विद्युत तत्व: Difference between revisions
No edit summary |
(→प्रकार) |
||
(7 intermediate revisions by 5 users not shown) | |||
Line 1: | Line 1: | ||
'''विद्युत तत्व ''' वैचारिक अमूर्त हैं जो आदर्शित विद्युत घटक एस का प्रतिनिधित्व करते हैं<ref name="ThomasRosaToussaint_2016">{{cite book | title = The Analysis and Design of Linear Circuits | edition = 8 | first = Roland E. | last = Thomas | first2 = Albert J. | last2 = Rosa | first3 = Gregory J. | last3 = Toussaint | publisher = Wiley | year = 2016 | page = 17 | isbn = 978-1-119-23538-5 | quote = To distinguish between a device (the real thing) and its model (an approximate stand-in), we call the model a circuit element. Thus, a device is an article of hardware described in manufacturers’ catalogs and parts specifications. An element is a model described in textbooks on circuit analysis.}}</ref> जैसे कि कैपेसिटर एस, और परिपथ विश्लेषण है। विश्लेषण में उपयोग किया जाता है। सभी विद्युत नेटवर्क का विश्लेषण तारों के माध्यम से परस्पर जुड़े कई विद्युत तत्वों के रूप में किया जा सकता है। जहां तत्व मोटे तौर पर वास्तविक घटकों के अनुरूप होते हैं, प्रतिनिधित्व योजनाबद्ध आरेख या परिपथ आरेख के रूप में हो सकता है। इसे लम्पेड-एलिमेंट परिपथ मॉडल कहा जाता है। अन्य स्थितियों में, [[ वितरित-तत्व मॉडल ]] में नेटवर्क को मॉडल करने के लिए इन्फिनिटिमल तत्वों का उपयोग किया जाता है। | |||
''' विद्युत तत्व ''' वैचारिक अमूर्त हैं जो आदर्शित | |||
ये आदर्श विद्युत तत्व वास्तविक, भौतिक [[ इलेक्ट्रॉनिक घटक | | ये आदर्श विद्युत तत्व वास्तविक, भौतिक [[ इलेक्ट्रॉनिक घटक |इलेक्ट्रिकल या इलेक्ट्रॉनिक घटक]] का प्रतिनिधित्व करते हैं, किन्तु वे शारीरिक रूप से सम्मलित नहीं हैं और उन्हें आदर्श गुण माना जाता है, चूँकि वास्तविक विद्युत घटकों में आदर्श गुणों से कम होता है, उनके मूल्यों में अनिश्चितता की डिग्री और एक डिग्री और उनके मूल्यों में अनिश्चितता की डिग्री होती है और कुछ हद तक गैर -हद तक। एक वास्तविक परिपथ घटक के गैर -व्यवहार व्यवहार को मॉडल करने के लिए इसके कार्य को अनुमानित करने के लिए कई आदर्श विद्युत तत्वों के संयोजन की आवश्यकता हो सकती है। उदाहरण के लिए, एक प्रारंभ करनेवाला परिपथ तत्व को इंडक्शन माना जाता है, किन्तु कोई प्रतिरोध या समाई नहीं है, चूँकि एक वास्तविक प्रारंभ करनेवाला, तार का एक कॉइल, इसके अधिष्ठापन के अतिरिक्त कुछ प्रतिरोध है। यह एक प्रतिरोध के साथ श्रृंखला में एक आदर्श इंडक्शन तत्व के माध्यम से मॉडलिंग की जा सकती है। | ||
इलेक्ट्रिक तत्वों का उपयोग करके | इलेक्ट्रिक तत्वों का उपयोग करके परिपथ विश्लेषण घटकों का उपयोग करके कई व्यावहारिक विद्युत नेटवर्क को समझने के लिए उपयोगी है। जिस प्रकार से एक नेटवर्क अपने व्यक्तिगत तत्वों से प्रभावित होता है, उसका विश्लेषण करके यह अनुमान लगाना संभव है कि एक वास्तविक नेटवर्क कैसे व्यवहार करेगा। | ||
== प्रकार == | == प्रकार == | ||
परिपथ तत्वों को विभिन्न श्रेणियों में वर्गीकृत किया जा सकता है।एक यह है कि उन्हें कितने टर्मिनलों को अन्य घटकों से जोड़ना है: | |||
*''' '' एक-पोर्ट तत्व '''<nowiki/>'' '{{snd}}ये सबसे सरल घटकों का प्रतिनिधित्व करते हैं, जिनके पास कनेक्ट करने के लिए एकमात्र दो टर्मिनल हैं।उदाहरण प्रतिरोध, कैपेसिटेंस, इंडक्शन और डायोड हैं।'' | *''' '' एक-पोर्ट तत्व '''<nowiki/>'' '{{snd}}ये सबसे सरल घटकों का प्रतिनिधित्व करते हैं, जिनके पास कनेक्ट करने के लिए एकमात्र दो टर्मिनल हैं।उदाहरण प्रतिरोध, कैपेसिटेंस, इंडक्शन और डायोड हैं।'' | ||
*''' '' मल्टीपोर्ट एलिमेंट्स ''' '{{snd}}इनमें दो से अधिक टर्मिनल | *''' '' मल्टीपोर्ट एलिमेंट्स '''<nowiki/>'' '{{snd}}इनमें दो से अधिक टर्मिनल हैं। वे [[ पोर्ट (सर्किट थ्योरी) |पोर्ट]] एस नामक टर्मिनलों के कई जोड़े के माध्यम से बाहरी परिपथ से जुड़ते हैं।उदाहरण के लिए, तीन अलग-अलग वाइंडिंग वाले एक ट्रांसफार्मर में छह टर्मिनल होते हैं और इसे तीन-पोर्ट तत्व के रूप में आदर्श बनाया जा सकता है;प्रत्येक वाइंडिंग के सिरों को एक जोड़ी टर्मिनलों से जुड़ा होता है जो एक बंदरगाह का प्रतिनिधित्व करते हैं। | ||
** ''' '' दो-पोर्ट तत्व ''' '{{snd}}ये सबसे आम मल्टीपॉर्ट तत्व हैं, जिनमें दो बंदरगाहों से युक्त चार टर्मिनल हैं। | ** ''' '' दो-पोर्ट तत्व ''' '{{snd}}ये सबसे आम मल्टीपॉर्ट तत्व हैं, जिनमें दो बंदरगाहों से युक्त चार टर्मिनल हैं। | ||
तत्वों को सक्रिय और निष्क्रिय में भी विभाजित किया जा सकता है: | तत्वों को सक्रिय और निष्क्रिय में भी विभाजित किया जा सकता है: | ||
