत्रण अध्ययन|स्थिति नियंत्रण अध्ययन]] के लिए उपयोग किया जाता है।<ref>{{cite journal |author = Deeks J |year = 1998 |title = When can odds ratios mislead? : Odds ratios should be used only in case-control studies and logistic regression analyses |journal = BMJ |volume = 317 |issue = 7166 |pages = 1155–6 |pmid = 9784470 |pmc = 1114127|doi=10.1136/bmj.317.7166.1155a }}</ref> सापेक्ष खतरा समान्यतः यादृच्छिक नियंत्रित परीक्षणों और कोहोर्ट अध्ययन में उपयोग किया जाता है, लेकिन सापेक्ष खतरा हस्तक्षेपों की प्रभावशीलता के अतिरेक में योगदान देता है।<ref name="Stegenga2015">{{Cite journal | जबकि दोनों उपाय उपयोगी हैं, उनके अलग-अलग सांख्यिकीय उपयोग हैं। चिकित्सा अनुसंधान में, विषम अनुपात समान्यतः [[मामला नियंत्रण अध्ययन|स्थिति नियंत्रण अध्ययन]] के लिए उपयोग किया जाता है।<ref>{{cite journal |author = Deeks J |year = 1998 |title = When can odds ratios mislead? : Odds ratios should be used only in case-control studies and logistic regression analyses |journal = BMJ |volume = 317 |issue = 7166 |pages = 1155–6 |pmid = 9784470 |pmc = 1114127|doi=10.1136/bmj.317.7166.1155a }}</ref> सापेक्ष खतरा समान्यतः यादृच्छिक नियंत्रित परीक्षणों और कोहोर्ट अध्ययन में उपयोग किया जाता है, लेकिन सापेक्ष खतरा हस्तक्षेपों की प्रभावशीलता के अतिरेक में योगदान देता है।<ref name="Stegenga2015">{{Cite journal | ||
Line 313: | Line 339: | ||
==== [[जोखिम अंतर|खतरा अंतर]] ==== | ==== [[जोखिम अंतर|खतरा अंतर]] ==== | ||
खतरा अंतर (RD) जिसे कभी-कभी पूर्ण खतरा में कमी कहा जाता है, केवल दो समूहों के बीच एक घटना के खतरे (संभावना) में अंतर होता है। प्रायोगिक अनुसंधान में यह एक उपयोगी उपाय है, क्योंकि RD आपको बताता है कि किस सीमा तक एक प्रायोगिक हस्तक्षेप किसी घटना या परिणाम की संभावना को बदलता है। उपरोक्त उदाहरण का उपयोग करते हुए, नियंत्रण वर्ग और उपचार | खतरा अंतर (RD) जिसे कभी-कभी पूर्ण खतरा में कमी कहा जाता है, केवल दो समूहों के बीच एक घटना के खतरे (संभावना) में अंतर होता है। प्रायोगिक अनुसंधान में यह एक उपयोगी उपाय है, क्योंकि RD आपको बताता है कि किस सीमा तक एक प्रायोगिक हस्तक्षेप किसी घटना या परिणाम की संभावना को बदलता है। उपरोक्त उदाहरण का उपयोग करते हुए, नियंत्रण वर्ग और उपचार वर्ग में पास होने वालों की संभावना क्रमशः 2/3 (या 0.67) और 6/7 (या 0.86) है, और इसलिए RD प्रभाव का परिणाम 0.86 − 0.67 = 0.19 (या) 19%) हैं। RD हस्तक्षेपों की प्रभावशीलता का आकलन करने के लिए उच्च उपाय है।<ref name="Stegenga2015"/> | ||
Line 324: | Line 350: | ||
=== सामान्य भाषा प्रभाव परिमाण === | === सामान्य भाषा प्रभाव परिमाण === | ||
अंक-विवरन से बाहर के लोगों के लिए प्रभाव परिमाण के अर्थ का अधिक आसानी से वर्णन करने के लिए, सामान्य भाषा प्रभाव परिमाण, जैसा कि नाम से पता चलता है, इसे सादे अंग्रेजी में संप्रेषित करने के लिए प्रारुपण किया गया था। इसका उपयोग दो समूहों के बीच | अंक-विवरन से बाहर के लोगों के लिए प्रभाव परिमाण के अर्थ का अधिक आसानी से वर्णन करने के लिए, सामान्य भाषा प्रभाव परिमाण, जैसा कि नाम से पता चलता है, इसे सादे अंग्रेजी में संप्रेषित करने के लिए प्रारुपण किया गया था। इसका उपयोग दो समूहों के बीच के अंतर का वर्णन करने के लिए किया जाता है और 1992 में केनेथ मैकग्रा और S.P. वोंग द्वारा इसे प्रस्तावित और नाम दिया गया था। उन्होंने निम्नलिखित उदाहरण का उपयोग किया (पुरुषों और महिलाओं की ऊंचाई के बारे में): युवा वयस्क पुरुषों और महिलाओं की किसी भी यादृच्छिक जोड़ी में, पुरुष की महिला की तुलना में लंबा होने की संभावना .92 है, या सरल शब्दों में, युवा वयस्कों में 100 में से 92 दो अंजान लोगों की भेंट में, सामान्य भाषा प्रभाव परिमाण के जनसंख्या मूल्य का वर्णन करते समय, पुरुष महिला की तुलना में लंबा होगा। | ||
सामान्य भाषा प्रभाव परिमाण के लिए जनसंख्या मूल्य, जनसंख्या से अव्यवस्थित तरह से चुने गए जोड़े के संदर्भ में, प्रायः इस तरह सूचित किया जाता है। केर्बी (2014) | सामान्य भाषा प्रभाव परिमाण के लिए जनसंख्या मूल्य, जनसंख्या से अव्यवस्थित तरह से चुने गए जोड़े के संदर्भ में, प्रायः इस तरह सूचित किया जाता है। केर्बी (2014) धयान करते है कि एक जोड़ी, जिसे एक समूह में प्राप्तांक के रूप में दूसरे समूह में प्राप्तांक के साथ परिभाषित किया गया है, सामान्य भाषा प्रभाव परिमाण की एक मूल अवधारणा है। | ||
एक अन्य उदाहरण के रूप में, उपचार | एक अन्य उदाहरण के रूप में, उपचार वर्ग में दस लोगों और नियंत्रण वर्ग में दस लोगों के साथ एक वैज्ञानिक अध्ययन (कदाचित कुछ पुरानी बीमारी, जैसे गठिया के इलाज के लिए) पर विचार करें। यदि उपचार वर्ग के सभी लोगों की तुलना नियंत्रण वर्ग के सभी लोगों से की जाए, तो (10×10=) 100 जोड़े होते हैं। अध्ययन के अंत में, परिणाम को प्रत्येक व्यक्ति के लिए एक अंक में मूल्यांकित किया जाता है (उदाहरण के लिए, गठिया अध्ययन की स्थिति में गतिशीलता और दर्द के मापदंड पर), और फिर सभी अंकों की जोड़ी के बीच तुलना की जाती है। परिणाम, परिकल्पना का समर्थन करने वाले जोड़े के प्रतिशत के रूप में, सामान्य भाषा प्रभाव परिमाण है। उदाहरण के अध्ययन में यह हो सकता है (मान लीजिए) .80, यदि 100 में से 80 तुलना जोड़े नियंत्रण वर्ग की तुलना में उपचार वर्ग के लिए उच्च परिणाम दिखाते हैं, और सूचना इस प्रकार हो सकती है: जब उपचार वर्ग में एक रोगी की तुलना नियंत्रण वर्ग के एक रोगी से की गई, 100 में से 80 जोड़े में उपचारित रोगी ने उपचार के उच्च परिणाम दिखाए। प्रतिरूप मूल्य, उदाहरण के लिए इस तरह का एक अध्ययन, जनसंख्या मूल्य का एक निष्पक्ष आकलक है। | ||
वर्गा और डेलाने ने क्रमिक स्तर के आँकड़े को पूरा करने के लिए सामान्य भाषा प्रभाव परिमाण (वर्गा-डेलाने ''A'') को सामान्यीकृत किया। | वर्गा और डेलाने ने क्रमिक स्तर के आँकड़े को पूरा करने के लिए सामान्य भाषा प्रभाव परिमाण (वर्गा-डेलाने ''A'') को सामान्यीकृत किया। | ||
Line 339: | Line 365: | ||
श्रेणि-द्विक्रमिक सहसंबंध के लिए एक गैर-दिशात्मक सूत्र वेंडेट द्वारा प्रदान किया गया था, जैसे कि सहसंबंध हमेशा सकारात्मक होता है।<ref>{{cite journal | last1 = Wendt | first1 = H. W. | year = 1972 | title = Dealing with a common problem in social science: A simplified rank-biserial coefficient of correlation based on the U statistic | journal = European Journal of Social Psychology | volume = 2 | issue = 4| pages = 463–465 | doi = 10.1002/ejsp.2420020412 }}</ref> वेंड्ट सूत्र का लाभ यह है कि इसकी गणना उन सूचनाओं के साथ की जा सकती है जो प्रकाशित पत्रों में आसानी से उपलब्ध हैं। सूत्र मान-व्हिटनी U परीक्षण से केवल U के परीक्षण मूल्य और दो समूहों के प्रतिरूपों के आकार का उपयोग करता है: r = 1 – (2U)/(n<sub>1n</sub><sub>2</sub>). ध्यान दें कि U को प्राचीन परिभाषा के अनुसार परिभाषित किया गया है, जो आँकड़े से गणना की जा सकने वाली दो मानों में से छोटा है। यह सुनिश्चित करता है कि 2U < n<sub>1</sub>n<sub>2</sub>, क्योंकि n<sub>1</sub>n<sub>2</sub> U आंक का अधिकतम मूल्य है। | श्रेणि-द्विक्रमिक सहसंबंध के लिए एक गैर-दिशात्मक सूत्र वेंडेट द्वारा प्रदान किया गया था, जैसे कि सहसंबंध हमेशा सकारात्मक होता है।<ref>{{cite journal | last1 = Wendt | first1 = H. W. | year = 1972 | title = Dealing with a common problem in social science: A simplified rank-biserial coefficient of correlation based on the U statistic | journal = European Journal of Social Psychology | volume = 2 | issue = 4| pages = 463–465 | doi = 10.1002/ejsp.2420020412 }}</ref> वेंड्ट सूत्र का लाभ यह है कि इसकी गणना उन सूचनाओं के साथ की जा सकती है जो प्रकाशित पत्रों में आसानी से उपलब्ध हैं। सूत्र मान-व्हिटनी U परीक्षण से केवल U के परीक्षण मूल्य और दो समूहों के प्रतिरूपों के आकार का उपयोग करता है: r = 1 – (2U)/(n<sub>1n</sub><sub>2</sub>). ध्यान दें कि U को प्राचीन परिभाषा के अनुसार परिभाषित किया गया है, जो आँकड़े से गणना की जा सकने वाली दो मानों में से छोटा है। यह सुनिश्चित करता है कि 2U < n<sub>1</sub>n<sub>2</sub>, क्योंकि n<sub>1</sub>n<sub>2</sub> U आंक का अधिकतम मूल्य है। | ||
