वाष्प-तरल संतुलन

From Vigyanwiki

ऊष्मप्रवैगिकी और रासायनिक इंजीनियरिंग में, वाष्प-तरल संतुलन (वीएलई) वाष्प चरण और तरल चरण के बीच रासायनिक प्रजातियों के वितरण का वर्णन करता है।

विशेष रूप से ऊष्मागतिकीय संतुलन पर तरल के संपर्क में वाष्प की सांद्रता अधिकांश वाष्प दबाव के रूप में व्यक्त की जाती है, जो वाष्प के साथ कोई अन्य गैस (एस) उपस्थित होने पर आंशिक दबाव (कुल गैस दबाव का भाग) होता हैं। तरल का संतुलन वाष्प दबाव सामान्य रूप से तापमान पर दृढ़ता से निर्भर करता है। वाष्प-तरल संतुलन पर, कुछ सांद्रता में अलग-अलग घटकों वाले तरल में संतुलन वाष्प होगा जिसमें वाष्प घटकों के सांद्रता या आंशिक दबावों के सभी तरल घटक सांद्रता और तापमान के आधार पर कुछ मान होते हैं। इसका व्युत्क्रम भी सत्य है: यदि कुछ सांद्रता या आंशिक दबाव पर घटकों के साथ वाष्प अपने तरल के साथ वाष्प-तरल संतुलन में है, तो तरल में घटक सांद्रता वाष्प की सांद्रता और तापमान पर निर्भर करती है। तरल चरण में प्रत्येक घटक की संतुलन एकाग्रता अधिकांश वाष्प चरण में इसकी एकाग्रता (या वाष्प दबाव) से भिन्न होती है, किन्तु संबंध होता है। वीएलई एकाग्रता डेटा प्रयोगात्मक रूप से निर्धारित किया जा सकता है या राउल्ट के नियम, डाल्टन के नियम और हेनरी के नियम जैसे सिद्धांतों की सहायता से अनुमान लगाया जा सकता है।

इस प्रकार की वाष्प-तरल संतुलन जानकारी आसवन के लिए खंडित स्तंभ को डिजाइन करने में उपयोगी होती है, विशेष रूप से आंशिक आसवन , जो रासायनिक इंजीनियरों की विशेष विशेषता है।[1][2][3] आसवन प्रक्रिया है जिसका उपयोग संघनन के बाद उबलने (वाष्पीकरण) द्वारा मिश्रण में घटकों को अलग या आंशिक रूप से अलग करने के लिए किया जाता है। आसवन तरल और वाष्प चरणों में घटकों की सांद्रता में अंतर का लाभ उठाता है।

दो या दो से अधिक घटकों वाले मिश्रण में, प्रत्येक घटक की सांद्रता को अधिकांश मोल अंशों के रूप में व्यक्त किया जाता है। किसी विशेष चरण (या तो वाष्प या तरल चरण) में मिश्रण के दिए गए घटक का मोल अंश उस चरण (पदार्थ) में उस घटक के मोल (इकाई) की संख्या है जो सभी घटकों के मोल्स की कुल संख्या से विभाजित होता है। उस चरण में।

बाइनरी मिश्रण वे होते हैं जिनमें दो घटक होते हैं। त्रि-घटक मिश्रण को त्रिअंगी मिश्रण कहा जाता है। और भी अधिक घटकों वाले मिश्रण के लिए वीएलई डेटा हो सकता है, किन्तु ऐसे डेटा को ग्राफ़िक रूप से दिखाना अधिकांश कठिन होता है। वीएलई डेटा कुल दबाव का कार्य है, जैसे 1 वातावरण या दबाव पर प्रक्रिया आयोजित की जाती है।

जब तापमान इस प्रकार पहुँच जाता है कि तरल घटकों के संतुलन वाष्प दबावों का योग प्रणाली के कुल दबाव के बराबर हो जाता है (यह अन्यथा छोटा होता है), तब तरल से उत्पन्न वाष्प के बुलबुले उस गैस को विस्थापित करना शुरू कर देते हैं जो बनाए रख रही थी समग्र दबाव, और मिश्रण को उबालने के लिए कहा जाता है। इस तापमान को दिए गए दबाव पर तरल मिश्रण का क्वथनांक कहा जाता है। (यह माना जाता है कि उबलने के साथ होने वाले विशिष्ट आयतन परिवर्तनों को समायोजित करने के लिए प्रणाली की कुल मात्रा को समायोजित करके कुल दबाव को स्थिर रखा जाता है।) 1 एटीएम के समग्र दबाव पर क्वथनांक को तरल मिश्रण का सामान्य क्वथनांक कहा जाता है।