*''' '' सक्रिय तत्व ''' '' या ''' '' स्रोत ''' '{{snd}}ये ऐसे तत्व हैं जो इलेक्ट्रिकल [[ इलेक्ट्रिक पावर | | *''' '' सक्रिय तत्व ''' '' या ''' '' स्रोत '''<nowiki/>'' '{{snd}}ये ऐसे तत्व हैं जो इलेक्ट्रिकल [[ इलेक्ट्रिक पावर |पावर]] का स्रोत बना सकते हैं;उदाहरण [[ वोल्टेज स्रोत ]] एस और [[ वर्तमान स्रोत ]] एस हैं।उनका उपयोग आदर्श [[ बैटरी (बिजली) |बैटरी]] और [[बिजली की आपूर्ति]] का प्रतिनिधित्व करने के लिए किया जा सकता है।'' | ||
** ''' '' आश्रित स्रोत ''' '{{snd}}ये एक वोल्टेज या वर्तमान स्रोत के साथ दो-पोर्ट तत्व हैं जो टर्मिनलों की दूसरी जोड़ी पर वोल्टेज या वर्तमान के लिए आनुपातिक है।इनका उपयोग [[ एम्पलीफायर | के मॉडलिंग में किया जाता है, ]] घटक जैसे [[ ट्रांजिस्टर ]] एस, [[ वैक्यूम ट्यूब ]] एस, और | ** ''' '' आश्रित स्रोत '''<nowiki/>'' '{{snd}}ये एक वोल्टेज या वर्तमान स्रोत के साथ दो-पोर्ट तत्व हैं जो टर्मिनलों की दूसरी जोड़ी पर वोल्टेज या वर्तमान के लिए आनुपातिक है।इनका उपयोग [[ एम्पलीफायर | के मॉडलिंग में किया जाता है, ]] घटक जैसे [[ ट्रांजिस्टर ]] एस, [[ वैक्यूम ट्यूब ]]एस, और [[ओपी-एएमपी]] एस।'' | ||
*''' '' निष्क्रिय तत्व ''' '{{snd}}ये ऐसे तत्व हैं जिनमें ऊर्जा का स्रोत नहीं है, उदाहरण डायोड, प्रतिरोध, समाई और इंडक्शन हैं। | *''' '' निष्क्रिय तत्व ''' '{{snd}}ये ऐसे तत्व हैं जिनमें ऊर्जा का स्रोत नहीं है, उदाहरण डायोड, प्रतिरोध, समाई और इंडक्शन हैं। | ||
एक और अंतर रैखिक और नॉनलाइनियर के बीच है: | एक और अंतर रैखिक और नॉनलाइनियर के बीच है: | ||
*''' '' रैखिक तत्व '''<nowiki/>'' '{{snd}}ये ऐसे तत्व हैं जिनमें घटक संबंध, वोल्टेज और करंट के बीच संबंध, | *''' '' रैखिक तत्व '''<nowiki/>'' '{{snd}}ये ऐसे तत्व हैं जिनमें घटक संबंध, वोल्टेज और करंट के बीच संबंध, [[रैखिक फ़ंक्शन]] है। वे सुपरपोजिशन सिद्धांत का पालन करते हैं।रैखिक तत्वों के उदाहरण प्रतिरोध, कैपेसिटेंस, इंडक्शन और रैखिक आश्रित स्रोत हैं।एकमात्र रैखिक तत्वों के साथ परिपथ, रैखिक परिपथ एस, इंटरमॉड्यूलेशन विरूपण का कारण नहीं है, और [[लाप्लास ट्रांसफॉर्म]] जैसी शक्तिशाली गणितीय तकनीकों के साथ आसानी से विश्लेषण किया जा सकता है। | ||
*''' '' नॉनलाइनियर तत्व ''''' '{{snd}}ये ऐसे तत्व हैं जिनमें वोल्टेज और करंट के बीच संबंध [[ नॉनलाइनियर फ़ंक्शन ]] है।एक उदाहरण एक डायोड है, जिसमें वर्तमान वोल्टेज का [[ घातीय फ़ंक्शन ]] है।नॉनलाइनियर तत्वों के साथ | *''' '' नॉनलाइनियर तत्व ''''' '{{snd}}ये ऐसे तत्व हैं जिनमें वोल्टेज और करंट के बीच संबंध [[ नॉनलाइनियर फ़ंक्शन ]] है।एक उदाहरण एक डायोड है, जिसमें वर्तमान वोल्टेज का [[ घातीय फ़ंक्शन ]] है।नॉनलाइनियर तत्वों के साथ परिपथ विश्लेषण और डिजाइन के लिए कठिन होते हैं, अधिकांशतः [[ सर्किट सिमुलेशन | परिपथ सिमुलेशन]] कंप्यूटर प्रोग्राम जैसे [[ स्पाइस ]] की आवश्यकता होती है। | ||
== एक-पोर्ट तत्व == | == एक-पोर्ट तत्व == | ||
एकमात्र नौ प्रकार के तत्व ( [[ मेमेंडर ]] सम्मलित नहीं हैं), पांच निष्क्रिय और चार सक्रिय, किसी भी विद्युत घटक या | एकमात्र नौ प्रकार के तत्व ( [[ मेमेंडर ]] सम्मलित नहीं हैं), पांच निष्क्रिय और चार सक्रिय, किसी भी विद्युत घटक या परिपथ को मॉडल करने के लिए आवश्यक हैं{{Citation needed|date=March 2012}} प्रत्येक तत्व को नेटवर्क के [[ राज्य चर ]] एस के बीच एक संबंध के माध्यम से परिभाषित किया गया है: [[ वर्तमान (बिजली) | वर्तमान ]], <math>I</math>; [[voltage|वोल्टेज]], <math>V</math>, [[Electric charge|चार्ज]] , <math>Q</math>; और [[magnetic flux|चुंबकीय फ्लक्स]] , <math>\Phi</math>। | ||
* दो स्रोत: | * दो स्रोत: | ||
** [[ वर्तमान स्रोत ]], [[ एम्पीयर ]] एस में मापा गया - एक कंडक्टर में एक वर्तमान का उत्पादन करता है।संबंध के अनुसार चार्ज को प्रभावित करता है <math>dQ = -I\,dt</math>। | ** [[ वर्तमान स्रोत ]], [[ एम्पीयर ]] एस में मापा गया - एक कंडक्टर में एक वर्तमान का उत्पादन करता है।संबंध के अनुसार चार्ज को प्रभावित करता है <math>dQ = -I\,dt</math>। | ||
** [[ वोल्टेज स्रोत ]], [[ वोल्ट ]] एस में मापा गया - दो बिंदुओं के बीच [[ संभावित अंतर ]] का उत्पादन करता है।संबंध के अनुसार चुंबकीय प्रवाह को प्रभावित करता है <math>d\Phi = V\,dt</math>। | ** [[ वोल्टेज स्रोत ]], [[ वोल्ट ]] एस में मापा गया - दो बिंदुओं के बीच [[ संभावित अंतर ]] का उत्पादन करता है।संबंध के अनुसार चुंबकीय प्रवाह को प्रभावित करता है <math>d\Phi = V\,dt</math>। | ||
:<math>\Phi</math> इस रिश्ते में शारीरिक रूप से सार्थक कुछ भी आवश्यक नहीं है। वर्तमान जनरेटर के स्थितियों में, <math>Q</math>, वर्तमान का समय अभिन्न, जनरेटर के माध्यम से भौतिक रूप से वितरित विद्युत आवेश की मात्रा का प्रतिनिधित्व करता है।. यहाँ <math>\Phi</math> वोल्टेज का समय अभिन्न है, किन्तु यह एक भौतिक मात्रा का प्रतिनिधित्व करता है या नहीं, वोल्टेज स्रोत की प्रकृति पर निर्भर करता है।चुंबकीय प्रेरण के माध्यम से उत्पन्न एक वोल्टेज के लिए यह सार्थक है, किन्तु एक विद्युत रासायनिक स्रोत के लिए, या एक वोल्टेज जो किसी अन्य | :<math>\Phi</math> इस रिश्ते में शारीरिक रूप से सार्थक कुछ भी आवश्यक नहीं है। वर्तमान जनरेटर के स्थितियों में, <math>Q</math>, वर्तमान का समय अभिन्न, जनरेटर के माध्यम से भौतिक रूप से वितरित विद्युत आवेश की मात्रा का प्रतिनिधित्व करता है।. यहाँ <math>\Phi</math> वोल्टेज का समय अभिन्न है, किन्तु यह एक भौतिक मात्रा का प्रतिनिधित्व करता है या नहीं, वोल्टेज स्रोत की प्रकृति पर निर्भर करता है।चुंबकीय प्रेरण के माध्यम से उत्पन्न एक वोल्टेज के लिए यह सार्थक है, किन्तु एक विद्युत रासायनिक स्रोत के लिए, या एक वोल्टेज जो किसी अन्य परिपथ का आउटपुट है, कोई भौतिक अर्थ इससे जुड़ा नहीं है। | ||