एक उदाहरण दो सूत्रों के उपयोग का वर्णन कर सकता है। उपचार | एक उदाहरण दो सूत्रों के उपयोग का वर्णन कर सकता है। उपचार वर्ग में दस और नियंत्रण वर्ग में दस के साथ बीस वृद्ध वयस्कों के स्वास्थ्य अध्ययन पर विचार करें; इसलिए, दस गुना या 100 जोड़े हैं। स्वास्थ्य कार्यक्रम स्मरण शक्ति में सुधार के लिए आहार, व्यायाम और पूरक आहार का उपयोग करता है, और स्मरण शक्ति को एक मानकीकृत परीक्षण द्वारा मापा जाता है। एक मान-व्हिटनी U परीक्षण से पता चलता है कि उपचार वर्ग में वयस्क की 100 जोड़ों में से 70 में उच्च स्मरण शक्ति थी, और 30 जोड़ों में खराब स्मरण शक्ति थी। मान-व्हिटनी U 70 और 30 में से छोटा है, इसलिए U = 30। केर्बी सरल अंतर सूत्र द्वारा स्मरण शक्ति और उपचार प्रदर्शन के बीच संबंध r= (70/100) − (30/100) = 0.40। वेन्द्र सूत्र द्वारा सहसंबंध r = 1 − (2·30)/(10·10) = 0.40 है। | ||
=== क्रमिक आँकड़े के लिए प्रभाव का परिणाम === | === क्रमिक आँकड़े के लिए प्रभाव का परिणाम === | ||
Line 346: | Line 372: | ||
प्रतिरूप आकलन <math>d</math> द्वारा दिया गया है: | प्रतिरूप आकलन <math>d</math> द्वारा दिया गया है: | ||
<math display="block">d = \frac{\sum_{i,j} [x_i > x_j] - [x_i < x_j]}{mn}</math> | <math display="block">d = \frac{\sum_{i,j} [x_i > x_j] - [x_i < x_j]}{mn}</math> | ||
जहां दो वितरण आकार <math>n</math> और <math>m</math> के साथ <math>x_i</math> और <math>x_j</math>, क्रमशः है और <math>[\cdot]</math> [[आइवरसन ब्रैकेट|आइवरसन कोष्ठक]] है, जो विषय वस्तु के सही होने पर 1 | जहां दो वितरण आकार <math>n</math> और <math>m</math> के साथ <math>x_i</math> और <math>x_j</math>, क्रमशः है और <math>[\cdot]</math> [[आइवरसन ब्रैकेट|आइवरसन कोष्ठक]] है, जो विषय वस्तु के सही होने पर 1 है और 0 होने पर गलत है। | ||
<math>d</math> [[मान-व्हिटनी U सांख्यिकी]] से रैखिक रूप से संबंधित है; हालाँकि, यह अपने संकेत में अंतर की दिशा को पकड़ लेता है। मान-व्हिटनी <math>U</math>, <math>d</math> दिया गया है: | <math>d</math> [[मान-व्हिटनी U सांख्यिकी]] से रैखिक रूप से संबंधित है; हालाँकि, यह अपने संकेत में अंतर की दिशा को पकड़ लेता है। मान-व्हिटनी <math>U</math>, <math>d</math> दिया गया है: | ||
Line 357: | Line 383: | ||
=== एकल समूह या दो संबंधित समूहों के माध्य अंतर के लिए टी-परीक्षण === | === एकल समूह या दो संबंधित समूहों के माध्य अंतर के लिए टी-परीक्षण === | ||
एकल समूह के लिए, M प्रतिरूप माध्य, μ जनसंख्या माध्य, SD प्रतिरूप का मानक विचलन, σ जनसंख्या का मानक विचलन, और n समूह का प्रतिदर्श आमाप दर्शाता है। माध्य और आधार रेखा μ के बीच के अंतर पर परिकल्पना का परीक्षण करने के लिए t मान का उपयोग किया जाता | एकल समूह के लिए, M प्रतिरूप माध्य, μ जनसंख्या माध्य, SD प्रतिरूप का मानक विचलन, σ जनसंख्या का मानक विचलन, और n समूह का प्रतिदर्श आमाप को दर्शाता है। माध्य और आधार रेखा μ के बीच के अंतर पर परिकल्पना का परीक्षण करने के लिए t मान का उपयोग किया जाता है। समान्यतः, μ आधार रेखा शून्य है। दो संबंधित समूहों की स्थिति में, एकल समूह का निर्माण प्रतिरूपों की जोड़ी में अंतर से होता है, जबकि SD और σ मूल दो समूहों के अतिरिक्त प्रतिरूपों और जनसंख्या के अंतर के मानक विचलन को दर्शाते हैं। | ||
<math display="block">t := \frac{M - \mu_{\text{baseline}}}{\text{SE}} = \frac{M- \mu_{\text{baseline}}}{\text{SD}/\sqrt{n}}=\frac{\sqrt{n} \left( \frac{M-\mu}{\sigma} \right) + \sqrt{n} \left( \frac{\mu-\mu_\text{baseline}}{\sigma}\right) }{\frac{\text{SD}} \sigma}</math> | <math display="block">t := \frac{M - \mu_{\text{baseline}}}{\text{SE}} = \frac{M- \mu_{\text{baseline}}}{\text{SD}/\sqrt{n}}=\frac{\sqrt{n} \left( \frac{M-\mu}{\sigma} \right) + \sqrt{n} \left( \frac{\mu-\mu_\text{baseline}}{\sigma}\right) }{\frac{\text{SD}} \sigma}</math> | ||
<math display="block">ncp=\sqrt{n} \left( \frac{\mu-\mu_\text{baseline}}{\sigma} \right) </math> | <math display="block">ncp=\sqrt{n} \left( \frac{\mu-\mu_\text{baseline}}{\sigma} \right) </math> | ||
Line 383: | Line 409: | ||
एकतरफा एनोवा परीक्षण [[गैर-केंद्रीय F वितरण]] लागू करता है। जबकि किसी दिए गए जनसंख्या मानक विचलन के साथ <math>\sigma</math>, वही परीक्षण प्रश्न [[गैर-केंद्रीय ची-वर्ग वितरण]] पर लागू होता है। | एकतरफा एनोवा परीक्षण [[गैर-केंद्रीय F वितरण]] लागू करता है। जबकि किसी दिए गए जनसंख्या मानक विचलन के साथ <math>\sigma</math>, वही परीक्षण प्रश्न [[गैर-केंद्रीय ची-वर्ग वितरण]] पर लागू होता है। | ||
<math display="block">F := \frac{\frac{\text{SS}_\text{between}}{\sigma^2}/\text{df}_\text{between}}{\frac{\text{SS}_\text{within}}{\sigma^2}/\text{df}_\text{within}}</math> | <math display="block">F := \frac{\frac{\text{SS}_\text{between}}{\sigma^2}/\text{df}_\text{between}}{\frac{\text{SS}_\text{within}}{\sigma^2}/\text{df}_\text{within}}</math> | ||
i-वें समूह X के भीतर प्रत्येक j-वें प्रतिरूपों के लिए<sub>''i'',''j''</sub>, निरूपित करें | i-वें समूह X के भीतर प्रत्येक j-वें प्रतिरूपों के लिए <sub>''i'',''j''</sub>, निरूपित करें | ||
<math display="block">M_i (X_{i,j}) := \frac{\sum_{w=1}^{n_i} X_{i,w}}{n_i};\; \mu_i (X_{i,j}) := \mu_i.</math> | <math display="block">M_i (X_{i,j}) := \frac{\sum_{w=1}^{n_i} X_{i,w}}{n_i};\; \mu_i (X_{i,j}) := \mu_i.</math> | ||
जबकि, | जबकि, | ||
Line 394: | Line 420: | ||
तो, F और <math>\chi^2</math> दोनों के ncp(s) समान है | तो, F और <math>\chi^2</math> दोनों के ncp(s) समान है | ||
<math display="block">\text{SS}\left(\mu_i(X_{i,j})/\sigma;i=1,2,\dots,K,\; j=1,2,\dots,n_i \right).</math> | <math display="block">\text{SS}\left(\mu_i(X_{i,j})/\sigma;i=1,2,\dots,K,\; j=1,2,\dots,n_i \right).</math> | ||
की स्थिति में <math>n:=n_1=n_2=\cdots=n_K</math> | |||
समान आकार के K स्वतंत्र समूहों के लिए, कुल प्रतिदर्श आमाप N := n·K है। | समान आकार के K स्वतंत्र समूहों के लिए, कुल प्रतिदर्श आमाप N := n·K है। | ||
Line 430: | Line 456: | ||
*[http://www.tqmp.org/Content/vol05-1/p025/p025.pdf Computing and Interpreting Effect size Measures with ViSta] | *[http://www.tqmp.org/Content/vol05-1/p025/p025.pdf Computing and Interpreting Effect size Measures with ViSta] | ||