वाष्प-तरल संतुलन का ऊष्मागतिकीय विवरण

ऊष्मप्रवैगिकी का क्षेत्र वर्णन करता है कि वाष्प तरल संतुलन कब संभव है और इसके गुण क्या हैं। अधिकांश विश्लेषण इस बात पर निर्भर करता है कि क्या वाष्प और तरल में एक घटक होता है, या यदि वे मिश्रण होते हैं।

शुद्ध (एकल-घटक) प्रणाली

यदि तरल और वाष्प शुद्ध हैं, जिसमें वे केवल आणविक घटक होते हैं और कोई अशुद्धियाँ नहीं होती हैं, तो दो चरणों के बीच संतुलन की स्थिति को निम्नलिखित समीकरणों द्वारा वर्णित किया जाता है:

;
; और

जहाँ और तरल और वाष्प के अन्दर दबाव हैं, और तरल और वाष्प के अन्दर तापमान हैं, और और क्रमशः तरल और वाष्प के अन्दर मोलर गिब्स मुक्त ऊर्जा (पदार्थ की प्रति मात्रा ऊर्जा की इकाइयां) हैं।[4] दूसरे शब्दों में, तापमान, दबाव और मोल गिब्स मुक्त ऊर्जा दो चरणों के बीच समान होती है जब वे संतुलन में होते हैं।

एक शुद्ध प्रणाली में वाष्प तरल संतुलन की स्थिति को व्यक्त करने के लिए एक समकक्ष, अधिक सामान्य विधि क्षणभंगुर की अवधारणा का उपयोग कर रहा है। इस दृष्टिकोण के तहत संतुलन को निम्नलिखित समीकरण द्वारा वर्णित किया गया है

जहाँ और प्रणाली तापमान Ts और दबाव Ps पर क्रमशः तरल और वाष्प की उग्रता हैं।[5] मात्रा का उपयोग करना अधिकांश सुविधाजनक होता है, जो एक आदर्श गैस के लिए 1 है जो आयाम रहित फुगसिटी गुणांक है।

बहुघटक प्रणाली

बहुघटक प्रणाली में, जहां वाष्प और तरल में से अधिक प्रकार के यौगिक होते हैं, संतुलन स्थिति का वर्णन करना अधिक जटिल होता है। सभी घटकों के लिए i प्रणाली में, दो चरणों के बीच संतुलन स्थिति को निम्नलिखित समीकरणों द्वारा वर्णित किया गया है:

;
; और

जहाँ P और T प्रत्येक चरण के लिए तापमान और दबाव हैं, और और प्रत्येक चरण के लिए क्रमशः तरल और वाष्प के अन्दर आंशिक मोल गिब्स मुक्त ऊर्जा को रासायनिक क्षमता (पदार्थ की मात्रा प्रति ऊर्जा की इकाइयां) भी कहा जाता है। आंशिक मोल गिब्स मुक्त ऊर्जा द्वारा परिभाषित किया गया है:

जहाँ G (व्यापक संपत्ति) गिब्स मुक्त ऊर्जा है, और ni घटक के पदार्थ की मात्रा i है।

क्वथनांक आरेख

निश्चित समग्र दबाव पर बाइनरी मिश्रण वीएलई डेटा, जैसे कि 1 एटीएम, विभिन्न तापमानों पर उबलने पर मोल अंश वाष्प और तरल सांद्रता दिखाते हुए द्वि-आयामी आलेखी के रूप में दिखाया जा सकता है जिसे क्वथनांक-बिंदु आरेख कहा जाता है। मिश्रण में घटक 1 के मोल अंश को प्रतीक x1 द्वारा दर्शाया जा सकता है। घटक 2 का मोल अंश, x2 द्वारा दर्शाया गया है, एक द्विआधारी मिश्रण में x1 से निम्नानुसार संबंधित है:

x1 + x2 = 1

n घटकों के साथ सामान्य रूप से बहु-घटक मिश्रण में, यह बन जाता है:

x1 + x2 + ⋯ + xn = 1
क्वथनांक आरेख

पूर्ववर्ती संतुलन समीकरण सामान्यतः प्रत्येक चरण (तरल या वाष्प) के लिए व्यक्तिगत रूप से प्रायुक्त होते हैं, किन्तु परिणाम को आरेख में प्लॉट किया जा सकता है। एक द्विआधारी क्वथनांक आरेख में, तापमान (T ) (या कभी-कभी दबाव) रेखांकन बनाम x1 को चित्रित किया जाता है। किसी दिए गए तापमान (या दबाव) पर जहां दोनों चरण उपस्थित होते हैं, निश्चित मोल अंश के साथ वाष्प निश्चित मोल अंश वाले तरल के साथ संतुलन में होता है। दो मोल अंश अधिकांश भिन्न होते हैं। ये वाष्प और तरल मोल अंश ही क्षैतिज समताप पर दो बिंदुओं द्वारा दर्शाए जाते हैं (स्थिर T ) पंक्ति। जब तापमान बनाम वाष्प और तरल मोल अंशों की पूरी श्रृंखला को रेखांकन किया जाता है, तो दो (सामान्यतः घुमावदार) रेखाएँ प्राप्त होती हैं। नीचे वाला, विभिन्न तापमानों पर उबलते तरल के मोल अंश का प्रतिनिधित्व करता है, जिसे बुद्बुद बिंदु वक्र कहा जाता है। विभिन्न तापमानों पर वाष्प के मोल अंश का प्रतिनिधित्व करने वाले ऊपरी भाग को ओस बिंदु वक्र कहा जाता है।[1]

ये दो वक्र आवश्यक रूप से मिलते हैं जहां मिश्रण विशुद्ध रूप से घटक बन जाता है, अर्थात् जहां x1 = 0 (और x2 = 1, शुद्ध घटक 2) या x1 = 1 (और x2 = 0, शुद्ध घटक 1)। उन दो बिंदुओं पर तापमान दो शुद्ध घटकों में से प्रत्येक के क्वथनांक के अनुरूप होता है।

पदार्थों के कुछ युग्मों के लिए, दो वक्र भी किसी बिंदु पर सख्ती से मेल खाते हैं x1 = 0 और x1 = 1. जब वे मिलते हैं, वे स्पर्श से मिलते हैं; किसी दिए गए संघटन के लिए ओसांक तापमान हमेशा क्वथनांक तापमान से ऊपर होता है जब वे बराबर नहीं होते हैं। मिलन बिंदु को पदार्थों के उस विशेष जोड़े के लिए स्थिरक्वथनांकी कहा जाता है। यह स्थिरक्वथनांकी तापमान और स्थिरक्वाथी रचना की विशेषता है, जिसे अधिकांश मोल अंश के रूप में व्यक्त किया जाता है। अधिकतम-उबलते स्थिरक्वाथी हो सकते हैं, जहां स्थिरक्वाथी का तापमान उबलते वक्रों में अधिकतम होता है, या न्यूनतम-उबलने वाले स्थिरक्वाथी हो सकते हैं, जहां स्थिरक्वाथी का तापमान क्वथनांकों में न्यूनतम होता है।