:: ये दोनों तत्व आवश्यक रूप से गैर-रैखिक तत्व हैं। नीचे [[ #गैर-रैखिक तत्व | गैर-रैखिक तत्व]] देखें। | :: ये दोनों तत्व आवश्यक रूप से गैर-रैखिक तत्व हैं। नीचे [[ #गैर-रैखिक तत्व | गैर-रैखिक तत्व]] देखें। | ||
* तीन [[ निष्क्रियता (इंजीनियरिंग) | | * तीन [[ निष्क्रियता (इंजीनियरिंग) |निष्क्रिय]] तत्व: | ||
** [[ विद्युत प्रतिरोध | प्रतिरोध ]] <math>R</math>, [[Ohm (unit)|ओम]] में मापा गया – यह तत्व के माध्यम से बहती धारा के अनुपात में वोल्टेज उत्पन्न करता है।वोल्टेज और धारा के बीच संबंध को निम्न रिश्ते से जोड़ा जाता है: <math>dV = R\,dI</math>। | ** [[ विद्युत प्रतिरोध | प्रतिरोध ]] <math>R</math>, [[Ohm (unit)|ओम]] में मापा गया – यह तत्व के माध्यम से बहती धारा के अनुपात में वोल्टेज उत्पन्न करता है।वोल्टेज और धारा के बीच संबंध को निम्न रिश्ते से जोड़ा जाता है: <math>dV = R\,dI</math>। | ||
** [[ कैपेसिटेंस ]] <math>C</math>, [[farad|फैराड्स]] में मापा गया –यह तत्व के अंतर के बदलने की दर के अनुपात में धारा उत्पन्न करता है। वोल्टेज और चार्ज के बीच संबंध को निम्न रिश्ते से जोड़ा जाता है: <math>dQ = C\,dV</math>। | ** [[ कैपेसिटेंस ]] <math>C</math>, [[farad|फैराड्स]] में मापा गया –यह तत्व के अंतर के बदलने की दर के अनुपात में धारा उत्पन्न करता है। वोल्टेज और चार्ज के बीच संबंध को निम्न रिश्ते से जोड़ा जाता है: <math>dQ = C\,dV</math>। | ||
Line 36: | Line 35: | ||
* चार अमूर्त सक्रिय तत्व: | * चार अमूर्त सक्रिय तत्व: | ||
** वोल्टेज-नियंत्रित वोल्टेज स्रोत (वीसीवीएस) एक निर्दिष्ट लाभ के संबंध में एक और वोल्टेज के आधार पर एक वोल्टेज उत्पन्न करता है। (अनंत इनपुट [[ विद्युत प्रतिबाधा | प्रतिबाधा ]] और शून्य आउटपुट प्रतिबाधा है)। | ** वोल्टेज-नियंत्रित वोल्टेज स्रोत (वीसीवीएस) एक निर्दिष्ट लाभ के संबंध में एक और वोल्टेज के आधार पर एक वोल्टेज उत्पन्न करता है। (अनंत इनपुट [[ विद्युत प्रतिबाधा | प्रतिबाधा ]] और शून्य आउटपुट प्रतिबाधा है)। | ||
** वोल्टेज-नियंत्रित वर्तमान स्रोत (वीसीसीएस) | ** वोल्टेज-नियंत्रित वर्तमान स्रोत (वीसीसीएस) परिपथ में कहीं और एक वोल्टेज के आधार पर एक वर्तमान उत्पन्न करता है, एक निर्दिष्ट लाभ के संबंध में, [[ फील्ड-इफेक्ट ट्रांजिस्टर ]] एस और [[ वैक्यूम ट्यूब ]] एस मॉडल के लिए उपयोग किया जाता है (इनपुट इनपुट प्रतिबाधा है) और अनंत आउटपुट प्रतिबाधा)। लाभ की विशेषता [[ ट्रांसफर कंडक्टेंस ]] है जिसमें [[ सीमेंस (यूनिट) | सीमेंस ]] की इकाइयाँ होंगी। | ||
** वर्तमान-नियंत्रित वोल्टेज स्रोत (सीसीवीएस) एक निर्दिष्ट लाभ के संबंध में | ** वर्तमान-नियंत्रित वोल्टेज स्रोत (सीसीवीएस) एक निर्दिष्ट लाभ के संबंध में परिपथ में कहीं और एक इनपुट वर्तमान के आधार पर एक वोल्टेज उत्पन्न करता है। (शून्य इनपुट प्रतिबाधा और शून्य आउटपुट प्रतिबाधा है)। [[ ट्रांसिटर ]] एस मॉडल के लिए उपयोग किया जाता है। लाभ की विशेषता [[ ट्रांसफर प्रतिबाधा ]] है जिसमें [[ ओम ]] एस की इकाइयाँ होंगी। | ||
** वर्तमान-नियंत्रित वर्तमान स्रोत (सीसीसीएस) एक इनपुट करंट और एक निर्दिष्ट लाभ के आधार पर एक वर्तमान उत्पन्न करता है। [[ द्विध्रुवी जंक्शन ट्रांजिस्टर ]] एस मॉडल के लिए उपयोग किया जाता है। (शून्य इनपुट प्रतिबाधा और अनंत आउटपुट प्रतिबाधा है)। | ** वर्तमान-नियंत्रित वर्तमान स्रोत (सीसीसीएस) एक इनपुट करंट और एक निर्दिष्ट लाभ के आधार पर एक वर्तमान उत्पन्न करता है। [[ द्विध्रुवी जंक्शन ट्रांजिस्टर ]] एस मॉडल के लिए उपयोग किया जाता है। (शून्य इनपुट प्रतिबाधा और अनंत आउटपुट प्रतिबाधा है)। | ||
:: ये चार तत्व [[ #दो-पोर्ट तत्व | दो-पोर्ट तत्व ]] के उदाहरण | :: ये चार तत्व [[ #दो-पोर्ट तत्व | दो-पोर्ट तत्व ]] के उदाहरण हैं | ||
=== गैर-रैखिक तत्व === | === गैर-रैखिक तत्व === | ||
[[File:Two-terminal non-linear circuit elements.svg|thumb|right|अवरोधक, संधारित्र, प्रारंभ करनेवाला और मेमिस्टर के वैचारिक समरूपता।]] | [[File:Two-terminal non-linear circuit elements.svg|thumb|right|अवरोधक, संधारित्र, प्रारंभ करनेवाला और मेमिस्टर के वैचारिक समरूपता।]] | ||