*[https://CRAN.R-project.org/package=effsize effsize package for the R Project for Statistical Computing ] | *[https://CRAN.R-project.org/package=effsize effsize package for the R Project for Statistical Computing ] | ||
[[Category: | [[Category:All articles with unsourced statements]] | ||
[[Category:Articles with hatnote templates targeting a nonexistent page]] | |||
[[Category:Articles with invalid date parameter in template]] | |||
[[Category:Articles with unsourced statements from March 2023]] | |||
[[Category:CS1 English-language sources (en)]] | |||
[[Category:Created On 24/03/2023]] | [[Category:Created On 24/03/2023]] | ||
[[Category:Lua-based templates]] | |||
[[Category:Machine Translated Page]] | |||
[[Category:Pages with reference errors]] | |||
[[Category:Pages with script errors]] | |||
[[Category:Templates Vigyan Ready]] | |||
[[Category:Templates that add a tracking category]] | |||
[[Category:Templates that generate short descriptions]] | |||
[[Category:Templates using TemplateData]] | |||
[[Category:Wikipedia articles needing page number citations from August 2016]] | |||
[[Category:गणितीय और मात्रात्मक तरीके (अर्थशास्त्र)]] | |||
[[Category:चिकित्सा आँकड़े]] | |||
[[Category:दवा उद्योग]] | |||
[[Category:नैदानिक अनुसंधान]] | |||
[[Category:प्रभाव आकार| प्रभाव आकार ]] | |||
[[Category:बाद विश्लेषण]] | |||
[[Category:सांख्यिकीय परिकल्पना परीक्षण]] | |||
[[Category:साइकोमेट्रिक्स]] |
Latest revision as of 15:07, 19 October 2023
सांख्यिकी में, प्रभाव परिमाण एक जनसंख्या में दो चर के बीच संबंध की संख्या को मापने वाला मान है, या उस मात्रा का एक प्रतिरूप-आधारित आकलन है। यह आँकड़े के प्रतिरूपों से तथ्यांक की गणना के मूल्य, एक परिकल्पित आबादी के लिए मापदंड का मान, या उस समीकरण को संदर्भित कर सकता है जो यह बताता है कि अंक-विवरन या मापदंड प्रभाव परिमाण के मान को कैसे प्रभावित करता है।[1] प्रभाव परिमाण के उदाहरणों में दो चर के बीच सहसंबंध ,[2] एक समाश्रयण में समाश्रयण गुणांक , माध्य (सांख्यिकी) अंतर, या किसी विशेष घटना (जैसे दिल का दौरा) होने का खतरा समिलित हैं। प्रभाव परिमाण सांख्यिकीय परिकल्पना परीक्षण के समपूरक हैं, और सांख्यिकीय शक्ति विश्लेषण, प्रतिदर्श आमाप योजना और परा विश्लेषण में महत्वपूर्ण भूमिका निभाते हैं। प्रभाव परिमाण से संबंधित आँकड़े-विश्लेषण विधियों के समूह को आकलन सांख्यिकी कहा जाता है।
सांख्यिकीय मांग की संख्या का मूल्यांकन करते समय प्रभाव परिमाण एक आवश्यक घटक है, और यह MAGIC मापदंड में पहला अंश (परिमाण) है। प्रभाव के परिणाम का मानक विचलन महत्वपूर्ण महत्व का है, क्योंकि यह इंगित करता है कि माप में कितनी अनिश्चितता समिलित है। एक मानक विचलन जो बहुत बड़ा है वह माप को लगभग अर्थहीन बना देता है। परा विश्लेषण में, जहां उद्देश्य कई प्रभाव परिमाणों को जोड़ना है, प्रभाव के परिणाम में अनिश्चितता का उपयोग प्रभाव के परिणाम को मापने के लिए किया जाता है, ताकि बड़े अध्ययनों को छोटे अध्ययनों से अधिक महत्वपूर्ण माना जा सके। प्रभाव परिमाण में अनिश्चितता की गणना प्रत्येक प्रकार के प्रभाव परिमाण के लिए अलग-अलग की जाती है, लेकिन समान्यतः केवल अध्ययन के प्रतिदर्श आमाप (N) , या प्रत्येक समूह में टिप्पणियों की संख्या (n) जानने की आवश्यकता होती है।
कई क्षेत्रों में अनुभवजन्य शोध निष्कर्ष प्रस्तुत करते समय प्रभाव के परिणाम या उसके प्राक्कलन (प्रभाव आकलन [EE], प्रभाव का आकलन) की सूचना देना एक अच्छा अभ्यास माना जाता है।[3][4] प्रभाव के परिणाम की सूचना इसके सांख्यिकीय महत्व के विपरीत, एक शोध परिणाम के महत्व की व्याख्या की सुविधा प्रदान करती है।[5] प्रभाव परिमाण विशेष रूप से सामाजिक विज्ञान और चिकित्सा अनुसंधान में प्रमुख हैं (जहां उपचार प्रभाव प्रभाव का परिणाम महत्वपूर्ण होता है)।
प्रभाव के परिणाम को सापेक्ष या निरपेक्ष रूप में मापा जा सकता है। सापेक्ष प्रभाव के परिणाम में, दो समूहों की सीधे एक दूसरे के साथ तुलना की जाती है, जैसे विषम अनुपात और सापेक्ष खतरा। निरपेक्ष प्रभाव परिणामों के लिए, एक बड़ा निरपेक्ष मान हमेशा एक मजबूत प्रभाव का संकेत देता है। कई प्रकार के मापों को निरपेक्ष या सापेक्ष के रूप में व्यक्त किया जा सकता है, और इनका एक साथ उपयोग किया जा सकता है क्योंकि वे अलग-अलग जानकारी देते हैं। मनोविज्ञान अनुसंधान समुदाय में एक प्रमुख कर्मी दल ने निम्नलिखित अभिशंसा की:
प्राथमिक परिणामों के लिए हमेशा प्रभाव परिणाम प्रस्तुत करें... यदि माप की इकाइयां व्यावहारिक स्तर पर सार्थक हैं (उदाहरण के लिए, प्रतिदिन धूम्रपान की जाने वाली सिगरेट की संख्या), तो हम समान्यतः एक मानकीकृत माप के लिए एक गैर-मानकीकृत माप (समाश्रयण गुणांक या माध्य अंतर) पसंद करते हैं (r या d).
संक्षिप्त विवरण
जनसंख्या और प्रतिरूप प्रभाव परिमाण
जैसा कि सांख्यिकीय आकलन में, वास्तविक प्रभाव परिमाण को प्रेक्षित प्रभाव परिमाण से अलग किया जाता है, उदाहरण, किसी आबादी में बीमारी के खतरों को मापने के लिए (जनसंख्या प्रभाव परिमाण) उस आबादी के प्रतिरूपों (प्रतिरूप प्रभाव परिमाण) के भीतर खतरे को माप सकते हैं। सही और प्रेक्षित प्रभाव परिणामों का वर्णन करने के लिए मानक सांख्यिकीय कार्यप्रणाली का पालन करती है - एक सामान्य दृष्टिकोण जनसंख्या मापदंडों को दर्शाने के लिए ρ [rho] जैसे ग्रीक अक्षरों का उपयोग करते है और संबंधित तथ्यांक को दर्शाने के लिए r जैसे लैटिन अक्षरों का उपयोग करते है। वैकल्पिक रूप से, अंक-विवरन को निरूपित करने के लिए जनसंख्या मापदंड पर एक "टोपी" लगाई जा सकती है, उदाहरण, के साथ मापदंड . होने का आकलन है।
जैसा कि किसी भी सांख्यिकीय समायोजना में, प्रभाव के परिणाम का प्रतिचयन त्रुटि के साथ आकलन करते है, और यह पक्षपाती हो सकता है जब तक कि उपयोग किए जाने वाले प्रभाव परिमाण के आकलक उस ढंग के लिए उपयुक्त नहीं है जिसमें आँकड़ों का नमूनाकरण (सांख्यिकी) लिया गया था और जिस ढंग से माप किए गए थे। इसका एक उदाहरण प्रकाशन पक्षपात है, जो तब होता है जब वैज्ञानिक परिणामों की सूचना केवल तभी करते हैं जब अनुमानित प्रभाव परिमाण बड़े होते हैं या सांख्यिकीय रूप से महत्वपूर्ण होते हैं। नतीजतन, यदि कई शोधकर्ता कम सांख्यिकीय शक्ति के साथ अध्ययन करते हैं, तो सूचना किए गए प्रभाव का परिणाम सही (जनसंख्या) प्रभाव, से बड़ा होगा।[6] एक अन्य उदाहरण जहां प्रभाव परिमाण विकृत हो सकते हैं, एक बहु-परीक्षण प्रयोग है, जहां प्रभाव परिमाण की गणना परीक्षणों में समान्य या संपूर्ण प्रतिक्रिया पर आधारित होती है।[7]
छोटे अध्ययन कभी-कभी बड़े अध्ययनों की तुलना में भिन्न, प्रायः बड़े, प्रभाव परिमाण दिखाते हैं। इस घटना को लघु-अध्ययन प्रभाव के रूप में जाना जाता है, जो प्रकाशन पक्षपात को संकेत दे सकता है।[8]
परीक्षण प्रतिदर्शन से संबंध
प्रतिरूप-आधारित प्रभाव परिमाण परिकल्पना परीक्षण में उपयोग किए जाने वाले परीक्षण प्रतिदर्शन से अलग होते हैं, जिसमें वे संख्या (परिमाण) का आकलन करते हैं, उदाहरण के लिए, एक स्पष्ट संबंध, महत्व स्तर निर्दिष्ट करने के विपरीत यह दर्शाता है कि देखे गए संबंध का परिमाण संयोग के कारण सकता है या नहीं। प्रभाव का परिणाम सीधे तरह से महत्व स्तर या इसके विपरीत निर्धारित नहीं करता है। पर्याप्त रूप से बड़ा प्रतिदर्श आमाप दिया गया है, एक गैर-शून्य सांख्यिकीय तुलना हमेशा सांख्यिकीय रूप से महत्वपूर्ण परिणाम दिखाएगी जब तक कि जनसंख्या प्रभाव का परिणाम पूरीतरह शून्य न हो (और वहां भी यह प्रकार I त्रुटि की दर पर सांख्यिकीय महत्व दिखाएगा)। उदाहरण के लिए, यदि प्रतिदर्श आमाप 1000 है तो 0.01 का एक प्रतिरूप पियर्सन सहसंबंध गुणांक सांख्यिकीय रूप से महत्वपूर्ण है। इस विश्लेषण से केवल महत्वपूर्ण P-मूल्य की सूचना करना भ्रामक हो सकता है यदि 0.01 का सहसंबंध किसी विशेष अनुप्रयोग में रुचि के लिए बहुत छोटा है।
