द्रव्यमान अन्तरण: Difference between revisions

From Vigyanwiki
No edit summary
No edit summary
 
Line 1: Line 1:
{{short description|Net movement of mass from one location, phase, etc. to another}}
{{short description|Net movement of mass from one location, phase, etc. to another}}'''द्रव्यमान अन्तरण (मास ट्रांसफर)''' एक स्थान से द्रव्यमान का शुद्ध संचलन है (सामान्यतः धारा, [[चरण (पदार्थ)]], अंश या घटक) से दूसरे स्थान पर होता है। बड़े पैमाने पर स्थानांतरण कई प्रक्रियाओं में होता है, जैसे [[अवशोषण (रसायन विज्ञान)]], [[वाष्पीकरण]], सुखाने, वर्षा (रसायन विज्ञान), झिल्ली प्रौद्योगिकी और आसवन है। मास ट्रांसफर का उपयोग विभिन्न वैज्ञानिक विषयों  के माध्यम से विभिन्न प्रक्रियाओं और तंत्रों के लिए किया जाता है। वाक्यांश सामान्यतः भौतिक प्रक्रियाओं के लिए [[अभियांत्रिकी]] में प्रयोग किया जाता है जिसमें [[प्रणाली]] के भीतर [[आणविक प्रसार]] और रासायनिक प्रजातियों के संवहन परिवहन सम्मलित होते हैं।
{{chemical engineering}}
{{confused|भार स्थानांतरण}}
 
मास ट्रांसफर एक स्थान से द्रव्यमान का शुद्ध संचलन है (सामान्यतः धारा, [[चरण (पदार्थ)]], अंश या घटक) से दूसरे स्थान पर होता है। बड़े पैमाने पर स्थानांतरण कई प्रक्रियाओं में होता है, जैसे [[अवशोषण (रसायन विज्ञान)]], [[वाष्पीकरण]], [[सुखाने]], [[वर्षा (रसायन विज्ञान)]], [[झिल्ली प्रौद्योगिकी]] और [[आसवन]]। मास ट्रांसफर का उपयोग विभिन्न वैज्ञानिक विषयों  के माध्यम से विभिन्न प्रक्रियाओं और तंत्रों के लिए किया जाता है। वाक्यांश सामान्यतः भौतिक प्रक्रियाओं के लिए [[अभियांत्रिकी]] में प्रयोग किया जाता है जिसमें [[प्रणाली]] के भीतर [[आणविक प्रसार]] और रासायनिक प्रजातियों के संवहन परिवहन सम्मलित होते हैं।


बड़े पैमाने पर स्थानांतरण प्रक्रियाओं के कुछ सामान्य उदाहरण एक तालाब से [[पानी]] का पृथ्वी के वायुमंडल में वाष्पीकरण, गुर्दे और यकृत में रक्त का शुद्धिकरण और शराब का आसवन है। औद्योगिक प्रक्रियाओं में, बड़े पैमाने पर स्थानांतरण संचालन में आसवन स्तंभों में रासायनिक घटकों को अलग करना, स्क्रबर या स्ट्रिपिंग जैसे अवशोषक, सक्रिय कार्बन बेड जैसे अवशोषक और [[तरल-तरल निष्कर्षण]] सम्मलित हैं। बड़े पैमाने पर स्थानांतरण अधिकांशतः अतिरिक्त परिवहन घटनाओं से जुड़ा होता है, उदाहरण के लिए औद्योगिक [[शीतलन टॉवर]] में। ये टावर गर्म पानी को हवा के संपर्क में प्रवाहित करने की अनुमति देकर बड़े पैमाने पर स्थानांतरण को गर्म करते हैं। जल वाष्प के रूप में इसकी कुछ सामग्री को बाहर निकालकर पानी को ठंडा किया जाता है।
बड़े पैमाने पर स्थानांतरण प्रक्रियाओं के कुछ सामान्य उदाहरण एक तालाब से [[पानी]] का पृथ्वी के वायुमंडल में वाष्पीकरण, गुर्दे और यकृत में रक्त का शुद्धिकरण और शराब का आसवन है। औद्योगिक प्रक्रियाओं में, बड़े पैमाने पर स्थानांतरण संचालन में आसवन स्तंभों में रासायनिक घटकों को अलग करना, स्क्रबर या स्ट्रिपिंग जैसे अवशोषक, सक्रिय कार्बन बेड जैसे अवशोषक और [[तरल-तरल निष्कर्षण]] सम्मलित हैं। बड़े पैमाने पर स्थानांतरण अधिकांशतः अतिरिक्त परिवहन घटनाओं से जुड़ा होता है, उदाहरण के लिए औद्योगिक [[शीतलन टॉवर]] में। ये टावर गर्म पानी को हवा के संपर्क में प्रवाहित करने की अनुमति देकर बड़े पैमाने पर स्थानांतरण को गर्म करते हैं। जल वाष्प के रूप में इसकी कुछ सामग्री को बाहर निकालकर पानी को ठंडा किया जाता है।