वास्तविकता में, सभी | वास्तविकता में, सभी परिपथ घटक गैर-रैखिक होते हैं और एक निश्चित सीमा के अंतर्गत ही रैखिक के लिए अनुमान लगाया जा सकता है। पैसिव घटकों को और अधिक सटीकता से वर्णन करने के लिए, उनकी[[ संवैधानिक संबंध ]] का उपयोग सरल अनुपातता के बजाय किया जाता है। परिपथ चरणों के किसी भी दो चरणों से, छः निर्माणशील संबंध बनाए जा सकते हैं। इससे संभव होता है कि एक सिद्धांतीय चौथा पैसिव घटक होता है क्योंकि रैखिक नेटवर्क विश्लेषण में केवल पाँच घटक होते हैं (विभिन्न निर्भर स्रोतों को शामिल न करते हुए)। इस अतिरिक्त घटक को [[ मेमेंडर | मेम्रिस्टर]] कहा जाता है।यह केवल एक समय-विभाजन गैर-रैखिक घटक के रूप में किसी अर्थ का होता है; एक समय-विभाजन रैखिक घटक के रूप में इसका अर्थ कुछ नहीं होता है। इसलिए, इसे[[ LTI सिस्टम थ्योरी | रैखिक समय-अपरिवर्तनीय (LTI) ]] परिपथ मॉडल में सम्मलित नहीं है।निष्क्रिय तत्वों के संवैधानिक संबंध के माध्यम से दिए गए हैं<ref name=Trajkovic>Ljiljana Trajković, Nonlinear सर्किट, '' द इलेक्ट्रिकल इंजीनियरिंग हैंडबुक '' (एड: वाई-काई चेन), पीपी .75–77, अकादमिक प्रेस, 2005 {{ISBN|0-12-170960-4}}</ref> | ||
*विद्युत विद्युतवर्द्धकता: विद्युतीय संबंध को निम्न रूप में परिभाषित किया जाता है <math>f(V, I)=0</math> में से किसी भी दो चरणों के लिए।। | *विद्युत विद्युतवर्द्धकता: विद्युतीय संबंध को निम्न रूप में परिभाषित किया जाता है <math>f(V, I)=0</math> में से किसी भी दो चरणों के लिए।। | ||
Line 52: | Line 51: | ||
:जहाँ <math>f(x,y)</math> दो चरणों के लिए किसी भी दो चरणों के लिए किसी भी विशिष्ट फ़ंक्शन हो सकता है। | :जहाँ <math>f(x,y)</math> दो चरणों के लिए किसी भी दो चरणों के लिए किसी भी विशिष्ट फ़ंक्शन हो सकता है। | ||
कुछ विशेष स्थितियों में संवैधानिक संबंध एक चर के एक समारोह के लिए सरल करता है।यह सभी रैखिक तत्वों के लिए मामला है, किन्तु उदाहरण के लिए, एक आदर्श [[ डायोड ]], जो | कुछ विशेष स्थितियों में संवैधानिक संबंध एक चर के एक समारोह के लिए सरल करता है।यह सभी रैखिक तत्वों के लिए मामला है, किन्तु उदाहरण के लिए, एक आदर्श [[ डायोड ]], जो परिपथ सिद्धांत में एक गैर-रैखिक अवरोधक है, का रूप का एक संवैधानिक संबंध है <math> V = f(I)</math>।दोनों स्वतंत्र वोल्टेज, और स्वतंत्र वर्तमान स्रोतों को इस परिभाषा के अनुसार गैर-रैखिक प्रतिरोध माना जा सकता है<ref name=Trajkovic/> | ||
चौथा निष्क्रिय तत्व, मेम्टर, 1971 के एक पेपर में [[ लियोन चुआ ]] के माध्यम से प्रस्तावित किया गया था, किन्तु एक भौतिक घटक जो यादगार प्रदर्शन का प्रदर्शन करता है, वह सैंतीस साल बाद तक नहीं बनाया गया था। यह 30 अप्रैल, 2008 को बताया गया था कि एक कार्यशील मेमिस्टर को [[ एचपी लैब्स ]] में एक टीम के माध्यम से विकसित किया गया था, जिसका नेतृत्व वैज्ञानिक [[ आर। स्टेनली विलियम्स ]] ने किया था<ref>{{citation|last=Strukov|first=Dmitri B|last2=Snider|first2=Gregory S|last3=Stewart|first3=Duncan R|last4=Williams|first4=Stanley R|title=The missing memristor found|journal=Nature|volume=453|pages=80–83|year=2008|doi=10.1038/nature06932|pmid=18451858|issue=7191|bibcode=2008Natur.453...80S}}</ref><ref>Eetimes, 30 अप्रैल 2008, [http://www.eetimes.com/news/latest/showarticle.jhtml?articleid=207403521</ref><ref>]</ref><ref>]</ref> मेम्टर के आगमन के साथ, चार चर की प्रत्येक जोड़ी अब संबंधित हो सकती है। | चौथा निष्क्रिय तत्व, मेम्टर, 1971 के एक पेपर में [[ लियोन चुआ ]] के माध्यम से प्रस्तावित किया गया था, किन्तु एक भौतिक घटक जो यादगार प्रदर्शन का प्रदर्शन करता है, वह सैंतीस साल बाद तक नहीं बनाया गया था। यह 30 अप्रैल, 2008 को बताया गया था कि एक कार्यशील मेमिस्टर को [[ एचपी लैब्स ]] में एक टीम के माध्यम से विकसित किया गया था, जिसका नेतृत्व वैज्ञानिक [[ आर। स्टेनली विलियम्स ]] ने किया था<ref>{{citation|last=Strukov|first=Dmitri B|last2=Snider|first2=Gregory S|last3=Stewart|first3=Duncan R|last4=Williams|first4=Stanley R|title=The missing memristor found|journal=Nature|volume=453|pages=80–83|year=2008|doi=10.1038/nature06932|pmid=18451858|issue=7191|bibcode=2008Natur.453...80S}}</ref><ref>Eetimes, 30 अप्रैल 2008, [http://www.eetimes.com/news/latest/showarticle.jhtml?articleid=207403521</ref><ref>]</ref><ref>]</ref> मेम्टर के आगमन के साथ, चार चर की प्रत्येक जोड़ी अब संबंधित हो सकती है। | ||
Line 74: | Line 73: | ||
: <math> \begin{bmatrix} V_1 \\ V_2 \end{bmatrix} = \begin{bmatrix} 0 & -r \\ r & 0 \end{bmatrix}\begin{bmatrix} I_1 \\ I_2 \end{bmatrix}</math> | : <math> \begin{bmatrix} V_1 \\ V_2 \end{bmatrix} = \begin{bmatrix} 0 & -r \\ r & 0 \end{bmatrix}\begin{bmatrix} I_1 \\ I_2 \end{bmatrix}</math> | ||