मानकीकृत और अमानकीकृत प्रभाव परिमाण
शब्द प्रभाव परिमाण, प्रभाव के एक मानकीकृत माप को संदर्भित कर सकता है (जैसे कि R, कोहेन का D, या विषम अनुपात), या एक अमानकीकृत माप (उदाहरण के लिए, समूह के बीच का अंतर या गैर-मानकीकृत समाश्रयण गुणांक) का उल्लेख कर सकता है। मानकीकृत प्रभाव परिमाण उपायों का समान्यतः तब उपयोग किया जाता है जब:
- अध्ययन किए जा रहे चर के मिति का आंतरिक अर्थ नहीं है (उदाहरण के लिए, एक स्वेच्छ मापक्रम पर व्यक्तित्व परीक्षण पर एक अंक),
- अनेक अध्ययनों के परिणाम संयुक्त किए जा रहे हैं,
- कुछ या सभी अध्ययन अलग-अलग मापदंडों का उपयोग करते हैं, या
- यह जनसंख्या में परिवर्तनशीलता के सापेक्ष एक प्रभाव के परिणाम को व्यक्त करना चाहते है।
परा विश्लेषण में, मानकीकृत प्रभाव परिणामों का उपयोग एक सामान्य माप के रूप में किया जाता है जिससे विभिन्न अध्ययनों के लिए गणना की जा सकती है और फिर समग्र सारांश में जोड़ा जा सकता है।
व्याख्या
एक प्रभाव परिमाण को छोटे, मध्यम या बड़े के रूप में व्याख्यायित किया जाना चाहिए या नहीं यह इसके मूल संदर्भ और इसकी परिचालन परिभाषा पर निर्भर करता है। कोहेन के पारंपरिक मापदंड छोटे, मध्यम या बड़े[9] यह कई क्षेत्रों में लगभग सर्वव्यापी हैं, हालांकि कोहेन[9] ने चेतावनी दी:
शब्द 'छोटा,' 'मध्यम' और 'बड़ा' सापेक्ष हैं, न केवल एक दूसरे के लिए, बल्कि व्यवहार विज्ञान के क्षेत्र या इससे भी अधिक विशेष रूप से किसी भी जांच में नियोजित विशिष्ट विषय वस्तु और अनुसंधान पद्धति के लिए ....इस सापेक्षता के सामने, व्यवहार विज्ञान के रूप में जांच के विविध क्षेत्र में शक्ति विश्लेषण में उपयोग के लिए इन प्रतिबंधों के लिए पारंपरिक परिचालन परिभाषाएं प्रस्तुत करने में एक निश्चित खतरा निहित है। इस खतरा को फिर भी इस विश्वास से स्वीकार किया जाता है कि संदर्भ के एक सामान्य पारंपरिक फ्रेम की आपूर्ति करके खोने से अधिक प्राप्त करना है, जिसे केवल तभी उपयोग करने की अनुशंसा की जाती है जब ES सूची का आकलन करने के लिए कोई उच्च आधार उपलब्ध न हो। (पृ. 25)
दो प्रतिरूप अभिन्यास में, सॉविलोव्स्की ने [10]निष्कर्ष निकाला "अनुप्रयुक्त साहित्य में वर्तमान शोध निष्कर्षों के आधार पर, कोहेन की चेतावनियों को ध्यान में रखते हुए, प्रभाव के परिणाम के लिए अंगुष्ठ नियम को संशोधित करना उचित लगता है, और बहुत छोटे, बहुत बड़े और विशाल को समिलित करने के लिए विवरणों का विस्तार किया। अन्य अभिन्यास के लिए समान वास्तविक मानक विकसित किए जा सकते हैं।
लेथ [11] ने एक "मध्यम" प्रभाव परिमाण के लिए ध्यान दिया, "आप अपने उपकरण की सटीकता या विश्वसनीयता, या अपने विषयों की संकीर्णता या विविधता की चिंता किए बिना वही n चुनें। स्पष्ट है कि, यहां महत्वपूर्ण बातों की अनदेखी की जा रही है। शोधकर्ताओं को अपने परिणामों के वास्तविक महत्व की व्याख्या उन्हें एक सार्थक संदर्भ या ज्ञान में उनके योगदान की मात्रा निर्धारित करके करनी चाहिए, और कोहेन के प्रभाव परिमाण के विवरण एक प्रारंभिक बिंदु के रूप में सहायक हो सकते हैं।"[5]इसी तरह, अमेरिकी शिक्षा विभाग की एक प्रायोजित सूचना में कहा है कि कोहेन के सामान्य छोटे, मध्यम और बड़े प्रभाव परिमाण मूल्यों का व्यापक अंधाधुंध उपयोग उन कार्यक्षेत्र में प्रभाव परिणामों को चिह्नित करने के लिए किया जाता है जिन पर उनके मानक मूल्य लागू नहीं होते हैं, इसी तरह यह अनुचित और भ्रामक है।[12]
उन्होंने सुझाव दिया कि "उपयुक्त मापदंड वे हैं जो तुलनीय प्रतिरूपों पर लक्षित तुलनीय हस्तक्षेपों से तुलनीय परिणाम उपायों के प्रभाव के परिणाम के वितरण पर आधारित हैं"। इस प्रकार यदि एक ऐसे क्षेत्र में एक अध्ययन जहां अधिकांश हस्तक्षेप छोटे हैं (कोहेन के मापदंडों के अनुसार), तो ये नए मापदंड इसे "बड़ा" कहेंगे। संबंधित बिंदु में, एबेल्सन का विरोधाभास और सॉविलोव्स्की का विरोधाभास देखें।[13][14][15]
प्रकार
प्रभाव परिमाण के लगभग 50 से 100 विभिन्न उपाय ज्ञात हैं। विभिन्न प्रकार के कई प्रभाव परिणामों को अन्य प्रकारों में परिवर्तित किया जा सकता है, जैसा कि कई दो वितरणों के पृथक्करण का आकलक करते हैं, इसलिए यह गणितीय रूप से संबंधित हैं। उदाहरण के लिए, एक सहसंबंध गुणांक को कोहेन के D में या इसके विपरीत परिवर्तित किया जा सकता है।
सहसंबंध परिवार: "प्रसरण व्याख्या" के आधार पर प्रभाव परिमाण
ये प्रभाव परिमाण एक प्रयोग के भीतर प्रसरण की मात्रा का आकलक करते हैं जिसे प्रयोग के प्रतिरूप द्वारा समझाया गया है (प्रसरण व्याख्या)।
पियर्सन R या सहसंबंध गुणांक
पियर्सन का सहसंबंध, जिसे प्रायः r द्वारा निरूपित किया जाता है और कार्ल पियर्सन द्वारा प्रस्तुत किया जाता है, व्यापक रूप से एक प्रभाव परिमाण के रूप में उपयोग किया जाता है जब युग्मित मात्रात्मक आँकड़े उपलब्ध होते हैं; उदाहरण के लिए यदि कोई जन्म के वजन और दीर्घायु के बीच संबंध का अध्ययन कर रहा हो। सहसंबंध गुणांक का उपयोग तब भी किया जा सकता है जब आँकड़े द्विआधारी हो। पियर्सन का r -1 से 1 तक परिमाण में भिन्न हो सकता है, जिसमें -1 एक पूर्ण नकारात्मक रैखिक संबंध दर्शाता है, 1 एक पूर्ण सकारात्मक रैखिक संबंध दर्शाता है, और 0 दो चर के बीच कोई रैखिक संबंध नहीं दर्शाता है। जैकब कोहेन (सांख्यिकीविद) सामाजिक विज्ञानों के लिए निम्नलिखित दिशानिर्देश देते हैं:[9][16]
प्रभाव परिणाम | r |
---|---|
छोटा | 0.10 |
मध्यम | 0.30 |
बड़ा | 0.50 |
निर्धारण गुणांक (r2 या R2)
एक संबंधित प्रभाव परिमाण r2 है, निर्धारण गुणांक (जिसे R2 या r-वर्ग भी कहा जाता है), जिसकी गणना पियर्सन सहसंबंध r के वर्ग के रूप में की जाती है। युग्मित आँकड़ो की स्थिति में, यह दो चरों द्वारा साझा किए गए विचरण के अनुपात का एक माप है, और 0 से 1 तक भिन्न होता है। उदाहरण के लिए, 0.21 के r के साथ निर्धारण गुणांक 0.0441 है, जिसका अर्थ है कि 4.4% किसी एक चर का प्रसरण दूसरे चर के साथ साझा किया जाता है। r2 हमेशा धनात्मक होता है, इसलिए दो चरों के बीच सहसंबंध की दिशा नहीं बताता है।
एटा-वर्ग
एटा-वर्ग अन्य भविष्यवक्ताओं के लिए नियंत्रण करते समय एक भविष्यवक्ता द्वारा निर्भर चर में व्याख्या किए गए विचरण के अनुपात का वर्णन करता है, जो इसे r2 के अनुरूप बनाता है। एटा-वर्ग जनसंख्या में प्रतिरूप द्वारा समझाए गए विचरण का एक पक्षपाती आकलक है (यह केवल प्रतिरूपों में प्रभाव के परिणाम का आकलन करते है)। यह आकलन r2 के साथ कमजोरी साझा करता है कि प्रत्येक अतिरिक्त चर स्वचालित रूप से के मान को बढ़ा देगा। इसके अतिरिक्त, यह प्रतिरूपों के बारे में बताए गए विचरण को मापता है, न कि जनसंख्या को, जिसका अर्थ है कि यह हमेशा प्रभाव के परिणाम को कम कर देगा, हालांकि प्रतिरूप बड़ा होने पर पक्षपात छोटा हो जाता है।
ओमेगा-वर्ग (ω2)
जनसंख्या में वर्णित प्रसरण का एक कम पक्षपाती आकलक ω2 है[17]
कोहेन F2
कोहेन F2 एनोवा या बहु प्रतिगमन के लिए F-परीक्षण के संदर्भ में उपयोग करने के लिए कई प्रभाव परिमाण उपायों में से एक है। पक्षपात की मात्रा (एनोवा के लिए प्रभाव परिमाण का अधिक आकलन) इसके अंतर्निहित माप के विचलन पर निर्भर करता है (उदाहरण के लिए, r2, η2, ω2).