== [[खगोल भौतिकी]] ==
== खगोल भौतिकी ==


खगोल भौतिकी में, द्रव्यमान स्थानांतरण वह प्रक्रिया है जिसके  के माध्यम से गुरुत्वाकर्षण रूप से एक पिंड से बंधा हुआ पदार्थ, सामान्यतः एक [[तारा]], अपने [[रोश लोब]] को भरता है और एक दूसरे पिंड से गुरुत्वाकर्षण से बंध जाता है, सामान्यतः एक कॉम्पैक्ट ऑब्जेक्ट (सफेद बौना, [[न्यूट्रॉन स्टार]] या [[ब्लैक होल]]), और अंततः उस पर अर्जित किया जाता है। यह [[बाइनरी स्टार]] में एक सामान्य घटना है, और कुछ प्रकार के [[सुपरनोवा]] और [[पलसर]] में महत्वपूर्ण भूमिका निभा सकता है।
खगोल भौतिकी में, द्रव्यमान स्थानांतरण वह प्रक्रिया है जिसके  के माध्यम से गुरुत्वाकर्षण रूप से एक पिंड से बंधा हुआ पदार्थ, सामान्यतः एक [[तारा]], अपने [[रोश लोब]] को भरता है और एक दूसरे पिंड से गुरुत्वाकर्षण से बंध जाता है, सामान्यतः एक कॉम्पैक्ट ऑब्जेक्ट (सफेद बौना, [[न्यूट्रॉन स्टार]] या [[ब्लैक होल]]), और अंततः उस पर अर्जित किया जाता है। यह [[बाइनरी स्टार]] में एक सामान्य घटना है, और कुछ प्रकार के [[सुपरनोवा]] और [[पलसर]] में महत्वपूर्ण भूमिका निभा सकता है।


== [[केमिकल इंजीनियरिंग]] ==
== केमिकल इंजीनियरिंग ==


मास ट्रांसफर केमिकल इंजीनियरिंग समस्याओं में व्यापक आवेदन पाता है। इसका उपयोग रिएक्शन इंजीनियरिंग, सेपरेशन इंजीनियरिंग, हीट ट्रांसफर इंजीनियरिंग और केमिकल इंजीनियरिंग के कई अन्य उप-विषयों जैसे इलेक्ट्रोकेमिकल इंजीनियरिंग में किया जाता है।<ref>Electrochimica Acta 100 (2013) 78-84. https://doi.org/10.1016/j.electacta.2013.03.134</ref>
मास ट्रांसफर केमिकल इंजीनियरिंग समस्याओं में व्यापक आवेदन पाता है। इसका उपयोग रिएक्शन इंजीनियरिंग, सेपरेशन इंजीनियरिंग, हीट ट्रांसफर इंजीनियरिंग और केमिकल इंजीनियरिंग के कई अन्य उप-विषयों जैसे इलेक्ट्रोकेमिकल इंजीनियरिंग में किया जाता है।<ref>Electrochimica Acta 100 (2013) 78-84. https://doi.org/10.1016/j.electacta.2013.03.134</ref>
Line 35: Line 31:


== ऊष्मा, द्रव्यमान और संवेग स्थानांतरण के बीच समानता ==
== ऊष्मा, द्रव्यमान और संवेग स्थानांतरण के बीच समानता ==
{{main|परिवहन घटनाएं (इंजीनियरिंग और भौतिकी)|l1=परिवहन घटनाएं}}
{{main|परिवहन घटनाएं (इंजीनियरिंग और भौतिकी)|l1 = परिवहन घटनाएं}}


न्यूटोनियन तरल पदार्थ के आणविक स्थानांतरण समीकरण, न्यून रेनॉल्ड्स संख्या ([[स्टोक्स प्रवाह]]) पर द्रव गति के लिए न्यूटन का नियम, ऊष्मा चालन, ताप के लिए फूरियर का नियम, और प्रसार के लिए फ़िक के नियम अनुमानित अंतर समीकरणों में सामान्यतः उपयोग किए जाने वाले हैं।<ref name="basictext"/> द्रव्यमान के लिए फ़िक का नियम बहुत समान होता है, क्योंकि वे सभी [[रैखिक सन्निकटन]] होते हैं एक प्रवाह क्षेत्र में संरक्षित मात्रा के परिवहन के लिए। संवेग, ऊष्मा और द्रव्यमान स्थानांतरण के लिए सामान्यतः उपयोग किए जाने वाले अनुमानित अंतर समीकरणों में उल्लेखनीय समानताएँ होती हैं।
न्यूटोनियन तरल पदार्थ के आणविक स्थानांतरण समीकरण, न्यून रेनॉल्ड्स संख्या ([[स्टोक्स प्रवाह]]) पर द्रव गति के लिए न्यूटन का नियम, ऊष्मा चालन, ताप के लिए फूरियर का नियम, और प्रसार के लिए फ़िक के नियम अनुमानित अंतर समीकरणों में सामान्यतः उपयोग किए जाने वाले हैं।<ref name="basictext"/> द्रव्यमान के लिए फ़िक का नियम बहुत समान होता है, क्योंकि वे सभी [[रैखिक सन्निकटन]] होते हैं एक प्रवाह क्षेत्र में संरक्षित मात्रा के परिवहन के लिए। संवेग, ऊष्मा और द्रव्यमान स्थानांतरण के लिए सामान्यतः उपयोग किए जाने वाले अनुमानित अंतर समीकरणों में उल्लेखनीय समानताएँ होती हैं।
Line 58: Line 54:
* [[थर्मोडिफ्यूजन]]
* [[थर्मोडिफ्यूजन]]
* [[अभिवृद्धि (खगोल भौतिकी)]]
* [[अभिवृद्धि (खगोल भौतिकी)]]
{{Chemical engg}}
{{DEFAULTSORT:Mass Transfer}}


{{DEFAULTSORT:Mass Transfer}}
श्रेणी:परिवहन घटनाएं
श्रेणी:यांत्रिक अभियांत्रिकी
श्रेणी:हीटिंग, वेंटिलेशन और एयर कंडीशनिंग


[[Category:Articles with hatnote templates targeting a nonexistent page|Mass Transfer]]
[[Category:Articles with hatnote templates targeting a nonexistent page|Mass Transfer]]

Latest revision as of 16:08, 20 October 2023

द्रव्यमान अन्तरण (मास ट्रांसफर) एक स्थान से द्रव्यमान का शुद्ध संचलन है (सामान्यतः धारा, चरण (पदार्थ), अंश या घटक) से दूसरे स्थान पर होता है। बड़े पैमाने पर स्थानांतरण कई प्रक्रियाओं में होता है, जैसे अवशोषण (रसायन विज्ञान), वाष्पीकरण, सुखाने, वर्षा (रसायन विज्ञान), झिल्ली प्रौद्योगिकी और आसवन है। मास ट्रांसफर का उपयोग विभिन्न वैज्ञानिक विषयों के माध्यम से विभिन्न प्रक्रियाओं और तंत्रों के लिए किया जाता है। वाक्यांश सामान्यतः भौतिक प्रक्रियाओं के लिए अभियांत्रिकी में प्रयोग किया जाता है जिसमें प्रणाली के भीतर आणविक प्रसार और रासायनिक प्रजातियों के संवहन परिवहन सम्मलित होते हैं।