ट्रांसफार्मर एक पोर्ट पर | ट्रांसफार्मर एक पोर्ट पर वोल्टेज को n अनुपात में दूसरे पोर्ट पर वोल्टेज मैप करता है। दोनों पोर्ट के बीच वर्तमान 1/n के अनुपात से मैप होता है। दूसरी तरफ,[[ गाइरेटर | गाइरेटर]], एक पोर्ट पर वोल्टेज को दूसरे पोर्ट पर एक विद्युत धारा में मैप करता है। उसी तरह, धाराएँ वोल्टेजों में मैप होती हैं। मैट्रिक्स में r मात्रा विद्युत प्रतिरोध की इकाई में होती है। जायरेटर विश्लेषण में आवश्यक होता है क्योंकि यह अपरत्याश्रुतिशील होता है। मूल रूप से बनाए गए नेटवर्क अपरत्याश्रुतिशील होते हैं इसलिए वे अपने आप में एक असमान्य सिस्टम को दर्शाने के लिए उपयोग नहीं किए जा सकते हैं। हालांकि, ट्रांसफार्मर और जायरेटर दोनों को होना आवश्यक नहीं है। दो जायरेटर एक के बाद एक लगाये जाने पर एक ट्रांसफार्मर के समान होते हैं, लेकिन सुविधा के लिए आमतौर पर ट्रांसफार्मर का उपयोग किया जाता है। दो जाइरेटर के संयोग से एक ट्रांसफार्मर के समान हो जाते हैं, लेकिन सुविधा के लिए ट्रांसफार्मर आमतौर पर बरकरार रखा जाता है। इन्हें अस्तित्व में आने वाले कैपैसिटेंस या इंडक्टन्स भी अनिवार्य नहीं होते हैं क्योंकि एक जाइरेटर पोर्ट 2 पर इनमें से किसी एक के साथ समाप्त होने पर पोर्ट 1 पर दूसरे के समान होता है। हालांकि, ट्रांसफार्मर, कैपैसिटेंस और इंडक्टन्स सामान्यतया विश्लेषण में बरकरार रखे जाते हैं क्योंकि वे बुनियादी भौतिक घटक[[ ट्रांसफार्मर ]],[[ प्रारंभ करनेवाला |प्रारंभ करनेवाला]] और [[ कैपेसिटर |कैपेसिटर]] चूँकि एक [[ गाइरेटर#कार्यान्वयन: एक नकली प्रारंभ करनेवाला |प्रैक्टिकल गाइरेटर]] को एक्टिव परिपथ के रूप में निर्मित किया जाना चाहिए।<ref>वधवा, सी। एल।, '' नेटवर्क एनालिसिस एंड सिंथेसिस '', पीपी .17–22, न्यू एज इंटरनेशनल, {{ISBN|81-224-1753-1}}</ref><ref>हर्बर्ट जे। कार्लिन, पियर पाओलो सिवलेरी, '' वाइडबैंड सर्किट डिज़ाइन '', पीपी .171–172, सीआरसी प्रेस, 1998 {{ISBN|0-8493-7897-4}}</ref><ref>Vjekoslav damić, जॉन मोंटगोमरी, '' मेकैट्रोनिक्स बाय बॉन्ड ग्राफ़: मॉडलिंग और सिमुलेशन के लिए एक ऑब्जेक्ट-ओरिएंटेड दृष्टिकोण '', pp.32–33, स्प्रिंगर, 2003 {{ISBN|3-540-42375-3}}</ref> | ||
== उदाहरण == | == उदाहरण == | ||
निम्नलिखित विद्युत तत्वों के माध्यम से घटकों के प्रतिनिधित्व के उदाहरण हैं। | निम्नलिखित विद्युत तत्वों के माध्यम से घटकों के प्रतिनिधित्व के उदाहरण हैं। | ||
* पहले स्तर पर, एक [[ बैटरी (बिजली) |बैटरी]] को एक वोल्टेज स्रोत द्वारा | * पहले स्तर पर, एक [[ बैटरी (बिजली) |बैटरी]] को एक वोल्टेज स्रोत द्वारा दर्शाया जाता है। एक और उन्नत मॉडल में, उसमें एक सीरीज रेसिस्टेंस भी शामिल हो सकता है, जो बैटरी की आंतरिक रेसिस्टेंस को दर्शाता है (जो उष्मागत होती है और उपयोग में होने पर वोल्टेज कम होती है)। एक वर्तमान स्रोत पैरालल में जोड़ा जा सकता है ताकि इसके लीकेज को दर्शाया जा सके (जो बैटरी को दीर्घकालिक रूप से खाली करता है)। | ||
* पहले स्तर पर, एक [[ रोकनेवाला ]] को एक | * पहले स्तर पर, एक [[ रोकनेवाला | रेसिस्टर]] को एक रेसिस्टेंस द्वारा दर्शाया जाता है। एक और उन्नत मॉडल में, उसमें एक सीरीज इंडक्टेंस शामिल की जा सकती है, जो इसके लीड इंडक्टेंस के प्रतिफलन को दर्शाती है (जो स्पाइरल के रूप में बने रेसिस्टर में अधिक महत्वपूर्ण होता है)। एक कैपेसिटेंस पैरालल में जोड़ा जा सकता है ताकि रेसिस्टर लीडों के पास आपस में कैपैसिटिव प्रभाव को दर्शाए। एक तार को कम मूल्य वाले रेसिस्टर के रूप में दर्शाया जा सकता है। | ||
* | * [[ सेमीकंडक्टर |सेमीकंडक्टर]] को दर्शाते समय, वर्तमान मान को बढ़ाने के लिए वर्तमान स्रोत अधिक उपयोग में आते हैं। उदाहरण के लिए, पहले तख्ते पर, एक बायोपोलर[[ ट्रांजिस्टर ]]को एक चरम वर्तमान स्रोत द्वारा दर्शाया जा सकता है जो इनपुट वर्तमान द्वारा नियंत्रित होता है। | ||
==See also== | ==See also== | ||
* संचरण लाइन | * संचरण लाइन | ||
[[Category: Machine Translated Page]] | [[Category:All articles with unsourced statements]] | ||
[[Category:Articles with hatnote templates targeting a nonexistent page]] | |||
[[Category:Articles with unsourced statements from March 2012]] | |||
[[Category:Machine Translated Page]] | |||
[[Category:Pages with reference errors]] | |||
[[Category:Templates Vigyan Ready]] |
Latest revision as of 13:11, 26 October 2023
विद्युत तत्व वैचारिक अमूर्त हैं जो आदर्शित विद्युत घटक एस का प्रतिनिधित्व करते हैं[1] जैसे कि कैपेसिटर एस, और परिपथ विश्लेषण है। विश्लेषण में उपयोग किया जाता है। सभी विद्युत नेटवर्क का विश्लेषण तारों के माध्यम से परस्पर जुड़े कई विद्युत तत्वों के रूप में किया जा सकता है। जहां तत्व मोटे तौर पर वास्तविक घटकों के अनुरूप होते हैं, प्रतिनिधित्व योजनाबद्ध आरेख या परिपथ आरेख के रूप में हो सकता है। इसे लम्पेड-एलिमेंट परिपथ मॉडल कहा जाता है। अन्य स्थितियों में, वितरित-तत्व मॉडल में नेटवर्क को मॉडल करने के लिए इन्फिनिटिमल तत्वों का उपयोग किया जाता है।