F2 बहु प्रतिगमन के लिए प्रभाव परिमाण माप को इस प्रकार परिभाषित किया गया है:
इसी तरह, f2 को इस प्रकार परिभाषित किया जा सकता है:
अनुक्रमिक बहु प्रतिगमन के लिए प्रभाव परिमाण माप और आंशिक न्यूनतम वर्ग पथ प्रतिरूपों के लिए भी सामान्य[20] परिभाषित किया जाता है:
कोहेन का प्रसरण (ANOVA) के भाज्य संबंधी विश्लेषण के लिए भी पीछे की ओर काम करते हुए पाया जा सकता है:
कोहेन का q
एक अन्य माप जिसका उपयोग सहसंबंध अंतरों के साथ किया जाता है, कोहेन का q है। यह दो फिशर रूपांतरित पियर्सन समाश्रयण गुणांकों के बीच का अंतर है। प्रतीकों में यह
जहां r1 और r2 में समाश्रयण की तुलना की जा रही है। Q का अपेक्षित मान शून्य है और इसका विचरण है
अंतर परिवार: साधनों के बीच अंतर के आधार पर प्रभाव का परिणाम
दो समूहों की तुलना से संबंधित अपरिष्कृत प्रभाव परिमाण की स्वाभाविक रूप से गणना दो साधनों के बीच के अंतर के रूप में की जाती है। हालांकि, व्याख्या की सुविधा के लिए प्रभाव के परिणाम को मानकीकृत करना आम बात है; सांख्यिकीय मानकीकरण के लिए विभिन्न परिपाटी को नीचे प्रस्तुत किया गया है।
मानकीकृत माध्य अंतर
एक (जनसंख्या) प्रभाव परिमाण θ के आधार पर समान्यतः दो आबादीयों के बीच मानकीकृत माध्य अंतर (SMD) पर विचार करता है[21]: 78
व्यावहारिक समायोजना में जनसंख्या मूल्य समान्यतः ज्ञात नहीं होते हैं और प्रतिरूप तथ्यांक से इसका आकलन होना चाहिए। साधनों के आधार पर प्रभाव परिणामों के कई संस्करण अलग-अलग होते हैं, जिनके संबंध में सांख्यिकी का उपयोग किया जाता है।
प्रभाव परिमाण के लिए यह फॉर्म एक टी-परीक्षण सांख्यिकी के लिए गणना के समान है, महत्वपूर्ण अंतर के साथ टी-परीक्षण सांख्यिकी में का एक गुणांक समिलित है इसका अर्थ है कि यह किसी दिए गए प्रभाव परिमाण के लिए, प्रतिदर्श आमाप के साथ महत्व के स्तर को बढ़ता है। टी-परीक्षण प्रतिदर्शन के विपरीत, प्रभाव परिमाण का उद्देश्य जनसंख्या मापदंड का आकलन करना है और जो प्रतिदर्श आमाप से प्रभावित नहीं होता है।
0.2 से 0.5 के SMD मूल्यों को छोटा माना जाता है, 0.5 से 0.8 को मध्यम माना जाता है, और 0.8 से अधिक को बड़ा माना जाता है।[22]
कोहेन D
कोहेन के D को आँकड़ों के मानक विचलन द्वारा विभाजित दो साधनों के बीच के अंतर के रूप में परिभाषित किया गया है, अर्थात
नीचे दी गई तालिका में d = 0.01 से 2.0 के परिमाण के लिए वर्णनकर्ता समिलित हैं, जैसा कि शुरू में कोहेन द्वारा सुझाया गया था और सॉविलोव्स्की द्वारा विस्तारित किया गया था।[10]
प्रभाव परिणाम | d | सन्दर्भ |
---|---|---|
बहुत छोटा | 0.01 | [10] |
छोटा | 0.20 | [9] |
मध्यम | 0.50 | [9] |
बड़ा | 0.80 | [9] |
बहुत बड़ा | 1.20 | [10] |
विशाल | 2.0 | [10] |
कोहेन के D का वर्णन करते समय अन्य लेखक मानक विचलन की थोड़ी अलग गणना चुनते हैं, जहां हर में -2 नही होता है[23][24]: 14
दो युग्मित प्रतिरूपों के साथ, हम अंतर अंक के वितरण को देखते हैं। उस स्थिति में, अंतर अंक के इस वितरण का मानक विचलन है। यह दो समूहों और कोहेन के D के साधनों में अंतर के परीक्षण के लिए टी-सांख्यिकीय के बीच निम्नलिखित संबंध बनाता है:
युग्मित प्रतिरूपों के लिए कोहेन सुझाव देते हैं कि परिकलित D वास्तव में a d' है, जो परीक्षण की शक्ति प्राप्त करने के लिए सही उत्तर प्रदान नहीं करता है, और प्रदान की गई तालिकाओं में मानों को देखने से पहले, निम्नलिखित सूत्र से इसे r के लिए ठीक किया जाना चाहिए :[26]
ग्लास' Δ
1976 में, जीन वी. ग्लास ने प्रभाव परिमाण का एक आकलक प्रस्तावित किया जो केवल दूसरे समूह के मानक विचलन का उपयोग करता है[21]: 78
समान जनसंख्या प्रसरण की सही धारणा के अधीन σ के लिए एक संयोजित आकलन अधिक सटीक है।
हेजेज जी
1981 में लैरी हेजेज द्वारा सुझाए गए हेजेज जी,[27]एक मानकीकृत अंतर के आधार पर अन्य उपायों की तरह है[21]: 79
Ψ, वर्ग माध्य मूल मानकीकृत प्रभाव
एकाधिक तुलनाओं के लिए एक समान प्रभाव परिमाण आकलक (उदाहरण के लिए, एनोवा) Ψ वर्ग माध्य मूल मानकीकृत प्रभाव है:[19]
यह अनिवार्य रूप से D या G के अनुरूप वर्ग माध्य मूल द्वारा समायोजित पूरे प्रतिरूपों के सर्वग्राही अंतर को प्रस्तुत करता है।
इसके अतिरिक्त, बहु-भाज्य संबंधी प्रारुपों के लिए एक सामान्यीकरण प्रदान किया गया है।[19]
अंतरो के आधार पर प्रभाव के परिणाम का वितरण
शर्त यह है कि गाऊसी ने एक पर्पटित हेजेज जी, , गैर-केंद्रीय टी-वितरण के साथ गैर केंद्रीय मापदंड और (n1 + n2 − 2) स्वतंत्रता की डिग्रियों वितरित की हो। इसी तरह, पर्पटित ग्लास 'Δ के साथ n2 − 1 स्वतंत्रता की डिग्रियां वितरित की जाती है।
वितरण से अपेक्षित मूल्य और प्रभाव परिमाण के प्रसरण की गणना करना संभव है।
कुछ स्थितियों में प्रसरण के लिए बड़े प्रतिरूप सन्निकटन का उपयोग किया जाता है। हेजेज के निष्पक्ष आकलक के विचरण के लिए एक सुझाव है[21] : 86
अन्य मिति
महालनोबिस दूरी (D) कोहेन के D का एक बहुभिन्नरूपी सामान्यीकरण है, जो चरों के बीच संबंधों को ध्यान में रखता है।[28]
श्रेणीबद्ध परिवार: श्रेणीबद्ध चर के बीच संघों के लिए प्रभाव परिमाण
|
|
Phi (φ) | Cramér's V (φc) |
---|
ची-चुकता परीक्षण के लिए समिति के सामान्य रूप से उपयोग किए जाने वाले उपायों में फी गुणांक और हेराल्ड क्रैमर के V हैं (कभी-कभी क्रैमर फाई के रूप में संदर्भित होते है और φc के रूप में दर्शाए जाते है))। फी बिंदु-द्विक्रमिक सहसंबंध गुणांक और कोहेन के डी से संबंधित है और दो चरों (2 × 2) के बीच संबंध की सीमा का आकलन करते है।[29] क्रैमर V का उपयोग दो से अधिक स्तरों वाले चर के साथ किया जा सकता है।
फी की गणना ची-वर्ग अंक-विवरन के वर्गमूल को प्रतिदर्श आमाप से विभाजित करके की जा सकती है।
इसी तरह, क्रैमर के V की गणना प्रतिदर्श आमाप और न्यूनतम आयाम की लंबाई से विभाजित कई वर्ग के वर्गमूल को लेकर की जाती है (K पंक्तियों की संख्या R या कॉलम C की छोटी संख्या है)।
φc दो असतत चरों का अंतर्संबंध है[30] और इसकी गणना r या c के किसी भी मान के लिए की जा सकती है। हालाँकि, जैसे-जैसे ची-वर्ग मान कक्षों की संख्या के साथ बढ़ते जाते हैं, r और c के बीच का अंतर जितना अधिक होता है, उतनी ही अधिक संभावना V की प्रवृत्ति सार्थक सहसंबंध के मजबूत प्रमाण के बिना 1 हो जाएगी।
क्रैमर के V को 'फिट ऑफ गुडनेस' ची-वर्ग प्रतिरूप पर भी लागू किया जा सकता है[citation needed] (अर्थात् वे जहाँ c = 1)। इस स्थिति में यह एकल परिणाम (अर्थात k परिणामों में से) की प्रवृत्ति के माप के रूप में कार्य करता है। ऐसी स्थिति में, V की 0 से 1 श्रेणी को बनाए रखने के लिए, k के लिए r का उपयोग करना चाहिए। अन्यथा, c का उपयोग करने से Phi के लिए समीकरण कम हो जाएगा।