बड़े पैमाने पर स्थानांतरण प्रक्रियाओं के कुछ सामान्य उदाहरण एक तालाब से पानी का पृथ्वी के वायुमंडल में वाष्पीकरण, गुर्दे और यकृत में रक्त का शुद्धिकरण और शराब का आसवन है। औद्योगिक प्रक्रियाओं में, बड़े पैमाने पर स्थानांतरण संचालन में आसवन स्तंभों में रासायनिक घटकों को अलग करना, स्क्रबर या स्ट्रिपिंग जैसे अवशोषक, सक्रिय कार्बन बेड जैसे अवशोषक और तरल-तरल निष्कर्षण सम्मलित हैं। बड़े पैमाने पर स्थानांतरण अधिकांशतः अतिरिक्त परिवहन घटनाओं से जुड़ा होता है, उदाहरण के लिए औद्योगिक शीतलन टॉवर में। ये टावर गर्म पानी को हवा के संपर्क में प्रवाहित करने की अनुमति देकर बड़े पैमाने पर स्थानांतरण को गर्म करते हैं। जल वाष्प के रूप में इसकी कुछ सामग्री को बाहर निकालकर पानी को ठंडा किया जाता है।

खगोल भौतिकी

खगोल भौतिकी में, द्रव्यमान स्थानांतरण वह प्रक्रिया है जिसके के माध्यम से गुरुत्वाकर्षण रूप से एक पिंड से बंधा हुआ पदार्थ, सामान्यतः एक तारा, अपने रोश लोब को भरता है और एक दूसरे पिंड से गुरुत्वाकर्षण से बंध जाता है, सामान्यतः एक कॉम्पैक्ट ऑब्जेक्ट (सफेद बौना, न्यूट्रॉन स्टार या ब्लैक होल), और अंततः उस पर अर्जित किया जाता है। यह बाइनरी स्टार में एक सामान्य घटना है, और कुछ प्रकार के सुपरनोवा और पलसर में महत्वपूर्ण भूमिका निभा सकता है।

केमिकल इंजीनियरिंग

मास ट्रांसफर केमिकल इंजीनियरिंग समस्याओं में व्यापक आवेदन पाता है। इसका उपयोग रिएक्शन इंजीनियरिंग, सेपरेशन इंजीनियरिंग, हीट ट्रांसफर इंजीनियरिंग और केमिकल इंजीनियरिंग के कई अन्य उप-विषयों जैसे इलेक्ट्रोकेमिकल इंजीनियरिंग में किया जाता है।[1]

सामान्यतः बड़े पैमाने पर स्थानांतरण के लिए प्रेरक बल रासायनिक क्षमता में अंतर होता है, जब इसे परिभाषित किया जा सकता है, क्योंकि अन्य ऊष्मप्रवैगिकी द्रव्यमान के प्रवाह को जोड़ सकते हैं और साथ ही इसे चला सकते हैं। रासायनिक प्रजातियों में उच्च रासायनिक क्षमता वाले क्षेत्रों से कम रासायनिक क्षमता वाले क्षेत्रों में जाने से प्रेरक बल का मात्रा अधिक होता है। इस प्रकार,बड़े पैमाने पर स्थानांतरण की अधिकतम सीमा सामान्यतः उस बिंदु से निर्धारित होती है जहाँ रासायनिक क्षमता एक समान होती है। एकल चरण-प्रणालियों के लिए, यह सामान्यतः पूरे चरण में समान एकाग्रता में अनुवाद करता है,क्योंकि अधिकांश रासायनिक प्रजातियाँ एक समान रासायनिक क्षमता तक पहुँचती हैं, जब अधिकांश रासायनिक प्रजातियों को पसंदीदा चरण में अवशोषित कर लिया जाता है। इस प्रकार, तरल-तरल निष्कर्षण के रूप में।