ये आदर्श विद्युत तत्व वास्तविक, भौतिक इलेक्ट्रिकल या इलेक्ट्रॉनिक घटक का प्रतिनिधित्व करते हैं, किन्तु वे शारीरिक रूप से सम्मलित नहीं हैं और उन्हें आदर्श गुण माना जाता है, चूँकि वास्तविक विद्युत घटकों में आदर्श गुणों से कम होता है, उनके मूल्यों में अनिश्चितता की डिग्री और एक डिग्री और उनके मूल्यों में अनिश्चितता की डिग्री होती है और कुछ हद तक गैर -हद तक। एक वास्तविक परिपथ घटक के गैर -व्यवहार व्यवहार को मॉडल करने के लिए इसके कार्य को अनुमानित करने के लिए कई आदर्श विद्युत तत्वों के संयोजन की आवश्यकता हो सकती है। उदाहरण के लिए, एक प्रारंभ करनेवाला परिपथ तत्व को इंडक्शन माना जाता है, किन्तु कोई प्रतिरोध या समाई नहीं है, चूँकि एक वास्तविक प्रारंभ करनेवाला, तार का एक कॉइल, इसके अधिष्ठापन के अतिरिक्त कुछ प्रतिरोध है। यह एक प्रतिरोध के साथ श्रृंखला में एक आदर्श इंडक्शन तत्व के माध्यम से मॉडलिंग की जा सकती है।
इलेक्ट्रिक तत्वों का उपयोग करके परिपथ विश्लेषण घटकों का उपयोग करके कई व्यावहारिक विद्युत नेटवर्क को समझने के लिए उपयोगी है। जिस प्रकार से एक नेटवर्क अपने व्यक्तिगत तत्वों से प्रभावित होता है, उसका विश्लेषण करके यह अनुमान लगाना संभव है कि एक वास्तविक नेटवर्क कैसे व्यवहार करेगा।
प्रकार
परिपथ तत्वों को विभिन्न श्रेणियों में वर्गीकृत किया जा सकता है।एक यह है कि उन्हें कितने टर्मिनलों को अन्य घटकों से जोड़ना है:
- एक-पोर्ट तत्व ' – ये सबसे सरल घटकों का प्रतिनिधित्व करते हैं, जिनके पास कनेक्ट करने के लिए एकमात्र दो टर्मिनल हैं।उदाहरण प्रतिरोध, कैपेसिटेंस, इंडक्शन और डायोड हैं।
- मल्टीपोर्ट एलिमेंट्स ' – इनमें दो से अधिक टर्मिनल हैं। वे पोर्ट एस नामक टर्मिनलों के कई जोड़े के माध्यम से बाहरी परिपथ से जुड़ते हैं।उदाहरण के लिए, तीन अलग-अलग वाइंडिंग वाले एक ट्रांसफार्मर में छह टर्मिनल होते हैं और इसे तीन-पोर्ट तत्व के रूप में आदर्श बनाया जा सकता है;प्रत्येक वाइंडिंग के सिरों को एक जोड़ी टर्मिनलों से जुड़ा होता है जो एक बंदरगाह का प्रतिनिधित्व करते हैं।
- दो-पोर्ट तत्व ' – ये सबसे आम मल्टीपॉर्ट तत्व हैं, जिनमें दो बंदरगाहों से युक्त चार टर्मिनल हैं।
तत्वों को सक्रिय और निष्क्रिय में भी विभाजित किया जा सकता है:
- सक्रिय तत्व या स्रोत ' – ये ऐसे तत्व हैं जो इलेक्ट्रिकल पावर का स्रोत बना सकते हैं;उदाहरण वोल्टेज स्रोत एस और वर्तमान स्रोत एस हैं।उनका उपयोग आदर्श बैटरी और बिजली की आपूर्ति का प्रतिनिधित्व करने के लिए किया जा सकता है।
- आश्रित स्रोत ' – ये एक वोल्टेज या वर्तमान स्रोत के साथ दो-पोर्ट तत्व हैं जो टर्मिनलों की दूसरी जोड़ी पर वोल्टेज या वर्तमान के लिए आनुपातिक है।इनका उपयोग के मॉडलिंग में किया जाता है, घटक जैसे ट्रांजिस्टर एस, वैक्यूम ट्यूब एस, और ओपी-एएमपी एस।
- निष्क्रिय तत्व ' – ये ऐसे तत्व हैं जिनमें ऊर्जा का स्रोत नहीं है, उदाहरण डायोड, प्रतिरोध, समाई और इंडक्शन हैं।
एक और अंतर रैखिक और नॉनलाइनियर के बीच है:
- रैखिक तत्व ' – ये ऐसे तत्व हैं जिनमें घटक संबंध, वोल्टेज और करंट के बीच संबंध, रैखिक फ़ंक्शन है। वे सुपरपोजिशन सिद्धांत का पालन करते हैं।रैखिक तत्वों के उदाहरण प्रतिरोध, कैपेसिटेंस, इंडक्शन और रैखिक आश्रित स्रोत हैं।एकमात्र रैखिक तत्वों के साथ परिपथ, रैखिक परिपथ एस, इंटरमॉड्यूलेशन विरूपण का कारण नहीं है, और लाप्लास ट्रांसफॉर्म जैसी शक्तिशाली गणितीय तकनीकों के साथ आसानी से विश्लेषण किया जा सकता है।
- नॉनलाइनियर तत्व ' – ये ऐसे तत्व हैं जिनमें वोल्टेज और करंट के बीच संबंध नॉनलाइनियर फ़ंक्शन है।एक उदाहरण एक डायोड है, जिसमें वर्तमान वोल्टेज का घातीय फ़ंक्शन है।नॉनलाइनियर तत्वों के साथ परिपथ विश्लेषण और डिजाइन के लिए कठिन होते हैं, अधिकांशतः परिपथ सिमुलेशन कंप्यूटर प्रोग्राम जैसे स्पाइस की आवश्यकता होती है।
एक-पोर्ट तत्व
एकमात्र नौ प्रकार के तत्व ( मेमेंडर सम्मलित नहीं हैं), पांच निष्क्रिय और चार सक्रिय, किसी भी विद्युत घटक या परिपथ को मॉडल करने के लिए आवश्यक हैं[citation needed] प्रत्येक तत्व को नेटवर्क के राज्य चर एस के बीच एक संबंध के माध्यम से परिभाषित किया गया है: वर्तमान , ; वोल्टेज, , चार्ज , ; और चुंबकीय फ्लक्स , ।
- दो स्रोत:
- वर्तमान स्रोत , एम्पीयर एस में मापा गया - एक कंडक्टर में एक वर्तमान का उत्पादन करता है।संबंध के अनुसार चार्ज को प्रभावित करता है ।
- वोल्टेज स्रोत , वोल्ट एस में मापा गया - दो बिंदुओं के बीच संभावित अंतर का उत्पादन करता है।संबंध के अनुसार चुंबकीय प्रवाह को प्रभावित करता है ।
- इस रिश्ते में शारीरिक रूप से सार्थक कुछ भी आवश्यक नहीं है। वर्तमान जनरेटर के स्थितियों में, , वर्तमान का समय अभिन्न, जनरेटर के माध्यम से भौतिक रूप से वितरित विद्युत आवेश की मात्रा का प्रतिनिधित्व करता है।. यहाँ वोल्टेज का समय अभिन्न है, किन्तु यह एक भौतिक मात्रा का प्रतिनिधित्व करता है या नहीं, वोल्टेज स्रोत की प्रकृति पर निर्भर करता है।चुंबकीय प्रेरण के माध्यम से उत्पन्न एक वोल्टेज के लिए यह सार्थक है, किन्तु एक विद्युत रासायनिक स्रोत के लिए, या एक वोल्टेज जो किसी अन्य परिपथ का आउटपुट है, कोई भौतिक अर्थ इससे जुड़ा नहीं है।