कोहेन का ओमेगा (ω)
ची-वर्ग परीक्षण के लिए उपयोग किए जाने वाले प्रभाव परिमाण का एक अन्य माप कोहेन का ओमेगा () है, इसे इस रूप में परिभाषित किया गया है
व्यवहार विज्ञान के लिए सांख्यिकीय शक्ति विश्लेषण (1988, PP.224-225) में, कोहेन ओमेगा की व्याख्या के लिए निम्नलिखित सामान्य दिशानिर्देश देते हैं (नीचे दी गई तालिका देखें), लेकिन यह किसी भी मूल संदर्भ में इसकी संभावित अक्षमता के विपरीत चेतावनी देते हैं और संदर्भ का उपयोग करने की सलाह देते हैं।
प्रभाव परिणाम | |
---|---|
छोटा | 0.10 |
मध्यम | 0.30 |
बड़ा | 0.50 |
विषम अनुपात
विषम अनुपात (OR) एक अन्य उपयोगी प्रभाव परिमाण है। यह उचित है जब शोध प्रश्न दो द्विआधारी आँकड़े के बीच साहचर्य कोटि पर केंद्रित हो। उदाहरण के लिए, वर्तनी क्षमता के अध्ययन पर विचार करें। एक नियंत्रण वर्ग में, दो छात्र असफल होने वाले प्रत्येक के लिए कक्षा उत्तीर्ण करते हैं, इसलिए उत्तीर्ण होने की संभावना दो से एक (या 2/1 = 2) होती है। उपचार वर्ग में, असफल होने वाले प्रत्येक छात्र के लिए छह छात्र उत्तीर्ण होते हैं, इसलिए उत्तीर्ण होने की संभावना छह से एक (या 6/1 = 6) होती है। प्रभाव के परिमाण की गणना इस बात पर ध्यान देकर की जा सकती है कि उपचार वर्ग में पास होने की संभावना नियंत्रण वर्ग की तुलना में तीन गुना अधिक है (क्योंकि 6 को 2 से विभाजित करने पर 3 होता है)। इसलिए, विषम अनुपात 3 है। विषम अनुपात अंक-विवरन कोहेन के D की तुलना में एक अलग मापदंड पर हैं, इसलिए यह '3' कोहेन के 3 के D से तुलना करने योग्य नहीं है।
सापेक्ष खतरा
सापेक्ष खतरा (RR), जिसे खतरा अनुपात भी कहा जाता है, कुछ स्वतंत्र चर के सापेक्ष किसी घटना का खतरा (संभावना) है। प्रभाव के परिणाम का यह माप विषम अनुपात से भिन्न होता है, जिसमें यह 'विषम' के अतिरिक्त 'संभावनाओं' की तुलना करता है, लेकिन छोटी संभावनाओं के लिए असम्बद्ध रूप से उत्तरार्द्ध तक पहुंचता है। उपरोक्त उदाहरण का उपयोग करते हुए, नियंत्रण वर्ग और उपचार वर्ग में पास होने वाली 'संभावना' क्रमशः 2/3 (या 0.67) और 6/7 (या 0.86) है। प्रभाव परिमाण की गणना ऊपर की तरह ही की जा सकती है, लेकिन इसके अतिरिक्त संभावनाओं का उपयोग किया जा सकता है। इसलिए, सापेक्ष खतरा 1.28 है। चूंकि उत्तीर्ण होने की बड़ी संभावनाओं का उपयोग किया गया था, सापेक्ष खतरा और विषम अनुपात के बीच एक बड़ा अंतर है। अगर 'विफलता' (एक छोटी संभावना) को घटना के रूप में उपयोग किया गया होता ('उत्तीर्ण' होने के अतिरिक्त), प्रभाव परिमाण के दो उपायों के बीच का अंतर इतना बड़ा नहीं होता।
जबकि दोनों उपाय उपयोगी हैं, उनके अलग-अलग सांख्यिकीय उपयोग हैं। चिकित्सा अनुसंधान में, विषम अनुपात समान्यतः स्थिति नियंत्रण अध्ययन के लिए उपयोग किया जाता है।[31] सापेक्ष खतरा समान्यतः यादृच्छिक नियंत्रित परीक्षणों और कोहोर्ट अध्ययन में उपयोग किया जाता है, लेकिन सापेक्ष खतरा हस्तक्षेपों की प्रभावशीलता के अतिरेक में योगदान देता है।[32]
खतरा अंतर
खतरा अंतर (RD) जिसे कभी-कभी पूर्ण खतरा में कमी कहा जाता है, केवल दो समूहों के बीच एक घटना के खतरे (संभावना) में अंतर होता है। प्रायोगिक अनुसंधान में यह एक उपयोगी उपाय है, क्योंकि RD आपको बताता है कि किस सीमा तक एक प्रायोगिक हस्तक्षेप किसी घटना या परिणाम की संभावना को बदलता है। उपरोक्त उदाहरण का उपयोग करते हुए, नियंत्रण वर्ग और उपचार वर्ग में पास होने वालों की संभावना क्रमशः 2/3 (या 0.67) और 6/7 (या 0.86) है, और इसलिए RD प्रभाव का परिणाम 0.86 − 0.67 = 0.19 (या) 19%) हैं। RD हस्तक्षेपों की प्रभावशीलता का आकलन करने के लिए उच्च उपाय है।[32]
कोहेन का H
दो स्वतंत्र अनुपातों की तुलना करते समय शक्ति विश्लेषण में उपयोग किया जाने वाला एक उपाय कोहेन का H है। इसे इस प्रकार परिभाषित किया गया है
सामान्य भाषा प्रभाव परिमाण
अंक-विवरन से बाहर के लोगों के लिए प्रभाव परिमाण के अर्थ का अधिक आसानी से वर्णन करने के लिए, सामान्य भाषा प्रभाव परिमाण, जैसा कि नाम से पता चलता है, इसे सादे अंग्रेजी में संप्रेषित करने के लिए प्रारुपण किया गया था। इसका उपयोग दो समूहों के बीच के अंतर का वर्णन करने के लिए किया जाता है और 1992 में केनेथ मैकग्रा और S.P. वोंग द्वारा इसे प्रस्तावित और नाम दिया गया था। उन्होंने निम्नलिखित उदाहरण का उपयोग किया (पुरुषों और महिलाओं की ऊंचाई के बारे में): युवा वयस्क पुरुषों और महिलाओं की किसी भी यादृच्छिक जोड़ी में, पुरुष की महिला की तुलना में लंबा होने की संभावना .92 है, या सरल शब्दों में, युवा वयस्कों में 100 में से 92 दो अंजान लोगों की भेंट में, सामान्य भाषा प्रभाव परिमाण के जनसंख्या मूल्य का वर्णन करते समय, पुरुष महिला की तुलना में लंबा होगा।
सामान्य भाषा प्रभाव परिमाण के लिए जनसंख्या मूल्य, जनसंख्या से अव्यवस्थित तरह से चुने गए जोड़े के संदर्भ में, प्रायः इस तरह सूचित किया जाता है। केर्बी (2014) धयान करते है कि एक जोड़ी, जिसे एक समूह में प्राप्तांक के रूप में दूसरे समूह में प्राप्तांक के साथ परिभाषित किया गया है, सामान्य भाषा प्रभाव परिमाण की एक मूल अवधारणा है।
एक अन्य उदाहरण के रूप में, उपचार वर्ग में दस लोगों और नियंत्रण वर्ग में दस लोगों के साथ एक वैज्ञानिक अध्ययन (कदाचित कुछ पुरानी बीमारी, जैसे गठिया के इलाज के लिए) पर विचार करें। यदि उपचार वर्ग के सभी लोगों की तुलना नियंत्रण वर्ग के सभी लोगों से की जाए, तो (10×10=) 100 जोड़े होते हैं। अध्ययन के अंत में, परिणाम को प्रत्येक व्यक्ति के लिए एक अंक में मूल्यांकित किया जाता है (उदाहरण के लिए, गठिया अध्ययन की स्थिति में गतिशीलता और दर्द के मापदंड पर), और फिर सभी अंकों की जोड़ी के बीच तुलना की जाती है। परिणाम, परिकल्पना का समर्थन करने वाले जोड़े के प्रतिशत के रूप में, सामान्य भाषा प्रभाव परिमाण है। उदाहरण के अध्ययन में यह हो सकता है (मान लीजिए) .80, यदि 100 में से 80 तुलना जोड़े नियंत्रण वर्ग की तुलना में उपचार वर्ग के लिए उच्च परिणाम दिखाते हैं, और सूचना इस प्रकार हो सकती है: जब उपचार वर्ग में एक रोगी की तुलना नियंत्रण वर्ग के एक रोगी से की गई, 100 में से 80 जोड़े में उपचारित रोगी ने उपचार के उच्च परिणाम दिखाए। प्रतिरूप मूल्य, उदाहरण के लिए इस तरह का एक अध्ययन, जनसंख्या मूल्य का एक निष्पक्ष आकलक है।
वर्गा और डेलाने ने क्रमिक स्तर के आँकड़े को पूरा करने के लिए सामान्य भाषा प्रभाव परिमाण (वर्गा-डेलाने A) को सामान्यीकृत किया।