बड़े पैमाने पर स्थानांतरण की वास्तविक दर अतिरिक्त कारकों पर निर्भर करती है जिसमें प्रणाली के भीतर प्रवाह पैटर्न और प्रत्येक चरण में प्रजातियों के बड़े पैमाने पर प्रसार सम्मलित हैं। यह दर समग्र प्रक्रिया के लिए बड़े पैमाने पर स्थानांतरण गुणांक की गणना और आवेदन के माध्यम से निर्धारित की जा सकती है। ये बड़े पैमाने पर स्थानांतरण गुणांक सामान्यतः आयाम रहित मात्राओं के संदर्भ में प्रकाशित होते हैं, जिनमें अधिकांशतः पेक्लेट संख्याएं, रेनॉल्ड्स संख्याएं, शेरवुड संख्याएं और श्मिट संख्याएं सम्मलित होती हैं। चूँकि थर्मोडायनेमिक संतुलन किसी दिए गए बड़े पैमाने पर स्थानांतरण ऑपरेशन की सैद्धांतिक सीमा निर्धारित करता है, बड़े पैमाने पर स्थानांतरण की वास्तविक दर अतिरिक्त कारकों पर निर्भर करती है।[2][3][4]


ऊष्मा, द्रव्यमान और संवेग स्थानांतरण के बीच समानता

न्यूटोनियन तरल पदार्थ के आणविक स्थानांतरण समीकरण, न्यून रेनॉल्ड्स संख्या (स्टोक्स प्रवाह) पर द्रव गति के लिए न्यूटन का नियम, ऊष्मा चालन, ताप के लिए फूरियर का नियम, और प्रसार के लिए फ़िक के नियम अनुमानित अंतर समीकरणों में सामान्यतः उपयोग किए जाने वाले हैं।[2] द्रव्यमान के लिए फ़िक का नियम बहुत समान होता है, क्योंकि वे सभी रैखिक सन्निकटन होते हैं एक प्रवाह क्षेत्र में संरक्षित मात्रा के परिवहन के लिए। संवेग, ऊष्मा और द्रव्यमान स्थानांतरण के लिए सामान्यतः उपयोग किए जाने वाले अनुमानित अंतर समीकरणों में उल्लेखनीय समानताएँ होती हैं।

उच्च रेनॉल्ड्स संख्या में, संवेग हस्तांतरण और द्रव्यमान तथा गर्मी हस्तांतरण के बीच सादृश्य नवियर-स्टोक्स समीकरण (या अधिक मौलिक रूप से, संवेग बल से संबंधित - गति के सामान्य समीकरण) की गैर-रेखीयता के कारण कम उपयोगी हो जाता है। बीच सादृश्य गर्मी और बड़े पैमाने पर स्थानांतरण के लिए अच्छा होता है, लेकिन इन तीन परिवहन प्रक्रियाओं के बीच सादृश्यता विकसित करने के लिए अधिक प्रयास किए गए हैं, जिससे किसी अन्य से किसी एक की भविष्यवाणी की अनुमति दी जा सके।

संदर्भ

  1. Electrochimica Acta 100 (2013) 78-84. https://doi.org/10.1016/j.electacta.2013.03.134
  2. 2.0 2.1 Welty, James R.; Wicks, Charles E.; Wilson, Robert Elliott (1976). Fundamentals of momentum, heat, and mass transfer (2 ed.). Wiley. ISBN 9780471022497.
  3. Bird, R.B.; Stewart, W.E.; Lightfoot, E.N. (2007). Transport Phenomena (2 ed.). Wiley.
  4. Taylor, R.; Krishna, R. (1993). मल्टीकंपोनेंट मास ट्रांसफर. Wiley.


यह भी देखें