- ये दोनों तत्व आवश्यक रूप से गैर-रैखिक तत्व हैं। नीचे गैर-रैखिक तत्व देखें।
- तीन निष्क्रिय तत्व:
- प्रतिरोध , ओम में मापा गया – यह तत्व के माध्यम से बहती धारा के अनुपात में वोल्टेज उत्पन्न करता है।वोल्टेज और धारा के बीच संबंध को निम्न रिश्ते से जोड़ा जाता है: ।
- कैपेसिटेंस , फैराड्स में मापा गया –यह तत्व के अंतर के बदलने की दर के अनुपात में धारा उत्पन्न करता है। वोल्टेज और चार्ज के बीच संबंध को निम्न रिश्ते से जोड़ा जाता है: ।
- इंडक्शन , हेनरी में मापा गया – यह तत्व के माध्यम से बदलती धारा के अनुपात में चुंबकीय फ्लक्स उत्पन्न करता है। फ्लक्स और धारा के बीच संबंध को निम्न रिश्ते से जोड़ा जाता है: ।
- चार अमूर्त सक्रिय तत्व:
- वोल्टेज-नियंत्रित वोल्टेज स्रोत (वीसीवीएस) एक निर्दिष्ट लाभ के संबंध में एक और वोल्टेज के आधार पर एक वोल्टेज उत्पन्न करता है। (अनंत इनपुट प्रतिबाधा और शून्य आउटपुट प्रतिबाधा है)।
- वोल्टेज-नियंत्रित वर्तमान स्रोत (वीसीसीएस) परिपथ में कहीं और एक वोल्टेज के आधार पर एक वर्तमान उत्पन्न करता है, एक निर्दिष्ट लाभ के संबंध में, फील्ड-इफेक्ट ट्रांजिस्टर एस और वैक्यूम ट्यूब एस मॉडल के लिए उपयोग किया जाता है (इनपुट इनपुट प्रतिबाधा है) और अनंत आउटपुट प्रतिबाधा)। लाभ की विशेषता ट्रांसफर कंडक्टेंस है जिसमें सीमेंस की इकाइयाँ होंगी।
- वर्तमान-नियंत्रित वोल्टेज स्रोत (सीसीवीएस) एक निर्दिष्ट लाभ के संबंध में परिपथ में कहीं और एक इनपुट वर्तमान के आधार पर एक वोल्टेज उत्पन्न करता है। (शून्य इनपुट प्रतिबाधा और शून्य आउटपुट प्रतिबाधा है)। ट्रांसिटर एस मॉडल के लिए उपयोग किया जाता है। लाभ की विशेषता ट्रांसफर प्रतिबाधा है जिसमें ओम एस की इकाइयाँ होंगी।
- वर्तमान-नियंत्रित वर्तमान स्रोत (सीसीसीएस) एक इनपुट करंट और एक निर्दिष्ट लाभ के आधार पर एक वर्तमान उत्पन्न करता है। द्विध्रुवी जंक्शन ट्रांजिस्टर एस मॉडल के लिए उपयोग किया जाता है। (शून्य इनपुट प्रतिबाधा और अनंत आउटपुट प्रतिबाधा है)।
- ये चार तत्व दो-पोर्ट तत्व के उदाहरण हैं
गैर-रैखिक तत्व
वास्तविकता में, सभी परिपथ घटक गैर-रैखिक होते हैं और एक निश्चित सीमा के अंतर्गत ही रैखिक के लिए अनुमान लगाया जा सकता है। पैसिव घटकों को और अधिक सटीकता से वर्णन करने के लिए, उनकीसंवैधानिक संबंध का उपयोग सरल अनुपातता के बजाय किया जाता है। परिपथ चरणों के किसी भी दो चरणों से, छः निर्माणशील संबंध बनाए जा सकते हैं। इससे संभव होता है कि एक सिद्धांतीय चौथा पैसिव घटक होता है क्योंकि रैखिक नेटवर्क विश्लेषण में केवल पाँच घटक होते हैं (विभिन्न निर्भर स्रोतों को शामिल न करते हुए)। इस अतिरिक्त घटक को मेम्रिस्टर कहा जाता है।यह केवल एक समय-विभाजन गैर-रैखिक घटक के रूप में किसी अर्थ का होता है; एक समय-विभाजन रैखिक घटक के रूप में इसका अर्थ कुछ नहीं होता है। इसलिए, इसे रैखिक समय-अपरिवर्तनीय (LTI) परिपथ मॉडल में सम्मलित नहीं है।निष्क्रिय तत्वों के संवैधानिक संबंध के माध्यम से दिए गए हैं[2]
- विद्युत विद्युतवर्द्धकता: विद्युतीय संबंध को निम्न रूप में परिभाषित किया जाता है में से किसी भी दो चरणों के लिए।।
- समाई: संवैधानिक संबंध के रूप में परिभाषित किया गया में से किसी भी दो चरणों के लिए।
- इंडक्शन: संवैधानिक संबंध के रूप में परिभाषित किया गया में से किसी भी दो चरणों के लिए।
- यादगार: संवैधानिक संबंध के रूप में परिभाषित किया गया में से किसी भी दो चरणों के लिए।
- जहाँ दो चरणों के लिए किसी भी दो चरणों के लिए किसी भी विशिष्ट फ़ंक्शन हो सकता है।
कुछ विशेष स्थितियों में संवैधानिक संबंध एक चर के एक समारोह के लिए सरल करता है।यह सभी रैखिक तत्वों के लिए मामला है, किन्तु उदाहरण के लिए, एक आदर्श डायोड , जो परिपथ सिद्धांत में एक गैर-रैखिक अवरोधक है, का रूप का एक संवैधानिक संबंध है ।दोनों स्वतंत्र वोल्टेज, और स्वतंत्र वर्तमान स्रोतों को इस परिभाषा के अनुसार गैर-रैखिक प्रतिरोध माना जा सकता है[2]
चौथा निष्क्रिय तत्व, मेम्टर, 1971 के एक पेपर में लियोन चुआ के माध्यम से प्रस्तावित किया गया था, किन्तु एक भौतिक घटक जो यादगार प्रदर्शन का प्रदर्शन करता है, वह सैंतीस साल बाद तक नहीं बनाया गया था। यह 30 अप्रैल, 2008 को बताया गया था कि एक कार्यशील मेमिस्टर को एचपी लैब्स में एक टीम के माध्यम से विकसित किया गया था, जिसका नेतृत्व वैज्ञानिक आर। स्टेनली विलियम्स ने किया था[3][4][5][6] मेम्टर के आगमन के साथ, चार चर की प्रत्येक जोड़ी अब संबंधित हो सकती है।
दो विशेष गैर-रैखिक तत्व भी हैं जो कभी-कभी विश्लेषण में उपयोग किए जाते हैं किन्तु जो किसी भी वास्तविक घटक के आदर्श समकक्ष नहीं हैं:
- नलक : के रूप में परिभाषित किया गया