कोटि-द्विक्रमिक सहसंबंध
सामान्य भाषा प्रभाव परिमाण से संबंधित एक प्रभाव परिमाण श्रेणि-द्विक्रमिक सहसंबंध है। मान-व्हिटनी यू परीक्षण के लिए एक प्रभाव परिमाण के रूप में क्योरटन द्वारा यह उपाय प्रस्तुत किया गया था।[33] यानी, दो समूह हैं, और समूहों के प्राप्तांक को श्रेणि में बदल दिया गया है। केर्बी सरल अंतर सूत्र सामान्य भाषा प्रभाव परिमाण से श्रेणि-द्विक्रमिक सहसंबंध की गणना करते है।[34]परिकल्पना (सामान्य भाषा प्रभाव परिमाण) के अनुकूल जोड़े का अनुपात होने दें, और U को अनुकूल न होने वाले जोड़े का अनुपात होने दें, श्रेणि-द्विक्रमिक r दो अनुपातों के बीच सरल अंतर है: r = f − u। दूसरे शब्दों में, सहसंबंध सामान्य भाषा प्रभाव परिमाण और उसके पूरक के बीच का अंतर है। उदाहरण के लिए, यदि सामान्य भाषा प्रभाव परिमाण 60% है, तो श्रेणि-द्विक्रमिक r 60% घटाव 40%, या r = 0.20 के बराबर होता है। केर्बी सूत्र दिशात्मक है, सकारात्मक मूल्यों के साथ यह दर्शाता है कि परिणाम परिकल्पना का समर्थन करते हैं।
श्रेणि-द्विक्रमिक सहसंबंध के लिए एक गैर-दिशात्मक सूत्र वेंडेट द्वारा प्रदान किया गया था, जैसे कि सहसंबंध हमेशा सकारात्मक होता है।[35] वेंड्ट सूत्र का लाभ यह है कि इसकी गणना उन सूचनाओं के साथ की जा सकती है जो प्रकाशित पत्रों में आसानी से उपलब्ध हैं। सूत्र मान-व्हिटनी U परीक्षण से केवल U के परीक्षण मूल्य और दो समूहों के प्रतिरूपों के आकार का उपयोग करता है: r = 1 – (2U)/(n1n2). ध्यान दें कि U को प्राचीन परिभाषा के अनुसार परिभाषित किया गया है, जो आँकड़े से गणना की जा सकने वाली दो मानों में से छोटा है। यह सुनिश्चित करता है कि 2U < n1n2, क्योंकि n1n2 U आंक का अधिकतम मूल्य है।
एक उदाहरण दो सूत्रों के उपयोग का वर्णन कर सकता है। उपचार वर्ग में दस और नियंत्रण वर्ग में दस के साथ बीस वृद्ध वयस्कों के स्वास्थ्य अध्ययन पर विचार करें; इसलिए, दस गुना या 100 जोड़े हैं। स्वास्थ्य कार्यक्रम स्मरण शक्ति में सुधार के लिए आहार, व्यायाम और पूरक आहार का उपयोग करता है, और स्मरण शक्ति को एक मानकीकृत परीक्षण द्वारा मापा जाता है। एक मान-व्हिटनी U परीक्षण से पता चलता है कि उपचार वर्ग में वयस्क की 100 जोड़ों में से 70 में उच्च स्मरण शक्ति थी, और 30 जोड़ों में खराब स्मरण शक्ति थी। मान-व्हिटनी U 70 और 30 में से छोटा है, इसलिए U = 30। केर्बी सरल अंतर सूत्र द्वारा स्मरण शक्ति और उपचार प्रदर्शन के बीच संबंध r= (70/100) − (30/100) = 0.40। वेन्द्र सूत्र द्वारा सहसंबंध r = 1 − (2·30)/(10·10) = 0.40 है।
क्रमिक आँकड़े के लिए प्रभाव का परिणाम
क्लिफ का डेल्टा या , मूल रूप से नॉर्मन क्लिफ द्वारा क्रमिक आँकड़े के उपयोग के लिए विकसित किया गया था,[36] यह इस बात का माप है कि कितनी बार एक वितरण में मान दूसरे वितरण के मानों से बड़ा होता है। महत्वपूर्ण रूप से, इसमें दो वितरणों के आकार या प्रसार के बारे में किसी धारणा की आवश्यकता नहीं है।
प्रतिरूप आकलन द्वारा दिया गया है:
मान-व्हिटनी U सांख्यिकी से रैखिक रूप से संबंधित है; हालाँकि, यह अपने संकेत में अंतर की दिशा को पकड़ लेता है। मान-व्हिटनी , दिया गया है:
गैर-केंद्रीयता मापदंडों के माध्यम से विश्वास्यता अंतराल
मानकीकृत प्रभाव परिणामों का विश्वास्यता अंतराल, विशेष रूप से कोहेन का और , गैर-केंद्रीयता मापदंडों (NCP) के विश्वास अंतराल की गणना पर निर्भर करती है। NCP के गैर-केंद्रीयता अंतराल के निर्माण के लिए एक सामान्य दृष्टिकोण महत्वपूर्ण NCP मानों को टेल मत्रा α/2 और (1 − α/2) के लिए देखे गए तथ्यांक को अनुरूप करने के लिए खोजना है। SAS और R-पैकेज MBESS NCP के महत्वपूर्ण मूल्यों को खोजने के लिए कार्य प्रदान करता है।
एकल समूह या दो संबंधित समूहों के माध्य अंतर के लिए टी-परीक्षण
एकल समूह के लिए, M प्रतिरूप माध्य, μ जनसंख्या माध्य, SD प्रतिरूप का मानक विचलन, σ जनसंख्या का मानक विचलन, और n समूह का प्रतिदर्श आमाप को दर्शाता है। माध्य और आधार रेखा μ के बीच के अंतर पर परिकल्पना का परीक्षण करने के लिए t मान का उपयोग किया जाता है। समान्यतः, μ आधार रेखा शून्य है। दो संबंधित समूहों की स्थिति में, एकल समूह का निर्माण प्रतिरूपों की जोड़ी में अंतर से होता है, जबकि SD और σ मूल दो समूहों के अतिरिक्त प्रतिरूपों और जनसंख्या के अंतर के मानक विचलन को दर्शाते हैं।
दो स्वतंत्र समूहों के बीच माध्य अंतर के लिए टी-परीक्षण
N1 या N2 संबंधित प्रतिदर्श आमाप हैं।
एकाधिक स्वतंत्र समूहों में माध्य अंतर के लिए एक तरफ़ा एनोवा परीक्षण
एकतरफा एनोवा परीक्षण गैर-केंद्रीय F वितरण लागू करता है। जबकि किसी दिए गए जनसंख्या मानक विचलन के साथ , वही परीक्षण प्रश्न गैर-केंद्रीय ची-वर्ग वितरण पर लागू होता है।
समान आकार के K स्वतंत्र समूहों के लिए, कुल प्रतिदर्श आमाप N := n·K है।
यह भी देखें
- आकलन अंक-विवरन
- तथ्यांक की महत्ता
- Z गुणांक, प्रभाव परिमाण का एक वैकल्पिक उपाय
संदर्भ
- ↑ Kelley, Ken; Preacher, Kristopher J. (2012). "प्रभाव आकार पर". Psychological Methods. 17 (2): 137–152. doi:10.1037/a0028086. PMID 22545595. S2CID 34152884.
- ↑ Rosenthal, Robert, H. Cooper, and L. Hedges. "Parametric measures of effect size." The handbook of research synthesis 621 (1994): 231–244. ISBN 978-0871541635
- ↑ Wilkinson, Leland (1999). "Statistical methods in psychology journals: Guidelines and explanations". American Psychologist. 54 (8): 594–604. doi:10.1037/0003-066X.54.8.594. S2CID 428023.
- ↑ Nakagawa, Shinichi; Cuthill, Innes C (2007). "Effect size, confidence interval and statistical significance: a practical guide for biologists". Biological Reviews of the Cambridge Philosophical Society. 82 (4): 591–605. doi:10.1111/j.1469-185X.2007.00027.x. PMID 17944619. S2CID 615371.
- ↑ 5.0 5.1 Ellis, Paul D. (2010). The Essential Guide to Effect Sizes: Statistical Power, Meta-Analysis, and the Interpretation of Research Results. Cambridge University Press. ISBN 978-0-521-14246-5.[page needed]
- ↑ Brand A, Bradley MT, Best LA, Stoica G (2008). "प्रकाशित मनोवैज्ञानिक अनुसंधान से प्रभाव के आकार के अनुमानों की सटीकता" (PDF). Perceptual and Motor Skills. 106 (2): 645–649. doi:10.2466/PMS.106.2.645-649. PMID 18556917. S2CID 14340449. Archived from the original (PDF) on 2008-12-17. Retrieved 2008-10-31.