यदि कोई उबलते बिंदु आरेख के रूप में तीन-घटक मिश्रण के लिए वीएलई डेटा का प्रतिनिधित्व करना चाहता है, तो दो चर के समारोह का ग्राफ | त्रि-आयामी ग्राफ का उपयोग किया जा सकता है। संरचना के मोल अंशों का प्रतिनिधित्व करने के लिए दो आयामों का उपयोग किया जाएगा, और तीसरा आयाम तापमान होगा। दो आयामों का उपयोग करते हुए, रचना को समबाहु त्रिभुज के रूप में दर्शाया जा सकता है जिसमें प्रत्येक कोना शुद्ध घटकों में से का प्रतिनिधित्व करता है। त्रिभुज के किनारे किनारों के प्रत्येक छोर पर दो घटकों के मिश्रण का प्रतिनिधित्व करते हैं। त्रिभुज के अंदर कोई भी बिंदु तीनों घटकों के मिश्रण की संरचना का प्रतिनिधित्व करता है। प्रत्येक घटक का मोल अंश उस बिंदु के अनुरूप होगा जहां बिंदु उस घटक के कोने से शुरू होने वाली रेखा के साथ स्थित है और विपरीत किनारे पर लंबवत है। बुद्बुद बिंदु और ओस बिंदु डेटा त्रिकोणीय प्रिज्म के अंदर घुमावदार सतह बन जाएगा, जो ऊर्ध्वाधर तापमान अक्षों पर तीन उबलते बिंदुओं को जोड़ता है। इस त्रिकोणीय प्रिज्म का प्रत्येक चेहरा संबंधित बाइनरी मिश्रण के लिए द्वि-आयामी क्वथनांक आरेख का प्रतिनिधित्व करेगा। उनकी त्रि-आयामी जटिलता के कारण, ऐसे क्वथनांक आरेख बहुत कम देखने को मिलते हैं। वैकल्पिक रूप से, त्रि-आयामी घुमावदार सतहों को माप पर आइसो-ऊंचाई रेखाओं के समान स्नातक अंतराल पर घुमावदार समताप रेखा के उपयोग से द्वि-आयामी ग्राफ पर प्रदर्शित किया जा सकता है। बुद्बुद बिंदु सतह के लिए इस प्रकार के दो आयामी ग्राफ समुच्चय और ओस बिंदु सतह के लिए एक और समुच्चय पर ऐसी समताप रेखा के दो समुच्चय की आवश्यकता होती है।

K मान और सापेक्ष अस्थिरता मान

K मान आरेख (UNIQUAC बेस्ट-फ़िट कर्व के साथ), क्लोरोफार्म /मेथनॉल का मिश्रण

किसी दिए गए रासायनिक प्रजातियों की तरल और वाष्प चरणों के बीच अधिमानतः स्वयं को विभाजित करने की प्रवृत्ति हेनरी का नियम स्थिरांक है। चार या अधिक घटकों के मिश्रण के लिए वीएलई डेटा हो सकता है, किन्तु इस प्रकार के क्वथनांक आरेख को सारणीबद्ध या चित्रमय रूप में दिखाना कठिन है। इस तरह के बहु-घटक मिश्रणों के साथ-साथ बाइनरी मिश्रणों के लिए, वाष्प-तरल संतुलन डेटा को K मान (वाष्प-तरल वितरण अनुपात)[1][2] द्वारा परिभाषित किया गया है।

जहाँ yi और xi क्रमश: y और x चरणों में घटक i के मोल अंश हैं।

राउल्ट के नियम के लिए

संशोधित राउल्ट के नियम के लिए

जहाँ गतिविधि गुणांक है, Pi आंशिक दबाव है और P दबाव है।

अनुपात के मान Ki तापमान, दबाव और चरण रचनाओं के संदर्भ में अनुभवजन्य या सैद्धांतिक रूप से समीकरणों, तालिकाओं या ग्राफ़ जैसे डीप्रीस्टर चार्ट के रूप में सहसंबद्ध हैं।[6]

प्रकाश हाइड्रोकार्बन कम तापमान रेंज की प्रणालियों के लिए के-मान
प्रकाश हाइड्रोकार्बन उच्च तापमान रेंज की प्रणालियों के लिए के-मान

बाइनरी मिश्रण के लिए, का अनुपात K दो घटकों के मानों को सापेक्ष अस्थिरता कहा जाता है जिसे α द्वारा निरूपित किया जाता है

जो दो घटकों को अलग करने की सापेक्ष आसानी या कठिनाई का उपाय है। बड़े पैमाने पर औद्योगिक आसवन शायद ही कभी किया जाता है यदि वाष्पशील घटक होने के साथ सापेक्ष अस्थिरता 1.05 से कम हो i और j कम अस्थिर घटक है।[2]

K मानों का व्यापक रूप से बहुघटक मिश्रण आसवन के लिए निरंतर आसवन स्तंभों की डिजाइन गणना में उपयोग किया जाता है।