- नॉरटोर : एक तत्व के रूप में परिभाषित किया गया है जो वोल्टेज और वर्तमान पर कोई प्रतिबंध नहीं रखता है।
इन्हें कभी -कभी दो से अधिक टर्मिनलों वाले घटकों के मॉडल में उपयोग किया जाता है: उदाहरण के लिए ट्रांजिस्टर[2]
दो-पोर्ट तत्व
उपरोक्त उल्लिखित सभी तत्व दो-टर्मिनल याएक-पोर्ट तत्व हैं, अपेक्षा नियमित स्रोतों के। नेटवर्क विश्लेषण में सामान्यतः पेश किए जाने वाले दो लॉसलेस, पैसिव, रैखिक दो-पोर्ट तत्व होते हैं। मैट्रिक्स नोटेशन में उनके संरचनात्मक संबंध होते हैं।
- ट्रांसफार्मर
- जायरेटर
ट्रांसफार्मर एक पोर्ट पर वोल्टेज को n अनुपात में दूसरे पोर्ट पर वोल्टेज मैप करता है। दोनों पोर्ट के बीच वर्तमान 1/n के अनुपात से मैप होता है। दूसरी तरफ, गाइरेटर, एक पोर्ट पर वोल्टेज को दूसरे पोर्ट पर एक विद्युत धारा में मैप करता है। उसी तरह, धाराएँ वोल्टेजों में मैप होती हैं। मैट्रिक्स में r मात्रा विद्युत प्रतिरोध की इकाई में होती है। जायरेटर विश्लेषण में आवश्यक होता है क्योंकि यह अपरत्याश्रुतिशील होता है। मूल रूप से बनाए गए नेटवर्क अपरत्याश्रुतिशील होते हैं इसलिए वे अपने आप में एक असमान्य सिस्टम को दर्शाने के लिए उपयोग नहीं किए जा सकते हैं। हालांकि, ट्रांसफार्मर और जायरेटर दोनों को होना आवश्यक नहीं है। दो जायरेटर एक के बाद एक लगाये जाने पर एक ट्रांसफार्मर के समान होते हैं, लेकिन सुविधा के लिए आमतौर पर ट्रांसफार्मर का उपयोग किया जाता है। दो जाइरेटर के संयोग से एक ट्रांसफार्मर के समान हो जाते हैं, लेकिन सुविधा के लिए ट्रांसफार्मर आमतौर पर बरकरार रखा जाता है। इन्हें अस्तित्व में आने वाले कैपैसिटेंस या इंडक्टन्स भी अनिवार्य नहीं होते हैं क्योंकि एक जाइरेटर पोर्ट 2 पर इनमें से किसी एक के साथ समाप्त होने पर पोर्ट 1 पर दूसरे के समान होता है। हालांकि, ट्रांसफार्मर, कैपैसिटेंस और इंडक्टन्स सामान्यतया विश्लेषण में बरकरार रखे जाते हैं क्योंकि वे बुनियादी भौतिक घटकट्रांसफार्मर ,प्रारंभ करनेवाला और कैपेसिटर चूँकि एक प्रैक्टिकल गाइरेटर को एक्टिव परिपथ के रूप में निर्मित किया जाना चाहिए।[7][8][9]
उदाहरण
निम्नलिखित विद्युत तत्वों के माध्यम से घटकों के प्रतिनिधित्व के उदाहरण हैं।
- पहले स्तर पर, एक बैटरी को एक वोल्टेज स्रोत द्वारा दर्शाया जाता है। एक और उन्नत मॉडल में, उसमें एक सीरीज रेसिस्टेंस भी शामिल हो सकता है, जो बैटरी की आंतरिक रेसिस्टेंस को दर्शाता है (जो उष्मागत होती है और उपयोग में होने पर वोल्टेज कम होती है)। एक वर्तमान स्रोत पैरालल में जोड़ा जा सकता है ताकि इसके लीकेज को दर्शाया जा सके (जो बैटरी को दीर्घकालिक रूप से खाली करता है)।
- पहले स्तर पर, एक रेसिस्टर को एक रेसिस्टेंस द्वारा दर्शाया जाता है। एक और उन्नत मॉडल में, उसमें एक सीरीज इंडक्टेंस शामिल की जा सकती है, जो इसके लीड इंडक्टेंस के प्रतिफलन को दर्शाती है (जो स्पाइरल के रूप में बने रेसिस्टर में अधिक महत्वपूर्ण होता है)। एक कैपेसिटेंस पैरालल में जोड़ा जा सकता है ताकि रेसिस्टर लीडों के पास आपस में कैपैसिटिव प्रभाव को दर्शाए। एक तार को कम मूल्य वाले रेसिस्टर के रूप में दर्शाया जा सकता है।
- सेमीकंडक्टर को दर्शाते समय, वर्तमान मान को बढ़ाने के लिए वर्तमान स्रोत अधिक उपयोग में आते हैं। उदाहरण के लिए, पहले तख्ते पर, एक बायोपोलरट्रांजिस्टर को एक चरम वर्तमान स्रोत द्वारा दर्शाया जा सकता है जो इनपुट वर्तमान द्वारा नियंत्रित होता है।
See also
- संचरण लाइन
- ↑ Thomas, Roland E.; Rosa, Albert J.; Toussaint, Gregory J. (2016). The Analysis and Design of Linear Circuits (8 ed.). Wiley. p. 17. ISBN 978-1-119-23538-5.
To distinguish between a device (the real thing) and its model (an approximate stand-in), we call the model a circuit element. Thus, a device is an article of hardware described in manufacturers' catalogs and parts specifications. An element is a model described in textbooks on circuit analysis.
- ↑ 2.0 2.1 2.2 Ljiljana Trajković, Nonlinear सर्किट, द इलेक्ट्रिकल इंजीनियरिंग हैंडबुक (एड: वाई-काई चेन), पीपी .75–77, अकादमिक प्रेस, 2005 ISBN 0-12-170960-4
- ↑ Strukov, Dmitri B; Snider, Gregory S; Stewart, Duncan R; Williams, Stanley R (2008), "The missing memristor found", Nature, 453 (7191): 80–83, Bibcode:2008Natur.453...80S, doi:10.1038/nature06932, PMID 18451858
- ↑ Eetimes, 30 अप्रैल 2008, [http://www.eetimes.com/news/latest/showarticle.jhtml?articleid=207403521
- ↑ ]
- ↑ ]
- ↑ वधवा, सी। एल।, नेटवर्क एनालिसिस एंड सिंथेसिस , पीपी .17–22, न्यू एज इंटरनेशनल, ISBN 81-224-1753-1
- ↑ हर्बर्ट जे। कार्लिन, पियर पाओलो सिवलेरी, वाइडबैंड सर्किट डिज़ाइन , पीपी .171–172, सीआरसी प्रेस, 1998 ISBN 0-8493-7897-4
- ↑ Vjekoslav damić, जॉन मोंटगोमरी, मेकैट्रोनिक्स बाय बॉन्ड ग्राफ़: मॉडलिंग और सिमुलेशन के लिए एक ऑब्जेक्ट-ओरिएंटेड दृष्टिकोण , pp.32–33, स्प्रिंगर, 2003 ISBN 3-540-42375-3