- ↑ Brand A, Bradley MT, Best LA, Stoica G (2011). "एकाधिक परीक्षण अतिरंजित प्रभाव आकार अनुमान प्राप्त कर सकते हैं" (PDF). The Journal of General Psychology. 138 (1): 1–11. doi:10.1080/00221309.2010.520360. PMID 21404946. S2CID 932324.
- ↑ Sterne, Jonathan A. C.; Gavaghan, David; Egger, Matthias (2000-11-01). "Publication and related bias in meta-analysis: Power of statistical tests and prevalence in the literature". Journal of Clinical Epidemiology (in English). 53 (11): 1119–1129. doi:10.1016/S0895-4356(00)00242-0. ISSN 0895-4356. PMID 11106885.
- ↑ 9.0 9.1 9.2 9.3 9.4 9.5 9.6 9.7 Cohen, Jacob (1988). व्यवहार विज्ञान के लिए सांख्यिकीय शक्ति विश्लेषण. Routledge. ISBN 978-1-134-74270-7.
- ↑ 10.0 10.1 10.2 10.3 10.4 Sawilowsky, S (2009). "अंगूठे का नया प्रभाव आकार नियम". Journal of Modern Applied Statistical Methods. 8 (2): 467–474. doi:10.22237/jmasm/1257035100. http://digitalcommons.wayne.edu/jmasm/vol8/iss2/26/
- ↑ Russell V. Lenth. "Java applets for power and sample size". Division of Mathematical Sciences, the College of Liberal Arts or The University of Iowa. Retrieved 2008-10-08.
- ↑ Lipsey, M.W.; et al. (2012). Translating the Statistical Representation of the Effects of Education Interventions Into More Readily Interpretable Forms (PDF). United States: U.S. Dept of Education, National Center for Special Education Research, Institute of Education Sciences, NCSER 2013–3000.
- ↑ Sawilowsky, S. S. (2005). "एबेलसन का विरोधाभास और माइकलसन-मॉर्ले प्रयोग". Journal of Modern Applied Statistical Methods. 4 (1): 352. doi:10.22237/jmasm/1114907520.
- ↑ Sawilowsky, S.; Sawilowsky, J.; Grissom, R. J. (2010). "Effect Size". In Lovric, M. (ed.). सांख्यिकीय विज्ञान का अंतर्राष्ट्रीय विश्वकोश. Springer.
- ↑ Sawilowsky, S. (2003). "परिकल्पना परीक्षण के खिलाफ मामले से विखंडन तर्क". Journal of Modern Applied Statistical Methods. 2 (2): 467–474. doi:10.22237/jmasm/1067645940.
- ↑ Cohen, J (1992). "एक पावर प्राइमर". Psychological Bulletin. 112 (1): 155–159. doi:10.1037/0033-2909.112.1.155. PMID 19565683.
- ↑ 17.0 17.1 Tabachnick, B.G. & Fidell, L.S. (2007). Chapter 4: "Cleaning up your act. Screening data prior to analysis", p. 55 In B.G. Tabachnick & L.S. Fidell (Eds.), Using Multivariate Statistics, Fifth Edition. Boston: Pearson Education, Inc. / Allyn and Bacon.
- ↑ 18.0 18.1 Olejnik, S.; Algina, J. (2003). "Generalized Eta and Omega Squared Statistics: Measures of Effect Size for Some Common Research Designs" (PDF). Psychological Methods. 8 (4): 434–447. doi:10.1037/1082-989x.8.4.434. PMID 14664681.
- ↑ 19.0 19.1 19.2 Steiger, J. H. (2004). "Beyond the F test: Effect size confidence intervals and tests of close fit in the analysis of variance and contrast analysis" (PDF). Psychological Methods. 9 (2): 164–182. doi:10.1037/1082-989x.9.2.164. PMID 15137887.
- ↑ Hair, J.; Hult, T. M.; Ringle, C. M. and Sarstedt, M. (2014) A Primer on Partial Least Squares Structural Equation Modeling (PLS-SEM), Sage, pp. 177–178. ISBN 1452217440
- ↑ 21.0 21.1 21.2 21.3 21.4 21.5 21.6 Larry V. Hedges & Ingram Olkin (1985). मेटा-विश्लेषण के लिए सांख्यिकीय तरीके. Orlando: Academic Press. ISBN 978-0-12-336380-0.
- ↑ Andrade, Chittaranjan (22 September 2020). "माध्य अंतर, मानकीकृत माध्य अंतर (एसएमडी), और मेटा-विश्लेषण में उनका उपयोग". The Journal of Clinical Psychiatry. 81 (5). doi:10.4088/JCP.20f13681. eISSN 1555-2101. PMID 32965803. S2CID 221865130.
SMD values of 0.2-0.5 are considered small, values of 0.5-0.8 are considered medium, and values > 0.8 are considered large. In psychopharmacology studies that compare independent groups, SMDs that are statistically significant are almost always in the small to medium range. It is rare for large SMDs to be obtained.
- ↑ Robert E. McGrath; Gregory J. Meyer (2006). "When Effect Sizes Disagree: The Case of r and d" (PDF). Psychological Methods. 11 (4): 386–401. CiteSeerX 10.1.1.503.754. doi:10.1037/1082-989x.11.4.386. PMID 17154753. Archived from the original (PDF) on 2013-10-08. Retrieved 2014-07-30.
- ↑ Hartung, Joachim; Knapp, Guido; Sinha, Bimal K. (2008). अनुप्रयोगों के साथ सांख्यिकीय मेटा-विश्लेषण. John Wiley & Sons. ISBN 978-1-118-21096-3.
- ↑ Kenny, David A. (1987). "Chapter 13" (PDF). सामाजिक और व्यवहार विज्ञान के लिए सांख्यिकी. Little, Brown. ISBN 978-0-316-48915-7.
- ↑ Cohen 1988, p. 49.
- ↑ Larry V. Hedges (1981). "Distribution theory for Glass' estimator of effect size and related estimators". Journal of Educational Statistics. 6 (2): 107–128. doi:10.3102/10769986006002107. S2CID 121719955.
- ↑ Del Giudice, Marco (2013-07-18). "Multivariate Misgivings: Is D a Valid Measure of Group and Sex Differences?". Evolutionary Psychology (in English). 11 (5): 147470491301100. doi:10.1177/147470491301100511.
- ↑ आरोन, बी., क्रॉम्रे, जे.डी., और फेरॉन, जे.एम. (1998, नवंबर)। r-आधारित और d-आधारित प्रभाव-आकार सूचकांकों की समानता: a के साथ समस्याएँ आमतौर पर अनुशंसित सूत्र। फ्लोरिडा एजुकेशनल रिसर्च एसोसिएशन, ऑरलैंडो, FL की वार्षिक बैठक में प्रस्तुत किया गया पेपर। (ERIC दस्तावेज़ पुनरुत्पादन सेवा सं. ED433353)
- ↑ Sheskin, David J. (2003). पैरामीट्रिक और गैर पैरामीट्रिक सांख्यिकीय प्रक्रियाओं की पुस्तिका (Third ed.). CRC Press. ISBN 978-1-4200-3626-8.
- ↑ Deeks J (1998). "When can odds ratios mislead? : Odds ratios should be used only in case-control studies and logistic regression analyses". BMJ. 317 (7166): 1155–6. doi:10.1136/bmj.317.7166.1155a. PMC 1114127. PMID 9784470.
- ↑ 32.0 32.1 Stegenga, J. (2015). "Measuring Effectiveness". Studies in History and Philosophy of Biological and Biomedical Sciences. 54: 62–71. doi:10.1016/j.shpsc.2015.06.003. PMID 26199055.
- ↑ Cureton, E.E. (1956). "रैंक-द्विक्रमिक सहसंबंध". Psychometrika. 21 (3): 287–290. doi:10.1007/BF02289138. S2CID 122500836.
- ↑ Cite error: Invalid
<ref>
tag; no text was provided for refs namedlink to pdf
- ↑ Wendt, H. W. (1972). "Dealing with a common problem in social science: A simplified rank-biserial coefficient of correlation based on the U statistic". European Journal of Social Psychology. 2 (4): 463–465. doi:10.1002/ejsp.2420020412.
- ↑ Cliff, Norman (1993). "Dominance statistics: Ordinal analyses to answer ordinal questions". Psychological Bulletin. 114 (3): 494–509. doi:10.1037/0033-2909.114.3.494.
अग्रिम पठन
- Aaron, B., Kromrey, J. D., & Ferron, J. M. (1998, November). Equating r-based and d-based effect-size indices: Problems with a commonly recommended formula. Paper presented at the annual meeting of the Florida Educational Research Association, Orlando, FL. (ERIC Document Reproduction Service No. ED433353)
- Bonett, D. G. (2008). "Confidence intervals for standardized linear contrasts of means". Psychological Methods. 13 (2): 99–109. doi:10.1037/1082-989x.13.2.99. PMID 18557680.
- Bonett, D. G. (2009). "Estimating standardized linear contrasts of means with desired precision". Psychological Methods. 14 (1): 1–5. doi:10.1037/a0014270. PMID 19271844.
- Brooks, M.E.; Dalal, D.K.; Nolan, K.P. (2013). "Are common language effect sizes easier to understand than traditional effect sizes?". Journal of Applied Psychology. 99 (2): 332–340. doi:10.1037/a0034745. PMID 24188393.
- Cumming, G.; Finch, S. (2001). "A primer on the understanding, use, and calculation of confidence intervals that are based on central and noncentral distributions". Educational and Psychological Measurement. 61 (4): 530–572. doi:10.1177/0013164401614002. S2CID 120672914.
- Kelley, K (2007). "Confidence intervals for standardized effect sizes: Theory, application, and implementation". Journal of Statistical Software. 20 (8): 1–24. doi:10.18637/jss.v020.i08.
- Lipsey, M. W., & Wilson, D. B. (2001). Practical meta-analysis. Sage: Thousand Oaks, CA.
बाहरी संबंध
Further explanations