वाष्प-तरल संतुलन आरेख

वाष्प-तरल संतुलन आरेख

बाइनरी मिश्रण में प्रत्येक घटक के लिए, वाष्प-तरल संतुलन आरेख बना सकता है। ऐसा आरेख क्षैतिज अक्ष पर तरल मोल अंश और ऊर्ध्वाधर अक्ष पर वाष्प मोल अंश का रेखांकन करेगा। ऐसे वीएलई आरेखों में, घटक 1 और 2 के लिए तरल मोल अंशों को क्रमशः x1 और x2 के रूप में दर्शाया जा सकता है, और संबंधित घटकों के वाष्प मोल अंशों को सामान्यतः y1 और y2 दर्शाया जाता है।[2] इसी प्रकार इन वीएलई आरेखों में द्विआधारी मिश्रण के लिए:

x1 + x2 = 1 और y1 + y2 = 1

इस प्रकार के वीएलई आरेख संदर्भ के लिए (x1 = 0, y1 = 0) शीर्ष से (x1 = 1, y1 = 1) शीर्ष तक चलने वाली एक विकर्ण रेखा के साथ वर्गाकार होते हैं।

इस प्रकार के वीएलई आरेखों का उपयोग मैककेबे-थिले विधि में किसी दिए गए संघटन बाइनरी फीड मिश्रण को आसवन अंश और बॉटम्स अंश में आसवन करने के लिए आवश्यक संतुलन चरणों (या सैद्धांतिक प्लेटो) की संख्या निर्धारित करने के लिए किया जाता है। सैद्धांतिक प्लेट की तुलना में आसवन स्तंभ में प्रत्येक ट्रे की अपूर्ण दक्षता को ध्यान में रखते हुए सुधार भी किए जा सकते हैं।

राउल्ट का नियम

उबलने और उच्च तापमान पर व्यक्तिगत घटक आंशिक दबावों का योग समग्र दबाव के बराबर हो जाता है, जिसे इस रूप में दर्शाया जा सकता है।

ऐसी परिस्थितियों में, डाल्टन का नियम इस प्रकार प्रभावी होगा:

Ptot = P1 + P2 + ...

फिर वाष्प चरण में प्रत्येक घटक के लिए:

y1 = P1 / Ptot,   y2 = P2 / Ptot, ... आदि।

जहां P1 = घटक 1 का आंशिक दबाव, = घटक 2 का आंशिक दबाव, आदि।

राउल्ट का नियम उन घटकों के मिश्रण के लिए लगभग मान्य है जिनके बीच अन्य घटकों द्वारा तनुकरण के प्रभाव के अलावा बहुत कम अन्योन्यक्रिया होती है। ऐसे मिश्रणों के उदाहरणों में एल्केन्स के मिश्रण शामिल हैं, जो गैर-रासायनिक ध्रुवीकरण हैं, कई प्रकार से अपेक्षाकृत निष्क्रिय रासायनिक यौगिक हैं, इसलिए अणुओं के बीच थोड़ा आकर्षण या प्रतिकर्षण होता है। राउल्ट का नियम कहता है कि मिश्रण में 1, 2, आदि घटकों के लिए:

P1 = x1P o1,   P2 = x2P o2, ... आदि

जहां Po1, Po2, आदि घटकों 1, 2, आदि के वाष्प दाब हैं, जब वे शुद्ध होते हैं, और x1, x2, आदि तरल में संबंधित घटक के मोल अंश होते हैं।

पहले खंड से याद करें कि द्रवों का वाष्प दाब तापमान पर अत्यधिक निर्भर होता है। इस प्रकार पीo प्रत्येक घटक के लिए शुद्ध वाष्प दबाव तापमान (T) का कार्य है: उदाहरण के लिए, सामान्यतः शुद्ध तरल घटक के लिए, क्लौसियस-क्लैप्रोन संबंध का उपयोग यह अनुमान लगाने के लिए किया जा सकता है कि वाष्प दबाव तापमान के कार्य के रूप में कैसे भिन्न होता है। यह प्रत्येक आंशिक दबाव को तापमान पर निर्भर करता है चाहे राउल्ट का नियम प्रायुक्त हो या नहीं। जब राउल्ट का नियम मान्य होता है तो ये भाव बन जाते हैं:

P1T = x1P o1T,   P2T = x2P o2T, ... आदि

उबलते तापमान पर यदि राउल्ट का नियम प्रायुक्त होता है, तो कुल दबाव बन जाता है:

Ptot = x1P o1T + x2P o2T + ... आदि

किसी दिए गए पी परtot जैसे 1 atm और दी गई तरल संरचना, तरल मिश्रण का क्वथनांक या बुद्बुद बिंदु देने के लिए T को हल किया जा सकता है, चूँकि T का समाधान गणितीय रूप से विश्लेषणात्मक नहीं हो सकता है (यानी, संख्यात्मक समाधान या सन्निकटन की आवश्यकता हो सकती है)। किसी दिए गए Ptot पर बाइनरी मिश्रण के लिए, बुद्बुद बिंदु T x1 का कार्य बन सकता है (या x2) और यह फ़ंक्शन द्वि-आयामी ग्राफ़ पर बाइनरी क्वथनांक आरेख की तरह दिखाया जा सकता है।

उबलते तापमान पर यदि राउल्ट का नियम प्रायुक्त होता है, तो इस खंड में कई पूर्ववर्ती समीकरणों को तरल मोल अंशों और तापमान के कार्य के रूप में वाष्प मोल अंशों के लिए निम्नलिखित भाव देने के लिए जोड़ा जा सकता है:

y1 = x1P o1T / Ptot,   y2 = x2P o2T / Ptot, ... आदि

मोल अंशों के संदर्भ में बार बुद्बुद बिंदु टी तरल संरचना के समारोह के रूप में निर्धारित किया गया है, इन मानों को मोल अंशों के संदर्भ में संबंधित वाष्प रचनाओं को प्राप्त करने के लिए उपरोक्त समीकरणों में डाला जा सकता है। जब यह तरल मोल अंशों और उनके संबंधित तापमानों की पूरी श्रृंखला पर समाप्त हो जाता है, तो वाष्प संघटन मोल अंशों का तापमान T फ़ंक्शन प्रभावी रूप से प्राप्त होता है। यह फलन प्रभावी रूप से वाष्प संघटन के ओस बिंदु T फलन के रूप में कार्य करता है।

बाइनरी मिश्रण के स्थिति में, x2 = 1 - x1 और उपरोक्त समीकरणों को इस प्रकार व्यक्त किया जा सकता है:

y1 = x1P o1T / Ptot, और
y2 = (1  −  x1) P o2T / Ptot

कई प्रकार के मिश्रणों के लिए, विशेष रूप से जहां केवल कमजोर पड़ने के प्रभाव से परे घटकों के बीच परस्पर क्रिया होती है, राउल्ट का नियम क्वथनांक या वीएलई आरेखों में घटता के आकार को निर्धारित करने के लिए अच्छी तरह से काम नहीं करता है। यहां तक ​​कि ऐसे मिश्रणों में, सामान्यतः अधिकांश बिंदुओं पर वाष्प और तरल संतुलन सांद्रता में अंतर होता है, और आसवन अधिकांश कम से कम आंशिक रूप से घटकों को अलग करने के लिए उपयोगी होता है। ऐसे मिश्रणों के लिए, अनुभवजन्य डेटा का उपयोग सामान्यतः ऐसे क्वथनांक और वीएलई आरेखों को निर्धारित करने में किया जाता है। रासायनिक अभियंता ने विभिन्न प्रकार के मिश्रणों के लिए वीएलई डेटा को सहसंबंधित करने और/या भविष्यवाणी करने के लिए समीकरण विकसित करने की प्रयास में अधिक शोध किया है जो राउल्ट के नियम का अच्छी तरह से पालन नहीं करते हैं।

यह भी देखें

बाहरी संबंध


संदर्भ

  1. Jump up to: 1.0 1.1 1.2 Kister, Henry Z. (1992). आसवन डिजाइन (1st ed.). McGraw-hill. ISBN 978-0-07-034909-4.
  2. Jump up to: 2.0 2.1 2.2 2.3 Perry, R.H.; Green, D.W., eds. (1997). पेरी की केमिकल इंजीनियर्स हैंडबुक (7th ed.). McGraw-hill. ISBN 978-0-07-049841-9.
  3. Seader, J. D. & Henley, Ernest J. (1998). पृथक्करण प्रक्रिया सिद्धांत. New York: Wiley. ISBN 978-0-471-58626-5.
  4. Balzhiser et al. (1972), Chemical Engineering Thermodynamics, p. 215.
  5. Balzhiser et al. (1972), Chemical Engineering Thermodynamics, p. 216, 218.
  6. DePriester, C.L., Chem. Eng. Prog. Symposium Series, 7, 49, pages 1–43